Adverse cardiac events following mRNA COVID-19 vaccination

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 76-100, January-February 2023. DOI: https://doi.org/10.56499/jppres22.1524_11.1.76 Review Adverse cardiac events following mRNA COVID-19 vaccination: A systematic review and meta-analysis [Eventos cardíacos adversos tras la vacunación con COVID-19 ARNm: Una revisión sistemática y metaanálisis] Eka Arum Cahyaning Putri1*, Misbakhul Munir1, Hayuris Kinandita Setiawan1, Lilik Herawati1, Gadis Meinar Sari1, Citrawati … Continue reading Adverse cardiac events following mRNA COVID-19 vaccination

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 76-100, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1524_11.1.76

Review

Adverse cardiac events following mRNA COVID-19 vaccination: A systematic review and meta-analysis

[Eventos cardíacos adversos tras la vacunación con COVID-19 ARNm: Una revisión sistemática y metaanálisis]

Eka Arum Cahyaning Putri1*, Misbakhul Munir1, Hayuris Kinandita Setiawan1, Lilik Herawati1, Gadis Meinar Sari1, Citrawati Dyah Kencono Wungu1, Hendri Susilo2,3, Henry Sutanto4

1Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

2Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia.

4Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 Maastricht, The Netherlands.

*E-mail: eka-arum-cp@fk.unair.ac.id

Abstract

Context: Although have been proven able to control the prevalence of coronavirus disease-19 (COVID-19), Pfizer-BioNTech and Moderna COVID-19 vaccines are reported to have possible side effects on the heart.

Aims: To know the magnitude of adverse events in the cardiac after messenger ribonucleic acid (mRNA)-based vaccination.

Methods: An electronic search in PubMed, Web of Science, Scopus, and Ebsco/Cinahl was performed. The keywords were: “COVID-19 vaccine”, “SARS-CoV-2 vaccine”, “myocarditis”, “myopericarditis”, “pericarditis”, “myocardial infarction”, and “myocardial injury”. The electronic search was updated until March 2022. STATA/MP Statistical Software: Release 14 (StataCorp LLC, College Station, Texas) was used in this study to perform a meta-analysis of a random-effect for myocarditis, pericarditis, myocarditis, myocardial infarction, and myocardial injury.

Results: Twenty-one case reports/case series studies with a total of 62 individuals who had been vaccinated against COVID-19 mRNA (Pfizer-BioNTech and Moderna) were included in the systematic review. Whereas seven observational cohort studies had 170,053,333 people who had been vaccinated, 245 of whom had myocarditis. In addition, two observational cohort studies with 13,948,595 vaccinated individuals, 16 of whom developed pericarditis. There was only one observational cohort study that had a total of 7,183,889 people who had been vaccinated and 11 had myopericarditis. Based on the pooled incidence, the result is <0.002%.

Conclusions: The Pfizer-BioNTech and Moderna vaccines have a low incidence of myocarditis. Men are more likely to develop post-COVID-19 myocarditis with an average age of 22 years and in the age range of 21-40 years. The type of mRNA COVID-19 vaccine that causes myocarditis the most is Pfizer. The diagnosis of myocarditis is mostly made by troponin examination. COVID-19 mRNA vaccination has a low incidence of myocarditis.

Keywords: cardiac disease; cardiac events; COVID-19; mRNA vaccines; SARS-CoV-2.

Resumen

Contexto: Aunque se ha demostrado que pueden controlar la prevalencia de la enfermedad por coronavirus-19 (COVID-19), se ha informado que las vacunas contra COVID-19 de Pfizer-BioNTech y Moderna tienen posibles efectos secundarios sobre el corazón.

Objetivos: Conocer la magnitud de los efectos adversos en el corazón tras la vacunación basada en ácido ribonucleico mensajero (ARNm).

Métodos: Se realizó una búsqueda electrónica en PubMed, Web of Science, Scopus y Ebsco/Cinahl. Las palabras clave fueron: "vacuna COVID-19", "vacuna SARS-CoV-2", "miocarditis", "miopericarditis", "pericarditis", "infarto de miocardio" y "lesión miocárdica". La búsqueda electrónica se actualizó hasta marzo de 2022. Software estadístico STATA/MP: Versión 14 (StataCorp LLC, College Station, Texas) se utilizó en este estudio para realizar un metanálisis de efecto aleatorio para miocarditis, pericarditis, miocarditis, infarto de miocardio y lesión miocárdica.

Resultados: Se incluyeron en la revisión sistemática 21 estudios de informes de casos/series de casos con un total de 62 individuos que habían sido vacunados contra COVID-19 ARNm (Pfizer-BioNTech y Moderna). Mientras que siete estudios observacionales de cohortes contaban con 170.053.333 personas que habían sido vacunadas, 245 de las cuales presentaron miocarditis. Además, dos estudios observacionales de cohortes con 13.948.595 personas vacunadas, 16 de las cuales desarrollaron pericarditis. Sólo hubo un estudio observacional de cohortes con un total de 7.183.889 personas vacunadas y 11 tuvieron miopericarditis. Basándose en la incidencia agrupada, el resultado es <0,002%.

Conclusiones: Las vacunas Pfizer-BioNTech y Moderna tienen una baja incidencia de miocarditis. Los hombres son más propensos a desarrollar miocarditis post-COVID-19 con una edad media de 22 años y en el rango de edad de 21-40 años. El tipo de vacuna COVID-19 de ARNm que causa más miocarditis es Pfizer. El diagnóstico de la miocarditis se realiza principalmente mediante el examen de troponina. La vacunación con ARNm COVID-19 tiene una baja incidencia de miocarditis.

Palabras Clave: enfermedad cardiaca; eventos cardiacos; COVID-19; vacunas de ARNm; SARS-CoV-2.

Citation Format: Putri EAC, Munir M, Setiawan HK, Herawati L, Sari GM, Wungu CDK, Susilo H, Sutanto H (2023) Adverse cardiac events following mRNA COVID-19 vaccination: A systematic review and meta-analysis. J Pharm Pharmacogn Res 11(1): 76–100. https://doi.org/10.56499/jppres22.1524_11.1.76
References

Ammirati E, Cipriani M, Moro C, Raineri C, Pini D, Sormani P, Mantovani R, Varrenti M, Pedrotti P, Conca C, Mafrici A, Grosu A, Briguglia D, Guglielmetto S, Perego GB, Colombo S, Caico SI, Giannattasio C, Maestroni A, Carubelli V, Metra M, Lombardi C, Campodonico J, Agostoni P, Peretto G, Scelsi L, Turco A, Di Tano G, Campana C, Belloni A, Morandi F, Mortara A, Cirò A, Senni M, Gavazzi A, Frigerio M, Oliva F, Camici PG; Registro Lombardo delle Miocarditi (2018) Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis: Multicenter Lombardy Registry. Circulation 138(11): 1088–1099. https://doi.org/10.1161/CIRCULATIONAHA.118.035319

Ammirati E, Frigerio M, Adler E, Basso C, Birnie D, Brambatti M (2020) Management of acute myocarditis and chronic inflammatory cardiomyopathy: An expert consensus document. Circ Heart Fail 13(11): e007405. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007405

Anzini M, Merlo M, Sabbadini G, Barbati G, Finocchiaro G, Pinamonti B, Salvi A, Perkan A, Di Lenarda A, Bussani R, Bartunek J, Sinagra G (2013) Long-term evolution and prognostic stratification of biopsy-proven active myocarditis. Circ Res 128: 2384–2394. https://doi.org/10.1161/CIRCULATIONAHA.113.003092

 Aquaro GD, Perfetti M, Camastra G, Monti L, Dellegrottaglie S, Moro C, Pepe A, Todiere G, Lanzillo C, Scatteia A, Di Roma M, Pontone G, Perazzolo Marra M, Barison A, Di Bella G (2017) Cardiac magnetic resonance working group of the Italian Society of Cardiology. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY study. J Am Coll Cardiol 70: 1977–1987. https://doi.org/10.1016/j.jacc.2017.08.044

Aromataris E, Munn Z (Editors) (2020) JBI Manual for Evidence Synthesis. JBI. https://doi.org/10.46658/JBIMES-20-01

Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, Lanzavecchia A, Corti D, Virgin HW (2020) A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 584: 353–363. https://doi.org/10.1038/s41586-020-2538-8

Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, Hernán MA, Lipsitch M, Kohane I, Netzer D, Reis BY, Balicer RD (2021) Safety of the BNT162b2 mRNA COVID-19 vaccine in a nationwide setting. New Engl J Med 385(12): 1078–1090. https://doi.org/10.1056/NEJMoa2110475

Bartok E, Hartmann G (2020) Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity 53: 54–77. https://doi.org/10.1016/j.immuni.2020.06.014

Bass A, Patterson JH, Adams KF Jr (2010) Perspective on the clinical application of troponin in heart failure and states of cardiac injury. Heart Fail Rev 15(4): 305–317. https://doi.org/10.1007/s10741-008-9124-8

Biesbroek PS, Beek AM, Germans T, Niessen HW, van Rossum AC (2015) Diagnosis of myocarditis: Current state and future perspectives. Int J Cardiol 191: 211–219. https://doi.org/10.1016/j.ijcard.2015.05.008

Bleier J, Vorderwinkler KP, Falkensammer J, Mair P, Dapunt O, Puschendorf B, Mair J (1998) Different intracellular compartmentations of cardiac troponins and myosin heavy chains: a causal connection to their different early release after myocardial damage. Clin Chem 44: 1912–1918.

Boehmer TK, Kompaniyets L, Lavery AM, Hsu J, Ko JY, Yusuf H, Romano SD, Gundlapalli AV, Oster ME, Harris AM (2021) Association between COVID-19 and myocarditis using hospital-based administrative data - United States, March 2020-January 2021. MMWR Morb Mortal Wkly Rep 70(35): 1228–1232. http://dx.doi.org/10.15585/mmwr.mm7035e5

Buttà C, Zappia L, Laterra G, Roberto M (2020) Diagnostic and prognostic role of electrocardiogram in acute myocarditis: A comprehensive review. Ann Noninvasive Electrocardiol 25(3): e12726. https://doi.org/10.1111/anec.12726

Caforio AL, Calabrese F, Angelini A, Tona F, Vinci A, Bottaro S, Ramondo A, Carturan E, Iliceto S, Thiene G, Daliento L (2007) A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 28(11): 1326–1333. https://doi.org/10.1093/eurheartj/ehm076

Cai C, Peng Y, Shen E, Huang Q, Chen Y, Liu P, Guo C, Feng Z, Gao L, Zhang X, Gao Y, Liu Y, Han Y, Zeng S, Shen H (2021) A comprehensive analysis of the efficacy and safety of COVID-19 vaccines. Mol Ther 29(9): 2794–2805. https://doi.org/10.1016/j.ymthe.2021.08.001

CDC (2021a) Centres for Diseases Control and Prevention (CDC). Local Reactions, Systemic Reactions, Adverse Events, and Serious Adverse Events: Moderna COVID-19 Vaccine. https://www.cdc.gov/vaccines/covid-19/info-by-product/moderna/reactogenicity.html [Consulted: 7 February 2022].

CDC (2021b) Centres for Diseases Control and Prevention (CDC). Reactions and Adverse Events of the Pfizer-BioNTech COVID-19 Vaccine. Available online: https://www.cdc.gov/vaccines/covid-19/info-by-product/pfizer/reactogenicity.html [Consulted: 7 February 2022].

CDC (2021c) Centres for Diseases Control and Prevention (CDC). Multisystem Inflammatory Syndrome (MIS). Atlanta, ga: us department of health and human services. https://www.cdc.gov/mis/index.html [Consulted: 20 March 2022].

Cheng MP, Kozoriz MG, Ahmadi AA, Kelsall J, Paquette K, Onrot JM (2016) Post-vaccination myositis and myocarditis in a previously healthy male. Allergy Asthma Clin Immunol 12: 6. https://doi.org/10.1186/s13223-016-0114-4

Cereda A, Conca C, Barbieri L, Ferrante G, Tumminello G, Lucreziotti S, Guazzi M, Mafrici A (2021) Acute myocarditis after the second dose of SARS-CoV-2 vaccine: Serendipity or atypical causal relationship? Anatol J Cardiol 25(7): 522–523. https://doi.org/10.5152/AnatolJCardiol.2021.99

Crowley A, Ackerman M (2019) Mind the gap: How interspecies variability in igg and its receptors may complicate comparisons of human and non-human primate effector function. Front Immunol 10: 697. https://doi.org/10.3389/fimmu.2019.00697

Deb A, Abdelmalek J, Iwuji K, Nugent K (2021) Acute myocardial injury following COVID-19 vaccination: a case report and review of current evidence from vaccine adverse events reporting system database. J Prim Care Community Health 12: 21501327211029230. https://doi.org/10.1177/21501327211029230

Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, Zimring J, Rispens T, Vidarsson G (2017) Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs 9(5): 767–773. https://doi.org/10.1080/19420862.2017.1323159  

di Dedda EA, Barison A, Aquaro GD, Ismail TF, Hua A, Mantini C, Ricci F, Pontone G, Volpe A, Secchi F, Di Renzi P, Lovato L, Niro F, Liguori C, De Biase C, Monti L, Cirò A, Marano R, Natale L, Moliterno E, Esposito A, Vignale D, Faletti R, Gatti M, Porcu M, Saba L, Chimenti C, Galea N, Francone M (2022) Cardiac magnetic resonance imaging of myocarditis and pericarditis following COVID-19 vaccination: a multicenter collection of 27 cases. Eur Radiol 32(7): 4352–4360. https://doi.org/10.1007/s00330-022-08566-0

Dickey JB, Albert E, Badr M, Laraja KM, Sena LM, Gerson DS, Saucedo JE, Qureshi W, Aurigemma GP (2021) A series of patients with myocarditis following SARS-CoV-2 vaccination with mRNA-1279 and BNT162b2. JACC: Cardiovasc Imaging 14(9): 1862–1863. https://doi.org/10.1016/j.jcmg.2021.06.003

Dye C, Mills MC (2021) COVID-19 vaccination passports. Science 371(6535): 1184. https://doi.org/10.1126/science.abi5245

Ehrlich P, Klingel K, Ohlmann-Knafo S Hüttinger S, Sood  N, Pickuth D, Kindermann M (2021) Biopsy-proven lymphocytic myocarditis following first mRNA COVID-19 vaccination in a 40-year-old male: case report. Clin Res Cardiol 110(11): 1855–1859. https://doi.org/10.1007/s00392-021-01936-6

Fairweather D, Cooper LT Jr, Blauwet LA (2013) Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol 38(1): 7–46. https://doi.org/10.1016/j.cpcardiol.2012.07.003

Feng S, Chiu SS, Chan ELY, Kwan MYW, Wong JSC, Leung CW, Chung Lau Y, Sullivan SG, Malik Peiris JS, Cowling BJ (2018) Effectiveness of influenza vaccination on influenza-associated hospitalizations over time among children in Hong Kong: a test-negative case-control study. Lancet Respir Med 6(12): 925–934. https://doi.org/10.1016/s2213-2600(18)30419-3

Ferdinands JM, Gaglani M, Martin ET, Monto AS, Middleton D, Silveira F, Talbot HK, Zimmerman R, Patel M (2021) Waning vaccine effectiveness against influenza-associated hospitalizations among adults, 2015-2016 to 2018-2019, United States hospitalized adult influenza vaccine effectiveness network. Clin Infect Dis 73(4): 726–729. https://doi.org/10.1093/cid/ciab045

Fischinger S, Boudreau CM, Butler AL, Streeck H, Alter G (2019) Sex differences in vaccine-induced humoral immunity. Semin Immunopathol 41(2): 239–249. https://doi.org/10.1007/s00281-018-0726-5

Frisancho-Kiss S, Coronado MJ, Frisancho JA, Lau VM, Rose NR, Klein SL, Fairweather D (2009) Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun 23(5): 649–657. https://doi.org/10.1016/j.bbi.2008.12.002

Gargano JW, Wallace M, Hadler SC, Langley G, Su JR, Oster ME, Broder KR, Gee J, Weintraub E, Shimabukuro T, Scobie HM, Moulia D, Markowitz LE, Wharton M, McNally VV, Romero JR, Talbot HK, Lee GM, Daley MF, Oliver SE (2021) Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the advisory committee on immunization practices - united states, June 2021. MMWR Morb Mortal Wkly Rep 70(27): 977–982. http://dx.doi.org/10.15585/mmwr.mm7027e2

Guo CW, Alexander M, Dib Y, Lau PKH, Weppler AM, Au-Yeung G, Lee B, Khoo C, Mooney D, Joshi SB, Creati L, Sandhu S (2020) A closer look at immune-mediated myocarditis in the era of combined checkpoint blockade and targeted therapies. Eur J Cancer 124: 15–24. https://doi.org/10.1016/j.ejca.2019.09.009

Gürdoğan M, Yalta K (2020) Myocarditis associated with immune checkpoint inhibitors: Practical considerations in diagnosis and management. Anatol J Cardiol 24(2): 68–75. https://doi.org/10.14744/anatoljcardiol.2020.79584

Hasnie AA, Hasnie UA, Patel N, Aziz MU, Xie M, Lloyd SG, Prabhu SD (2021) Perimyocarditis following first dose of the mRNA-1273 SARS-CoV-2 (Moderna) vaccine in a healthy young male: a case report. BMC Cardiovasc Disord 21: 375. https://doi.org/10.1186/s12872-021-02183-3

Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JAC (2011) The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Online) 343(7829): 1–9. https://doi.org/10.1136/bmj.d5928

Hudson B, Mantooth R, DeLaney M (2021) Myocarditis and pericarditis after vaccination for COVID-19. JACEP Open 2: e12498. https://doi.org/10.1002/emp2.12498

Imazio M, Angelico G, Andriani M, Lobetti-Bodoni L, Davini O, Giustetto C, Rinaldi M (2018) Prevalence and prognostic impact of septal late gadolinium enhancement in acute myocarditis with or without preserved left ventricular function. Am J Cardiol 122(11): 1955–1958. https://doi.org/10.1016/j.amjcard.2018.08.038

Imazio M, Brucato A, Barbieri A, Ferroni F, Maestroni S, Ligabue G, Chinaglia A, Cumetti D, Della Casa G, Bonomi F, Mantovani F, Di Corato P, Lugli R, Faletti R, Leuzzi S, Bonamini R, Modena MG, Belli R (2013) Good prognosis for pericarditis with and without myocardial involvement: Results from a multicenter, prospective cohort study. Circulation 128(1): 42–49. https://doi.org/10.1161/CIRCULATIONAHA.113.001531

Imazio M, Brucato A, Spodick D, Adler Y (2014) Prognosis of myopericarditis as determined from previously published reports. J Cardiovasc Med (Hagerstown) 15: 835–839. https://doi.org/10.2459/jcm.0000000000000082

Jackson N, Kester K, Casimiro D, Gurunathan S, DeRosa F (2020) The promise of mRNA vaccines: A biotech and industrial perspective. NPJ Vaccines 5: 11. https://doi.org/10.1038/s41541-020-0159-8

Jensen S, Thomsen A (2012) Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86: 2900–2910. https://doi.org/10.1128/jvi.05738-11

June Choe Y, Yi S, Hwang I, Kim J, Park YJ, Cho E, Jo M, Lee H, Hwa Choi E (2022) Safety and effectiveness of BNT162b2 mRNA COVID-19 vaccine in adolescents. Vaccine 40(5): 691–694. https://doi.org/10.1016/j.vaccine.2021.12.044

Kim HW, Jenista ER, Wendell DC, Azevedo CF, Campbell MJ, Darty SN, Parker MA, Kim RJ (2021) Patients with acute myocarditis following mRNA COVID-19 vaccination. JAMA Cardiol 6(10): 1196–1201. https://doi.org/10.1001/jamacardio.2021.2828

Kim IC, Kim H, Lee HJ, Kim JY, Kim JY (2021) Cardiac imaging of acute myocarditis following COVID-19 mRNA vaccination. J Korean Med Sci 36(32): e229. https://doi.org/10.3346/jkms.2021.36.e229

King WW, Petersen MR, Matar RM, Budweg JB, Cuervo Pardo L, Petersen JW (2021) Myocarditis following mRNA vaccination against SARS-CoV-2, a case series. Am Heart J Plus: Cardiol Res Pract 8: 100042. https://doi.org/10.1016/j.ahjo.2021.100042

Klugar M, Riad A, Mekhemar M, Conrad J, Buchbender M, Howaldt HP, Attia S (2021) Side effects of mRNA-based and viral vector-based COVID-19 vaccines among german healthcare workers. Biology 10(8): 752. https://doi.org/10.3390/biology10080752

Knowlton KU, Knight S, Muhlestein JB, Le VT, Horne BD, May HT, Stenehjem E, Anderson JL (2021) A small but significant increased incidence of acute pericarditis identified after vaccination for SARS-COV-2. Circulation 144(Suppl. 1): A11396. https://doi.org/10.1161/circ.144.suppl_1.11396

Lasrado N, Reddy J (2020) An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 30: e2131. https://doi.org/10.1002/rmv.2131

Lyden D, Olszewski J, Feran M, Job L, Huber S (1987) Coxsackievirus B-3-induced myocarditis. Effect of sex steroids on viremia and infectivity of cardiocytes. Am J Pathol 126: 432–438.

Maron BJ, Udelson JE, Bonow RO, Nishimura RA, Ackerman MJ, Estes NAM, Cooper LT, Link MS, Maron MS (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis. Circulation 132(22): e273–e280. https://doi.org/10.1161/CIR.0000000000000239

Marshall M, Ferguson ID, Lewis P, Jaggi P, Gagliardo C, Collins JS, Shaughnessy R,  Caron R, Fuss C, Corbin KJE, Emuren L, Faherty E, Hall EK, Pentima CD, Oster ME, Paintsil E, Siddiqui S, Timchak DM, Guzman-Cottrill JA (2021) Symptomatic acute myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination. Pediatrics 148(3): e2021052478. https://doi.org/10.1542/peds.2021-052478

Matta A, Kunadharaju R, Osman M (2021) Clinical presentation and outcomes of myocarditis post mRNA vaccination: a meta-analysis and systematic review. Cureus 11: e19240. https://doi.org/10.7759/cureus.19240

McLean K, Johnson TJ (2021) Myopericarditis in a previously healthy adolescent male following COVID-19 vaccination: A case report. Acad Emerg Med 28(8): 918–921. https://doi.org/10.1111/acem.14322

Mevorach D, Anis E, Cedar N, Bromberg M, Haas EJ, Nadir E, Olsha-Castell S, Arad D, Hasin T, Levi N, Asleh R, Amir O, Meir K, Cohen D, Dichtiar R, Novick D, Hershkovitz Y, Dagan R, Leitersdorf I, Ben-Ami R, Miskin I, Saliba W, Muhsen K, Levi Y, Green MS, Keinan-Boker L, Alroy-Preis S (2021) Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. N Engl J Med  385(23): 2140–2149. https://doi.org/10.1056/nejmoa2109730  

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group PP (2015) Preferred reporting items for systematic review and meta-analysis protocols (Prisma-p) 2015 statement. Syst Rev 4(1): 1. https://doi.org/doi:10.1186/2046-4053-4-1

Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, Loran D, Hrncir D, Herring K, Platzer M, Adams N, Sanou A, Cooper LT (2021) Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol 6(10): 1202–1206. https://doi.org/10.1001/jamacardio.2021.2833

Nassar M, Nso N, Gonzalez C, Lakhdar S, Alshamam M, Elshafey M, Abdalazeem Y, Nyein A, Punzalan B, Durrance RJ, Alfishawy M, Bakshi S, Rizzo V (2021) COVID-19 vaccine-induced myocarditis: Case report with literature review. Diabetes Metab Syndr 15(5): 102205. https://doi.org/10.1016/j.dsx.2021.102205

Nevet A (2021) Acute myocarditis associated with anti-COVID-19 vaccination. Clin Exp Vaccine Res 10(2): 196–197. https://doi.org/10.7774/cevr.2021.10.2.196

Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, Edwards K, Soslow JH, Dendy JM, Schlaudecker E, Lang SM, Barnett ED, Ruberg FL, Smith MJ, Campbell MJ, Lopes RD, Sperling LS, Baumblatt JA, Thompson DL, Marquez PL, Strid P, Woo J, Pugsley R, Reagan-Steiner S, DeStefano F, Shimabukuro TT (2022) Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to august 2021. JAMA 327(4): 331–340. https://doi.org/doi:10.1001/jama.2021.24110

Pardi N, Hogan M, Porter F, Weissman D (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17: 261–279. https://doi.org/10.1038/nrd.2017.243

Park JW, Lagniton PNP, Liu Y, Xu RH (2021) mRNA vaccines for COVID-19: What, why and how. Int J Biol Sci 17(6): 1446–1460. https://doi.org/10.7150/ijbs.59233

Patel YR, Louis DW, Atalay M. Agarwal S, Shah NR (2021) Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis following mRNA COVID-19 vaccination: a case series. J Cardiovasc Magn Reson 23: 101. https://doi.org/10.1186/s12968-021-00795-4

Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, Watkinson P, Khunti K, Harnden A, Coupland CAC, Channon KM, Mills NL, Sheikh A, Hippisley-Cox J (2022) Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19  vaccination or SARS-CoV-2 infection. Nat Med 28(2): 410–422. https://doi.org/10.1038/s41591-021-01630-0

Pilishvili T, Fleming-Dutra KE, Farrar JL, Gierke R, Mohr NM, Talan DA, Krishnadasan A, Harland KK, Smithline HA, Hou PC, Lee LC, Lim SC, Moran GJ, Krebs E, Steele M, Beiser DG, Faine B, Haran JP, Nandi U, Schrading WA, Chinnock B, Henning DJ, Vecchio FL, Nadle J, Barter D, Brackney M, Britton A, Marceaux-Galli K, Lim S, Phipps EC, Dumyati G, Pierce R, Markus TM, Anderson DJ, Debes AK, Lin M, Mayer J, Babcock HM, Safdar N, Fischer M, Singleton R, Chea N, Magill SS, Verani J, Schrag S (2021) Interim estimates of vaccine effectiveness of Pfizer-BioNTech and Moderna COVID-19  vaccines among health care personnel - 33 US sites, January-March 2021. MMWR. Morb Mortal Wkly Rep 70(20): 753–758. https://doi.org/10.15585/mmwr.mm7020e2

Potluri T, Fink A, Sylvia K, Dhakal S, Vermillion MS, Steeg LV,  Deshpande S, Narasimhan H, Klein SL (2019) Associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 4: 29. https://doi.org/10.1038/s41541-019-0124-6

Rombey T, Doni K, Hoffmann F, Pieper D, Allers K (2020) More systematic reviews were registered in PROSPERO each year, but few records’ status was up-to-date. J Clin Epidemiol 117: 60–67. https://doi.org/10.1016/j.jclinepi.2019.09.026

Rosner CM, Genovese L, Tehrani BN, Atkins M, Bakhshi H, Chaudhri S, Damluji AA, Lemos JAD, Desai SS, Emaminia A, Flanagan MC, Khera A, Maghsoudi A, Mekonnen G, Muthukumar A, Saeed IM, Sherwood MW, Sinha SS, O’Connor CM, deFilippi CR (2021) Myocarditis temporally associated with COVID-19 vaccination. Circulation 144(6): 502–505. https://doi.org/10.1161/CIRCULATIONAHA.121.055891

Rowland C, Johnson CY (2020) Even finding a COVID-19 vaccine won’t be enough to end the pandemic. Washington Post. May 11, 2020. https://www.washingtonpost.com/business/2020/05/11/coronavirus-vaccine-global-supply/ [Consulted: 1 February 2022].

Ruggieri A, Anticoli S, D'Ambrosio A, Giordani L, Viora M (2016) The influence of sex and gender on immunity, infection and vaccination. Ann Ist Super Sanita 52(2): 198–204. https://doi.org/10.4415/ann_16_02_11

Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13: 759–780. https://doi.org/10.1038/nrd4278

Salah HM, Mehta JL (2021) COVID-19 vaccine and myocarditis. Am J Cardiol 157: 146–148. https://doi.org/10.1016/j.amjcard.2021.07.009

Shaw KE, Cavalcante JL, Han BK, Gössl M (2021) Possible association between COVID-19 vaccine and myocarditis: Clinical and CMR findings. JACC: Cardiovascular Imaging 14(9): 1856–1861. https://doi.org/10.1016/j.jcmg.2021.06.002

Shiyovich A, Witberg G, Aviv Y, Eisen A, Orvin K, Wiessman M, Grinberg T, Porter A, Kornowski R, Hamdan A (2021) Myocarditis following COVID-19 vaccination: magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging 3(8): 1075–1082. https://doi.org/10.1093/ehjci/jeab230

Simone A, Herald J, Chen A, Gulati N, Shen AYJ, Lewin B, Lee MS (2021) Acute myocarditis following COVID-19 mRNA vaccination in adults aged 18 years or  older. JAMA Intern Med 181(12): 1668–1670. https://doi.org/10.1001/jamainternmed.2021.5511

Singh B, Kaur P, Cedeno L, Brahimi T, Patel P, Virk H, Shamoon F, Bikkina M (2021) COVID-10 mRNA vaccine and myocarditis. Eur J Case Rep Intern Med 14;8(7): 002681. https://doi.org/10.12890/2021_002681

Singh VP, Pir MS, Buch T, Kaur A, Kela K, Shah P, Miller J, Naseer R, Ghosh P (2021) Myocarditis linked to Pfizer-Biontech COVID-19 vaccine. Chest 160(4): A444. https://doi.org/10.1016/j.chest.2021.07.437

Snapiri O, Danziger CR, Shirman N, Weissbach A, Lowenthal A, Ayalon I, Adam D, Yarden-Bilavsky H, Bilavsky E (2021) Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine. Pediatr Infect Dis J 40(10): e360–e363. https://doi.org/10.1097/INF.0000000000003235

Starekova J, Bluemke DA, Bradham WS, Grist TM, Schiebler ML, Reeder SB (2021) Myocarditis associated with mRNA COVID-19 vaccination. Radiology 301(2): E409–E411. https://doi.org/10.1148/radiol.2021211430

Sung JG, Sobieszczyk PS, Bhatt DL (2021) Acute myocardial infarction within 24 hours after COVID-19 vaccination. Am J Cardiol 156: 129–131. https://doi.org/10.1016/j.amjcard.2021.06.047

Tenforde M, Olson S, Self W, Network IVY, Investigators H (2021) Effectiveness of Pfizer-BioNTech and Moderna vaccines against COVID-19 among hospitalized adults aged ≥65 years—United States, January–March 2021. Morb Mortal Wkly Rep 70: 674–679. https://doi.org/10.15585/mmwr. mm7018e1

Thevathasan T, Kenny MA, Schreiber F, Fairweather D, Cooper LT, Last J, Krause FJJ, Paul J, Poller WC, Skurk C, Landmesser U, Balzer F, Heidecker B (2021) The strongest sex difference in myocarditis prevalence occurred in young adult patients - A descriptive, multi-center cohort study in 7,031 patients over 22 years. Circulation 144(Suppl. 1): A11548–A11548. https://doi.org/10.1161/circ.144.suppl_1.11548  

Thompson M, Burgess J, Naleway A, Tyner H, Yoon S, Meece J, Olsho L, Caban-Martinez A, Fowlkes A, Lutrick K, Groom H, Dunnigan K, Odean M, Hegmann K, Stefanski E, Edwards L, Schaefer-Solle N, Grant L, Ellingson K, Kuntz J, Zunie T, Thiese M, Ivacic L, Wesley M, Mayo Lamberte J, Sun X, Smith M, Phillips A, Groover K, Yoo Y, Gerald J, Brown R, Herring M, Joseph G, Beitel S, Morrill T, Mak J, Rivers P, Poe B, Lynch B, Zhou Y, Zhang J, Kelleher A, Li Y, Dickerson M, Hanson E, Guenther K, Tong S, Bateman A, Reisdorf E, Barnes J, Azziz-Baumgartner E, Hunt D, Arvay M, Kutty P, Fry A, Gaglani M (2021) Prevention and attenuation of COVID-19 with the BNT162b2 and mRNA-1273 vaccines. N Engl J Med 385: 320–329. https://doi.org/10.1056/NEJMoa2107058  

Trachtenberg BH, Hare JM (2017) Inflammatory cardiomyopathic syndromes. Circ Res 121: 803–818. https://doi.org/10.1161/CIRCRESAHA.117.310221

Trigunaite A, Dimo J, Jørgensen TN (2015) Suppressive effects of androgens on the immune system. Cell Immunol 294(2): 87–94. https://doi.org/10.1016/j.cellimm.2015.02.004

Vaccines and Related Biological Products Advisory Committee Meeting (2020) FDA briefing document: Pfizer-BioNTech COVID-19 Vaccine. New York (NY): Pfizer and BioNTech.

Valbuena-López S, Hinojar R, Puntmann VO (2016) Cardiovascular magnetic resonance in cardiology practice: A concise guide to image acquisition and clinical interpretation. Rev Esp Cardiol 69(2): 202–210. https://doi.org/10.1016/j.rec.2015.11.011

Verma AK, Lavine KJ, Lin CY (2021) Myocarditis after Covid-19 mRNA vaccination. N Engl J Med 385: 1332–1334. https://doi.org/10.1056/NEJMc2109975 

Vollmann D, Eiffert H, Schuster A (2021) Acute perimyocarditis following first dose of mRNA vaccine against COVID-19. Dtsch Arztebl Int 118: 546. https://doi.org/10.3238/arztebl.m2021.0288

WHO (2020a) World Health Organization. Statement on the second meeting of the international health. Regulations (2005) emergency committee regarding the outbreak of novel coronavirus. https://www.who.int/news-room/detail/30-01-2020-st [Consulted: 1 February 2022].

WHO (2020b) World Health Organization. COVID-19 Dashboard. In Available online: https://covid19.who.int/ [Consulted: 7 February 2022].

Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, Grinberg T, Auster O, Dagan N, Balicer RD, Kornowski R (2021) Myocarditis after COVID-19 Vaccination in a Large Health Care Organization. N Engl Med 385: 2132–2139. https://doi.org/10.1056/NEJMoa2110737

Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16(9): 543–552. https://doi.org/10.1038/nrg3978

Woudstra L, Juffermans LJM, Rossum VAC (2018) Infectious myocarditis: The role of the cardiac vasculature. Heart Fail Rev 23: 583–595. https://doi.org/10.1007/s10741-018-9688-x

Yap J, Tham MY, Poh J, Toh D, Chan CL, Lim TW, Lim SL, Chia YW, Lim YT, Choo J, Ding ZP, Foo LL, Kuo S, Lau YH, Lee A, Yeo KK (2022) Pericarditis and myocarditis after COVID-19 mRNA vaccination in a nationwide  setting. Ann Acad Med Singap 51(2): 96–100. https://doi.org/10.47102/annals-acadmedsg.2021425

Zachary M, Edoardo A, Catalin T (2019) The development of software to support multiple systematic review types. Int J Evid Based Healthc 17(1): 36–43. https://doi.org/10.1097/XEB.0000000000000152

Zhang L, Awadalla M, Mahmood SS, Nohria A, Hassan MZO, Thuny F, Zlotoff DA, Murphy SP, Stone JR, Golden DLA, Alvi RM, Rokicki A, Jones-O'Connor M, Cohen JV, Heinzerling LM, Mulligan C, Armanious M, Barac A, Forrestal BJ, Sullivan RJ, Kwong RY, Yang EH, Damrongwatanasuk R, Chen CL, Gupta D, Kirchberger MC, Moslehi JJ, Coelho-Filho OR, Ganatra S, Rizvi MA, Sahni G, Tocchetti CG, Mercurio V, Mahmoudi M, Lawrence DP, Reynolds KL, Weinsaft JW, Baksi AJ, Ederhy S, Groarke JD, Lyon AR, Fradley MG, Thavendiranathan P, Neilan TG (2020b) Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis. Eur Heart J 41(18): 1733–1743. https://doi.org/10.1093/eurheartj/ehaa051

Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, Huang WJ, Gao P, Zhou C, Zhang RR, Guo Y, Sun SH, Fan H, Zu SL, Chen Q, He Q, Cao TS, Huang XY, Qiu HY, Nie JH, Jiang Y, Yan HY, Ye Q, Zhong X, Xue XL, Zha ZY, Zhou D, Yang X, Wang, YC, Ying B, Qi CF (2020a) A thermostable mRNA vaccine against COVID-19. Cell 182(5): 1271–1283.e16. https://doi.org/10.1016/j.cell.2020.07.024

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Alendronate and platelet-rich plasma in sheep anterior cruciate ligament
J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 526-538, May-Jun 2024. DOI: https://doi.org/10.56499/jppres23.1845_12.3.526 Original Article Effect of alendronate and platelet-rich plasma in tendon-bones integration in sheep anterior cruciate ligament surgery [Efecto del alendronato y del plasma rico en plaquetas en la integración tendón-hueso en la cirugía del ligamento cruzado anterior ovino] Tangkas Sibarani1*, Bambang … Continue reading Alendronate and platelet-rich plasma in sheep anterior cruciate ligament
Brassicaceae selenium complexes versus SARS-COV-2 MAP4 and spike protein
J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 514-525, May-Jun 2024. DOI: https://doi.org/10.56499/jppres23.1739_12.3.514 Original Article Antiviral potential of selenium complexes from Brassicaceae by inhibiting protein bond between MAP4 and the spike of SARS-CoV-2 [Potencial antiviral de complejos de selenio de Brassicaceae mediante la inhibición de la unión proteica entre MAP4 y la espiga de … Continue reading Brassicaceae selenium complexes versus SARS-COV-2 MAP4 and spike protein
Andrographis paniculata and cardiovascular diseases
J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 487-513, May-Jun 2024. DOI: https://doi.org/10.56499/jppres23.1841_12.3.487 Review Andrographis paniculata: A potential supplementary therapy for cardiovascular diseases - A systematic review of its effects and molecular actions [Andrographis paniculata: Una terapia suplementaria potencial para las enfermedades cardiovasculares - Una revisión sistemática de sus efectos y acciones moleculares] Oluebube … Continue reading Andrographis paniculata and cardiovascular diseases

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio