Nanocarriers for skin delivery of cosmetic antioxidants

J Pharm Pharmacogn Res 2(4): 73-92, 2014.

Review | Revisión

Nanocarriers for skin delivery of cosmetic antioxidants.

[Nanovehículos para la liberación en piel de cosméticos antioxidantes]

Lucia Montenegro

Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
*E-mail: lmontene@unict.it
Abstract

The demand of natural skin care products is steadily growing since consumers perceive them as safe. Currently, cosmetic manufacturers are focusing their efforts on developing innovative natural products to address skin-aging signs, thus meeting consumers’ needs of healthy appearance and well-being. To prevent or treat skin aging, topical supplementation with antioxidant is regarded as one of the most promising strategies. However, most antioxidants presently used in skin care formulations show unfavorable physicochemical properties such as excessive lipophilicity or hydrophilicity, chemical instability and poor skin penetration that actively limit their effectiveness after topical application. Therefore, nanocarriers such as liposomes, niosomes, microemulsions and nanoparticles have been widely investigated as delivery systems for antioxidants to improve their beneficial effects in the treatment of skin aging. In this article, the antioxidants most commonly used in anti-aging cosmetic products will be reviewed along with the nanocarriers designed to improve their safety and effectiveness.

Keywords: Anti-aging; antioxidant; cosmetic; nanocarrier; topical delivery system.

Resumen

La demanda de los productos naturales para el cuidado de piel es cada vez mayor ya que los consumidores los perciben como seguros. En la actualidad, los fabricantes de cosméticos centran sus esfuerzos en el desarrollo de productos naturales innovadores para abordar los signos de envejecimiento de la piel y, por tanto, satisfacer las necesidades de apariencia saludable y el bienestar de los consumidores. La suplementación con antioxidantes tópicos está considerada como una de las estrategias más prometedoras para prevenir o tratar el envejecimiento de la piel. Sin embargo, la mayoría de los antioxidantes que se utilizan actualmente en las formulaciones de cuidado de la piel muestran propiedades fisicoquímicas desfavorables como lipofilia o hidrofilia excesivas, inestabilidad química y escasa penetración de la piel, que limita su eficacia después de la aplicación tópica. Por lo tanto, nanovehículos tales como liposomas, niosomas, microemulsiones y nanopartículas han sido ampliamente investigados como sistemas de liberación para antioxidantes, para mejorar sus efectos beneficiosos en el tratamiento de envejecimiento de la piel. En este artículo serán revisados los antioxidantes más utilizados en productos cosméticos en la lucha contra el envejecimiento, junto con los nanovehículos diseñados para mejorar la seguridad y la eficacia.

Palabras Clave: Antienvejecimiento; antioxidante; cosmético; nanovehículo; sistema de liberación tópica.

Download the PDF file .

Citation Format: Montenegro L (2014) Nanocarriers for skin delivery of cosmetic antioxidants. J Pharm Pharmacogn Res 2(4): 73-92.
This article has been cited by:
de Oliveira WF, dos Santos Silva PM, Barroso Coelho LCB, dos Santos Correia MT (2018) Plant antioxidants and mechanisms of action. Letters in Drug Design & Discovery 15: 1103. DOI: 10.2174/1570180815666180222142521
Haerani A, Chaerunisa AY, Subarnas A (2018) Antioksidan untuk kulit: review. Farmaka 16(2): 135-151. DOI: 10.24198/jf.v16i2.17789 
Annisa R, Melani D, Hendradi E (2018) Evaluation of the physical stability of nanostructured lipid carrier (NLC) meloxicam before and after storage 40 days. International Journal of Drug Delivery Technology 8(2): 107-109. Website
Paulo F, Santos L (2018) Microencapsulation of caffeic acid and its release using a w/o/w double emulsion method: Assessment of formulation parameters. Drying Technology DOI: 10.1080/07373937.2018.1480493
Atif A, Mursalin A, Hira K, Muneer A, Naveed Ullah K (2018) Chapter 11 - Cosmetic lipid nanocarriers,  Alexandru Mihai Grumezescu Ed., In: Lipid Nanocarriers for Drug Targeting, William Andrew Publishing, pp. 437-472. DOI: 10.1016/B978-0-12-813687-4.00011-6.
Pinto F, de Barros DPC, Fonseca LP (2018) Design of multifunctional nanostructured lipid carriers enriched with α-tocopherol using vegetable oils. Industrial Crops & Products 118 (2018) 149–159. DOI: 10.1016/j.indcrop.2018.03.042
Saez V, de Souza IDL, Mansur CRE (2018) Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: A comprehensive review. International Journal of Cosmetic Science 40(2): 103-116. DOI: 10.1111/ics.12452
Montenegro L, Turnaturi R, Parenti C, Pasquinucci L (2018) In vitro evaluation of sunscreen safety: Effects of the vehicle and repeated applications on skin permeation from topical formulations. Pharmaceutics 10(1): 27. DOI: 10.3390/pharmaceutics10010027
Montenegro L, Turnaturi R, Parenti C, Pasquinucci L (2018) Idebenone: Novel strategies to improve its systemic and local efficacy. Nanomaterials 8(2): 87. DOI:10.3390/nano8020087
Montenegro L,  Parenti C, Turnaturi, Pasquinucci L (2017) Resveratrol-loaded lipid nanocarriers: Correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics 9(4): 58. DOI: 10.3390/pharmaceutics9040058
Kocić H, Stanković M, Arsić I (2017) Nanoliposome encapsulation with donkey milk bioactive proteins and its possible application in dermatology and cosmetics. Acta Facultatis Medicae Naissensis 34(3): 199-204. DOI: 10.1515/afmnai-2017-0021 
Costa R, Santos L (2017) Delivery systems for cosmetics - From manufacturing to the skin of natural antioxidants. Powder Technology 322: 402-416. DOI: 10.1016/j.powtec.2017.07.086
Probst dos Santos L, Caon T, Alves Battisti M, Blum da Silva CH, Oliveira Simões CM, Reginatto FH, Machado de Campos A (2017) Antioxidant polymeric nanoparticles containing standardized extract of Ilex paraguariensis A. St.-Hil. for topical use. Industrial Crops and Products 108: 738-747. DOI: 10.1016/j.indcrop.2017.07.035
Widjanarko E (2017) Formulasi sediaan sabun transparan ekstrak labu kuning (Cucurbita moschata). Undergraduate thesis, Widya Mandala Catholic University Surabaya. Website
Rosita NHaryadi DMErawati TNanda RPSoeratri W (2017) Photostability study on character and antioxidant activity of tomato extract (Solanum lycopersicum L.) in nanostructured lipid carrier (NLC) and conventional creame. International Journal of Drug Delivery Technology 7(1): 71-74. Website
Montenegro L (2017) Lipid-based nanoparticles as carriers for dermal delivery of antioxidants. Current Drug Metabolism 18(5): 469-480. Website
Karunaratne DN, Pamunuwa G, Ranatunga U (2017) Introductory Chapter: Microemulsions. In:  Properties and Uses of Microemulsions. Intech. DOI: 10.5772/intechopen.68823
Estanqueiro MConceição JAmaral MHSousa Lobo JM (2016) The role of liposomes and lipid nanoparticles in the skin hydration. Nanobiomaterials in Galenic Formulations and Cosmetics: Applications of Nanobiomaterials (Book Chapter 12), Pages 297-326. Website
Lichota A, Łysio M, Krokosz A (2016) Toxicity of hydroxyfullerene C60(OH)x, x > 30, in the context of biomedical and cosmetic applications.  Przemysł Chemiczny 95(11): 2190-2194. DOI: 10.15199/62.2016.11.8
Ganesan P, Choi D-K (2016) Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. International Journal of Nanomedicine 11: 1987–2007. DOI: 10.2147/IJN.S104701
Kawarkhe P, Deshmane S, Biyani K (2016) Natural antioxidant for face cream: A review. International Journal of Research in Cosmetic Science 6(1): 1-5. Website
Pinto F, De Barros DPC, Fonseca LP (2015) Use of vegetable oils on formulation of efficient bioactive lipid nanocarriers. Bioencapsulation Innovation November: 12-15. Website
Mustafa AZ (2015) Development of niosome containing roasted coffee residue extract for antiaging preparation. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science. Department of Biotechnology. Faculty of Science and Technology. Thammasat University. Website

© 2014 Journal of Pharmacy & Pharmacognosy Research (JPPRes)