Category Archives: Raw material

Potential agricultural use of olive cake

J Pharm Pharmacogn Res 8(1): 43-52, 2020.

Original Article

Potential agricultural use of a sub-product (olive cake) from olive oil industries composting with soil

[Uso agrícola potencial de un subproducto (alperujo) de las industrias del aceite de oliva compostado con suelo]

Ariadna Hammann1, Lorena M. Ybañez1, María I. Isla2, Mirna Hilal1,2*

1Centro de Estudios de Especies Vegetales de Interés Regional (CEVIR). Facultad de Ciencias Exactas y Naturales – Universidad Nacional de Catamarca. Belgrano 300, Catamarca capital, Catamarca, Argentina.
2Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV, UNT-CONICET). Facultad de Ciencias Naturales e IML. San Lorenzo 1469, S. M. de Tucumán, Tucumán, Argentina.
Abstract

Context: Olive cake and olive mill wastewater are by-products of olive oil industries. Olive cake is not currently being exploited.

Aims: To evaluate the cytotoxicity and genotoxicity induced in Allium cepa root meristems by olive cake in various preparations (aqueous dilutions of olive cake and mixtures of olive cake with soil before and after a composting process).

Methods: Olive cake aqueous dilutions as well as fresh and composted olive cake – soil mixtures were obtained. Samples were assayed on Allium cepa L roots and the phenolic content was also determined.

Results: Aqueous dilutions showed acute genotoxicity with a mitotic index dramatic reduction and a high number of cell abnormalities.  Olive cake induced chromosome aberrations such as bridges, stickiness, and laggard chromosomes and cell aberrations such as strap, folded, giant and binucleated cells. Anomalies increase with polyphenol concentration, both in aqueous dilutions and in mixtures of olive cake – soil without composting. Composted mixtures did not exhibit cell toxicity up to 10% of olive cake although they can decrease the mitotic index, which would produce a reduction in plant growth.

Conclusions: Results indicate the varied behavior of olive cake according to sample preparation and suggest the possible use of this by-product incorporated to soils and subjected to composting.

KeywordsAllium cepa; genotoxicity; olive cake-soil mixture; olive cake; polyphenols.

Resumen

Contexto: El alperujo es un subproducto de las industrias del aceite de oliva, el cual, actualmente, no está siendo explotado.

Objetivos: El objetivo de este estudio es evaluar la citotoxicidad y genotoxicidad inducida en meristemas de raíces de Allium cepa por alperujo en diferentes preparados (diluciones acuosas de alperujo y mezclas de alperujo con suelo, antes y después de un proceso de compostado).

Métodos: Se prepararon diluciones acuosas de alperujo así como mezclas frescas y compostadas de alperujo-suelo. Las muestras fueron analizadas sobre raíces de Allium cepa L. y se determinó, además, el contenido de compuestos fenólicos.

Resultados: Las diluciones acuosas mostraron genotoxicidad aguda con una reducción drástica del índice mitótico y un alto número de anomalías celulares. El alperujo indujo aberraciones cromosómicas, tales como puentes, pegajosidad y cromosomas rezagados y aberraciones celulares como células alargadas, plegadas, gigantes y binucleadas. Las anomalías aumentaron con la concentración de polifenoles tanto en diluciones acuosas como en mezclas de alperujo-suelo sin compostaje. Las mezclas compostadas no mostraron toxicidad celular hasta el 10% de la torta de oliva, aunque disminuyeron el índice mitótico, lo cual produciría una disminución en el crecimiento de plantas.

Conclusiones: Los resultados indican el diferente comportamiento del alperujo según la preparación de las muestras e indican el posible uso de este subproducto incorporado a suelos y sometido a compostaje.

Palabras ClaveAllium cepa; alperujo; genotoxicidad; mezclas alperujo-suelo; polifenoles.

Download the PDF file .

Citation Format: Hammann A, Ybañez LM, Isla MI, Hilal M (2020) Potential agricultural use of a sub-product (olive cake) from olive oil industries composting with soil. J Pharm Pharmacogn Res 8(1): 43–52.

© 2020 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Fatty acids and antioxidant capacity from Chilean citrus oils

J Pharm Pharmacogn Res 7(6): 389-407, 2019.

Original Article | Artículo Original

Influence of extraction methods on fatty acid composition, total phenolic content and antioxidant capacity of Citrus seed oils from the Atacama Desert, Chile

[Influencia de los métodos de extracción en la composición de ácidos grasos, el contenido fenólico total y la capacidad antioxidante de los aceites de semillas de cítricos del desierto de Atacama, Chile]

Gabino Garrido1*, Wai-Houng Chou1, Carolina Vega1, León Goïty2, Marisela Valdés1

1Department of Pharmaceutical Sciences, Faculty of Sciences, Universidad Catolica del Norte, Av. Angamos 0610, Antofagasta 1270709, Chile.
2Faculty of Medicine, Universidad Diego Portales, Av. Ejército 233, Santiago 8320000, Chile.
Abstract

Context: In the north of Chile, the Atacama Desert and the town of Pica are located, where numerous fruits grow, including citrus ecotypes that generate waste such as the seeds of these fruits.

Aims: To evaluate the influence of extraction methods on fatty acid composition, nutritional quality indexes of lipids, total phenolic content and antioxidant capacity of acid lime (AL) and sweet orange (SO) seed oils from Pica oasis.

Methods: Extraction of these oils was performed using Soxhlet (SE) and direct (D-UAE) or indirect (I-UAE) ultrasound-assisted extraction techniques.

Results: The highest oil yields were obtained using SE (AL = 31.90%, SO = 33.32%). These oils were found to be a rich source of unsaturated fatty acids. Linoleic (36.69%, SE), palmitic (21.90%, SE), oleic (18.07%, UAE-D), a-linolenic (11.45%, D-UAE), and myristoleic (5.91%, D-UAE) acids were the highest concentrations found in AL, while in SO they were oleic and a-linolenic acids (22.54 and 4.53%, respectively) in SE. Total phenolic contents were found without statistical differences between extraction methods (AL =0.719 – 0.787 mg GAE/g oil and SO = 0.653 – 0.915 mg GAE/g oil), except D-UAE SO (0.653 mg GAE/g oil). These oils had similar radical scavenging capacity and reducing power, except in ORAC method (41.99 vs. 96.39 µmol TE/g oil for AL and SO, respectively both in SE). The indexes of nutritional quality were similar among the different methods for the same species, but some of them presented statistically significant differences between the species.

Conclusions: An influence of extraction methods on fatty acid composition, total phenolic content and antioxidant capacity of AL and SO seed oils with better results achieved using SE followed by I-UAE was demonstrated. This work establishes the potential source of nutritional compounds of these seeds that grow in the Atacama Desert, Chile.

Keywords: acid lime seed oil; antioxidant capacity; fatty acids; sweet orange seed oil; total phenolics.

Resumen

Contexto: En el norte de Chile se localiza el desierto de Atacama y la localidad de Pica donde crecen numerosos frutos que incluyen ecotipos de cítricos que generan residuos como las semillas de estos frutos.

Objetivos: Evaluar la influencia de los métodos de extracción en la composición de ácidos grasos, los índices de calidad nutricional de los lípidos, los fenoles totales y la capacidad antioxidante de los aceites de semillas de lima ácida (AL) y naranja dulce (SO) del oasis Pica.

Métodos: La extracción de estos aceites se realizó utilizando técnicas de extracción Soxhlet (SE) y asistida por ultrasonido directa (D-UAE) o indirecta (I-UAE).

Resultados: Los mayores rendimientos de aceite se obtuvieron utilizando SE (AL = 31,90%, SO = 33,32%). Se descubrió que estos aceites son una rica fuente de ácidos grasos insaturados. Las concentraciones de los ácidos linoleico (36,69%, SE), palmítico (21,90%, SE), oleico (18,07%, UAE-D), a-linolénico (11,45%, D-UAE) y miristoleico (5,91%, D-UAE) fueron las más altas encontradas en AL, mientras que en SO fueron ácidos oleico y a-linolénico (22,54 y 4,53%, respectivamente) en SE. El contenido fenólico total se encontró sin diferencias estadísticas entre los métodos de extracción (AL = 0,719 – 0,787 mg GAE/g de aceite y SO = 0,653 – 0,915 mg GAE/g de aceite), excepto D-UAE SO (0,653 mg GAE/g de aceite). Estos aceites tuvieron una capacidad similar de eliminación de radicales y poder reductor, excepto en el método ORAC (41,99 vs. 96,39 µmol de aceite TE/g para AL y SO, respectivamente ambos en SE). Los índices de calidad nutricional fueron similares entre los diferentes métodos para la misma especie, pero algunos de ellos presentaron diferencias estadísticamente significativas entre las especies.

Conclusiones: Se demostró una influencia de los métodos de extracción en la composición de ácidos grasos, el contenido fenólico total y la capacidad antioxidante de los aceites de semillas de AL y SO con mejores resultados en SE seguido de I-UAE. Este trabajo establece la fuente potencial de compuestos nutricionales de estas semillas que crecen en el desierto de Atacama, Chile.

Palabras Clave: aceite de semilla de lima ácida; aceite de semilla de naranja dulce; ácidos grasos; capacidad antioxidante; fenoles totales.

Download the PDF file .

Citation Format: Garrido G, Chou W-H, Vega C, Goïty L, Valdes M (2019) Influence of extraction methods on fatty acid composition, total phenolic content and antioxidant capacity of Citrus seed oils from the Atacama Desert, Chile. J Pharm Pharmacogn Res 7(6): 389–407.

© 2019 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Brazilian agriculture as source of raw material to organic cosmetics

J Pharm Pharmacogn Res 5(3): 165-166, 2017.

Letter to the Editor | Carta al Editor

The profile of Brazilian agriculture as source of raw material to obtain organic cosmetics

[El perfil de la agricultura brasileña como fuente de materia prima para obtener cosméticos orgánicos]

Neila de Paula Pereira, Douglas Dourado*

Laboratory of Research of Medicines and Cosmetics (LAPEMEC). Federal University of Bahia (UFBA), Salvador, Brazil.
*E-mail: douglas.dourado@ufba.br; dougydourado@gmail.com

Dear Editor:

The concept of organic products has expanded beyond food sector foods. Althougth it still causes resistance in some people, it has already captured a wide public, since the basic conditions that define organic products are an absence of agricultural toxins and chemical fertilizers during cultivation. True organic cosmetics are composed only of natural ingredients, with a minimum of 95% of the raw materials used, produced according to the precepts of organic agriculture. They also do not contain preservatives, synthetic fragrances, or petroleum derivatives, among other components of non-natural origin (Kapsnet, 2007; Ethos, 2012). This differentiates them in terms of composition from other cosmetics that claim to possess organic ingredients, i.e., among other non-organic raw materials that make up such products, which additionally contain organic ingredients.

Pereira (2009) has stated that the cosmetics represent the greatest investment in research involving natural raw materials, especially in Brazil, which with the exploration of its biodiversity, adopted agroforestry type production processes that integrate vegetation production with the ecosystem, producing environmental, social, and economic benefits. Therefore, a significant element in the spread of organic cosmetics in Brazil is related to policies for sustainability, which promote environmental integrity through the practice of using non-extractive raw materials, as well as recycling packaging. To assure that all the requirements of organic products are met agencies emerged (ECOCERT and IBD) inspect and certify the production from the raw materials stage through to the finished product (Higuchi, 2013). At the beginning of the 1980, the Institute of Biodynamic Development was founded (IBD, 2009). The only 100% nationally regulated institute, internationally recognized, which carries the credentials for exports destined for all countries. In addition, health researchers are concerned about the raw materials used in the manufacture of cosmetics, which cause allergies, proposing therefore, organic cosmetics as an alternative (De Buzin, 2016).

With one of the most notable floras in the world for sustainable research, the Brazilian Amazon region currently counts on financial incentives from the Brazilian Government for private national and foreign businesses. The ongoing implantation of a Biocosmetics Research and Development Network (REDEBIO) aims to stimulate research involving natural resources from the Brazilian states that make up the zone defined as “Amazônia Legal”. The objective of this region, still under development in Brazil, is principally to aggregate value to products manufactured in small local industries through the use of sustainable technology currently being established. Certain certified raw materials already included in the country’s sustainability program, have also begun to be cultivated according to the requirements of organic cultivation (Neves, 2009). The majority are species of Amazonian vegetation: Euterpe oleracea (Açai), Orbignya martiana (Babaçu), Theobroma grandi-florum (Cupuaçu), Carapas guianensis (Andiroba), Pentaclethra macroloba (Pracaxi), Copaifera landesdorffi (Copaiba), Platonia insignis (Bacuri), Theobroma cacao (Cacao), Virola surinamensis (Ucuuba) and Bertholletia excelsa (Brazil nut). These generate phytopreparations, such as oils, extracts, and dyes that are widely used in the manufacture of Brazilian organic cosmetics with scientifically proven topical and capillary benefits (ABIHPEC, 2012). In the final balance, Brazilian organic cosmetics should continue to gain force over the next few years, especially with the regulation of the organic cosmetics market that is being drafted by the Brazilian Ministry of Agriculture. Moreover, lines of ecologically aware products that provide quality of life for both for rural and metropolitan communities show a tendency to occupy greater space in the market.

References

ABIHPEC (2012) Brazilian Association of the Personal Hygiene, Perfumery and Cosmetics Industry. http://www.abihp-ec.org.br/bb/principiosativos.php. [Consulted December 10, 2016].

De Buzin EJWK (2016) Mercado de produtos orgânicos em Goiânia: Venda direta. PhD Thesis, Department of Agronomy, Federal University of Goias, Goiânia, Brazil.

Ethos (2012) Institute of Business and Social Responsibility. http://www1.ethos.org.br/EthosWeb/Default.aspx. [Consulted December 5, 2016].

Higuchi CT (2013) The rational use of cosmetics and its disposal and aware of appeal for use products organic and natural sources. InterfacEHS 8(3): 138-142.

IBD (2009) Guidelines for certification of health care products and organic beauty, and natural and organic raw materials and natural. http://www.ibd.com.br. [Consulted December 1, 2016].

Kapsner T (2007) Organic cosmetic standards: A new formulation challenge. Cosmet Toiletries 122: 71‑78.

Neves K (2009) Green formulation. Cosmet Toiletries 21: 22-30.

Pereira NP (2009) Sustainability of cosmetic products in Brazil. J Cosmet Dermatol 8: 160‑161.

Download the PDF file .

 

Citation Format: Pereira NP, Dourado D (2017) The profile of Brazilian agriculture as source of raw material to obtain organic cosmetics. J Pharm Pharmacogn Res 5(3): 165-166.

© 2017 Journal of Pharmacy & Pharmacognosy Research (JPPRes)