Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 972-993, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres24.1956_12.5.972 Original Article Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions [Efecto antiinflamatorio de la mezcla de extracto de Ageratum conyzoides L. e hidrolizados de membrana de cáscara de huevo, … Continue reading Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 972-993, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres24.1956_12.5.972

Original Article

Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions

[Efecto antiinflamatorio de la mezcla de extracto de Ageratum conyzoides L. e hidrolizados de membrana de cáscara de huevo, y predicción in silico de compuestos activos]

Suci Nar Vikasari1,3*, Elin Yulinah Sukandar3, Tri Suciati2, I Ketut Adnyana1*

1Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.

2Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.

3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia.

*E-mail: uci.vikasari@lecture.unjani.ac.id; ketut@itb.ac.id

Abstract

Context: Ageratum conyzoides L. and eggshell membrane have the potential to be used as medicine. The independent use of A. conyzoides extract or eggshell membrane hydrolysates independently as a natural medicine has been widely known, but the mixture of the two as an anti-inflammatory has not been studied.

Aims: To evaluate both the in vivo and in vitro anti-inflammatory effects of A. conyzoides extract and eggshell membrane hydrolysates, independently and in combination. In silico testing was conducted to identify chemicals that have a key role in inflammation signaling pathways.

Methods: The chronic anti-inflammatory effects of A. conyzoides extract and eggshell membrane hydrolysates were evaluated on cotton pellet-induced rats using diclofenac-Na as a control. In vitro anti-inflammatory effects were studied via protein denaturation, membrane stability, and antiprotease activity. Furthermore, molecular docking was performed on the p38-MAPK signaling pathway using compounds found in A. conyzoides extract and eggshell membrane hydrolysates.

Results: A. conyzoides extract and eggshell membrane hydrolysates given separately or in combination can inhibit the formation of exudates and granulomas. Molecular docking simulations showed that the metabolites in the extract and hydrolysate interact with p38-MAPK. Nobiletin in the extract is the potential metabolite that interacts with the p38-MAPK receptor with a free energy of binding and inhibition constant of -8.92 kcal/mol and 260.80 nM. Amino acids in the hydrolysates showed weaker interactions compared to the compound in the extract.

Conclusions: A. conyzoides extract and eggshell membrane hydrolysates work additively to inhibit the severity of chronic inflammation.

Keywords: Ageratum conyzoides; anti-inflammatory; eggshell membrane hydrolysates; molecular docking; p38-MAPK.

PDF Download

Resumen

Contexto: El Ageratum conyzoides L. y la membrana de cáscara de huevo tienen potencial para ser utilizados como medicamentos. El uso independiente del extracto de A. conyzoides o de los hidrolizados de membrana de cáscara de huevo como medicina natural es ampliamente conocido, pero no se ha estudiado la mezcla de ambos como antiinflamatorio.

Objetivos: Evaluar los efectos antiinflamatorios in vivo e in vitro del extracto de A. conyzoides y de los hidrolizados de membrana de cáscara de huevo, independientemente y en combinación. Se realizaron pruebas in silico para identificar sustancias químicas que desempeñan un papel clave en las vías de señalización de la inflamación.

Métodos: Se evaluaron los efectos antiinflamatorios crónicos del extracto de A. conyzoides y de los hidrolizados de membrana de cáscara de huevo en ratas inducidas por gránulos de algodón, utilizando diclofenaco-Na como control. In vitro, los efectos antiinflamatorios se estudiaron mediante la desnaturalización de proteínas, la estabilidad de la membrana y la actividad antiproteasa. Además, se realizó un acoplamiento molecular de la vía de señalización p38-MAPK utilizando compuestos presentes en el extracto de A. conyzoides y en los hidrolizados de membrana de cáscara de huevo.

Resultados: El extracto de A. conyzoides y los hidrolizados de membrana de cáscara de huevo administrados por separado o en combinación pueden inhibir la formación de exudados y granulomas. Las simulaciones de acoplamiento molecular mostraron que los metabolitos del extracto y el hidrolizado interactúan con p38-MAPK. La nobiletina del extracto es el metabolito potencial que interactúa con el receptor p38-MAPK con una energía libre de unión y una constante de inhibición de -8,92 kcal/mol y 260,80 nM. Los aminoácidos de los hidrolizados mostraron interacciones más débiles en comparación con el compuesto del extracto.

Conclusiones: El extracto de A. conyzoides y los hidrolizados de membrana de cáscara de huevo actúan de forma aditiva para inhibir la gravedad de la inflamación crónica.

Palabras Clave: acoplamiento molecular; Ageratum conyzoides; anti-inflamatorio; hidrolizados de membrana de cáscara de huevo; p38-MAPK.

PDF Download
 
Citation Format: Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2024) Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions. J Pharm Pharmacogn Res 12(5): 972–993. https://doi.org/10.56499/jppres24.1956_12.5.972
References

Adianingsih OR, Khasanah U, Anandhy, Yurina V (2022) In silico ADME-T and molecular docking study of phytoconstituents from Tithonia diversifolia (Hemsl.) A. Gray on various targets of diabetic nephropathy. J Pharm Pharmacogn Res 10(4): 571–594. https://doi.org/10.56499/jppres22.1345.10.4.571

Aligita W, Singgih M, Sutrisno E, Adnyana IK (2023) Hepatoprotective study of Indonesian water kefir against CCl4-induced liver injury in rats. J Pharm Pharmacogn Res 11(6): 1002–1016. https://doi.org/10.56499/jppres23.1732_11.6.1002

Ansar W, Ghosh S (2016) Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. In: Biology of C Reactive Protein in Health and Disease. New Delhi: Springer, pp. 67–107. https://doi.org/10.1007/978-81-322-2680-2_4

Asnawi A, Nedja M, Febrina E, Purwaniati P (2023) Prediction of a stable complex of compounds in the ethanol extract of celery leaves (Apium graveolens L.) function as a VKORC1 antagonist. Trop J Nat Prod Res 7(2): 2362-2370. https://doi.org/10.26538/tjnpr/v7i2.10

AL Azzam K (2023) SwissADME and pkCSM webservers predictors: An integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Compl Use Min Resour 325(2): 14–21. https://doi.org/10.31643/2023/6445.13

Bamidele O, Akinnuga AM, Anyakudo MMC, Ojo OA, Ojo GB, Olorunfemi OJ, Johnson OP (2010) Haemostatic effect of methanolic leaf extract of Ageratum conyzoides in albino rats. J Med Plant Res 4(20): 2075–2079.

Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1): W257-W263. https://doi.org/10.1093/nar/gky318

Bayraktar O, Galanakis CM, Aldawoud TMS, Ibrahim SA, Köse MD, Uslu ME (2021) Utilization of eggshell membrane and olive leaf extract for the preparation of functional materials. Foods 10(4): 806. https://doi.org/10.3390/foods10040806

Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016: 5698931. https://doi.org/10.1155/2016/5698931

Caesar LK, Cech NB (2019) Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 36(6): 869-888. https://doi.org/10.1039/c9np00011a

Cánovas F, Abellán-Ruíz MS, García-Muñoz AM, Luque-Rubia AJ, Victoria-Montesinos D, Pérez-Piñero S, Sánchez-Macarro M, López-Román FJ (2022) Randomised clinical trial to analyse the efficacy of eggshell membrane to improve joint functionality in knee osteoarthritis. Nutrients 14(11): 2340. https://doi.org/10.3390/nu14112340

Castanheira FVS, Kubes P (2019) Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133(20): 2178–2185. https://doi.org/10.1182/blood-2018-11-844530

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6): 7204-7218. https://doi.org/10.18632/oncotarget.23208

Choi HJ, Kim YM, Suh JY, Han JY (2021) Beneficial effect on rapid skin wound healing through carboxylic acid-treated chicken eggshell membrane. Mater Sci Eng C Mater Biol Appl 128: 112350. https://doi.org/10.1016/j.msec.2021.112350

Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL (2015) Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat Report (79): 1-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573565/

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1): 42717. https://doi.org/10.1038/srep42717

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2): 144. https://doi.org/10.3390/ijms17020144

Elangovan B, Ajayakumar AS, Anandraj RP (2020) Cardioprotective role of Ageratum conyzoides L. on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats. Int J Pharmacognosy Pharm Sci 2(2): 9–13. https://doi.org/10.33545/27067009.2020.v2.i2a.64

Fathihah B, Mahmood AA, Sidik K, Salmah I (2005) The Antiulcer and cytoprotective effect of Ageratum conyzoides’ honey combination in rats. J Health Trans Med 8(1): 28–32. https://doi.org/10.22452/jummec.vol8no1.6

Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 31(9): 1911-1918. https://doi.org/10.1002/jcc.21478

Galea I (2021) The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 18(11): 2489-2501. https://doi.org/10.1038/s41423-021-00757-x

Ganesan N, Ronsmans S, Vanoirbeek J, Hoet PHM (2022) Assessment of experimental techniques that facilitate human granuloma formation in an in vitro system: A systematic review. Cells 11(5): 864. https://doi.org/10.3390/cells11050864

Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR, Curtis JL, Martinez FJ, Zick S, Hershenson MB, Sajjan US (2010) Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 11(1): 131. https://doi.org/10.1186/1465-9921-11-131

Gros A, Ollivier V, Ho-Tin-Noé B (2015) Platelets in inflammation: Regulation of leukocyte activities and vascular repair. Front Immunol 5: 678. https://doi.org/10.3389/fimmu.2014.00678

Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV (2018) In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines 6(4): 107. https://doi.org/10.3390/biomedicines6040107

Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM (2017) Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol 79: 567-592. https://doi.org/10.1146/annurev-physiol-022516-034348

Jain S, Anal AK (2017) Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J Food Sci Technol 54(5): 1062-1072. https://doi.org/10.1007/s13197-017-2530-y

Jenne CN, Urrutia R, Kubes P (2013) Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 35(3): 254-261. https://doi.org/10.1111/ijlh.12084

Jia H, Hanate M, Aw W, Itoh H, Saito K, Kobayashi S, Hachimura S, Fukuda S, Tomita M, Hasebe Y, Kato H (2017) Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci Rep 7: 43993. https://doi.org/10.1038/srep43993

Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133(6 Suppl 1): 2052S-2056S. https://doi.org/10.1093/jn/133.6.2052S

Kamala Lakshmi B, Valarmathi S (2020) In vitro anti-inflammatory activity of aqueous extract of Albizia lebbeck leaf (L). J Phytopharmacol 9(5): 356-360. https://doi.org/10.31254/phyto.2020.9511

Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754(1-2): 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017

Kemppainen LM, Kemppainen TT, Reippainen JA, Salmenniemi ST, Vuolanto PH (2018) Use of complementary and alternative medicine in Europe: Health-related and sociodemographic determinants. Scand J Public Health 46(4): 448-455. http://doi.org/10.1177/1403494817733869

Kessenbrock K, Dau T, Jenne DE (2011) Tailor-made inflammation: How neutrophil serine proteases modulate the inflammatory response. J Mol Med (Berl) 89(1): 23-28. https://doi.org/10.1007/s00109-010-0677-3

Ketnawa S, Ogawa Y (2019) Evaluation of protein digestibility of fermented soybeans and changes in biochemical characteristics of digested fractions. J Funct Foods 52: 640–647. https://doi.org/10.1016/j.jff.2018.11.046

Kiers JL, Bult JHF (2021) Mildly processed natural eggshell membrane alleviates joint pain associated with osteoarthritis of the knee: A randomized double-blind placebo-controlled study. J Med Food 24(3): 292-298. https://doi.org/10.1089/jmf.2020.0034

Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: An update. Arch Toxicol 89(6): 867-882. https://doi.org/10.1007/s00204-015-1472-2

Klinger MH (1997) Platelets and inflammation. Anat Embryol (Berl) 196(1): 1-11. https://doi.org/10.1007/s004290050075

Klopf J, Brostjan C, Eilenberg W, Neumayer C (2021) Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci 22(2): 559. https://doi.org/10.3390/ijms22020559

Kotta JC, Lestari ABS, Candrasari DS, Hariono M (2020) Medicinal effect, in silico bioactivity prediction, and pharmaceutical formulation of Ageratum conyzoides L.: A review. Scientifica 2020: 6420909. https://doi.org/10.1155/2020/6420909

Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R (2013) Anti-inflammatory treatments for chronic diseases: A review. Inflamm Allergy Drug Targets 12(5): 349-361. https://doi.org/10.2174/18715281113129990053

Lee CH, Choi EY (2018) Macrophages and Inflammation. J Rheum Dis 25: 11-18. https://doi.org/10.4078/jrd.2018.25.1.11

Lee D, Bamdad F, Khey K, Sunwoo HH (2017) Antioxidant and anti-inflammatory properties of chicken egg vitelline membrane hydrolysates. Poult Sci 96(9): 3510-3516. https://doi.org/10.3382/ps/pex125

Li X, Cai Z, Ahn DU, Huang X (2019) Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids Surf B Biointerfaces 183: 110449. https://doi.org/10.1016/j.colsurfb.2019.110449

Lindvall JM, Blomberg KE, Smith CI (2003) In silico tools for signal transduction research. Brief Bioinform 4(4): 315-324. https://doi.org/10.1093/bib/4.4.315

Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Major MR, Wong VW, Nelson ER, Longaker MT, Gurtner GC (2015) The foreign body response: at the interface of surgery and bioengineering. Plast Reconstr Surg 135(5): 1489-1498. https://doi.org/10.1097/PRS.0000000000001193

Malik A, Najda A, Bains A, Nurzyńska-Wierdak R, Chawla P (2021) Characterization of Citrus nobilis peel methanolic extract for antioxidant, antimicrobial, and anti-inflammatory activity. Molecules 26(14): 4310. https://doi.org/10.3390/molecules26144310

Margraf A, Zarbock A (2019) Platelets in inflammation and resolution. J Immunol 203(9): 2357-2367. https://doi.org/10.4049/jimmunol.1900899

Mariani E, Lisignoli G, Borzì RM, Pulsatelli L (2019) Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 20(3): 636. https://doi.org/10.3390/ijms20030636

Missiroli S, Genovese I, Perrone M, Vezzani B, Vitto VAM, Giorgi C (2020) The role of mitochondria in inflammation: From cancer to neurodegenerative disorders. J Clin Med 9(3): 740. https://doi.org/10.3390/jcm9030740

Moreno-Fernández S, Garcés-Rimón M, Miguel M (2020) Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 104: 208–218. https://doi.org/10.1016/j.tifs.2020.08.002

Moura ACA, Silva ELF, Fraga MCA, Wanderley AG, Afiatpour P, Maia MBS (2005) Antiinflammatory and chronic toxicity study of the leaves of Ageratum conyzoides L. in rats. Phytomedicine 12(1–2): 138–142. https://doi.org/10.1016/j.phymed.2003.12.003

OPIE EL (1962) On the relation of necrosis and inflammation to denaturation of proteins. J Exp Med 115(3): 597-608. https://doi.org/10.1084/jem.115.3.597

Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F, Aliberti S (2021) Protease-antiprotease imbalance in bronchiectasis. Int J Mol Sci 22(11): 5996. https://doi.org/10.3390/ijms22115996

Osman NI, Sidik NJ, Awal A, Adam NA, Rezali NI (2016) In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J Intercult Ethnopharmacol 5(4): 343-349. https://doi.org/10.5455/jice.20160731025522

Paul S, Datta BK, Ratnaparkhe MB, Dholakia BB (2022) Turning waste into beneficial resource: Implication of Ageratum conyzoides L. in sustainable agriculture, environment and biopharma sectors. Mol Biotechnol 64(3): 221-244. https://doi.org/10.1007/s12033-021-00409-5

Pires DE, Blundell TL, Ascher DB (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9): 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Pober JS, Sessa WC (2015) Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol 7(1): a016345. https://doi.org/10.1101/cshperspect.a016345

Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N (2023) Experimental animal models of chronic inflammation. Curr Res Immunol 4: 100063. https://doi.org/10.1016/j.crimmu.2023.100063

Roleff S, Arndt G, Bottema B, Junker L, Grabner A, Kohn B (2007) Clinical evaluation of the CA530-VET hematology analyzer for use in veterinary practice. Vet Clin Pathol 36(2): 155-166. https://doi.org/10.1111/j.1939-165X.2007.tb00202.x

Ruff KJ, Morrison D, Duncan SA, Back M, Aydogan C, Theodosakis J (2018) Beneficial effects of natural eggshell membrane versus placebo in exercise-induced joint pain, stiffness, and cartilage turnover in healthy, postmenopausal women. Clin Interv Aging 13: 285-295. https://doi.org/10.2147/CIA.S153782

Ruff KJ, DeVore DP (2014) Reduction of pro-inflammatory cytokines in rats following 7-day oral supplementation with a proprietary eggshell membrane-derived product. Mod Res Inflamm 3(1): 19–25. https://doi.org/10.4236/mri.2014.31003

Saleem A, Saleem M, Akhtar MF (2020) Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family. S Afr J Bot 128: 246–256. https://doi.org/10.1016/j.sajb.2019.11.023

Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P (2012) Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Curr Pharm 18(9): 1173-1185. https://doi.org/10.2174/138161212799436368

Seemakhan S, Srisook K (2014) Ageratum conyzoides leaf extract inhibits inflammatory response via suppression of NF-NB and MAPKs pathway in LPS-induced macrophages. Conference Proceedings. The 5th International Conference on Natural Products for Health and Beauty, Phuket, Thailand, May 6-8, pp. 158–163.

Serhan CN, de la Rosa X, Jouvene C (2019) Novel mediators and mechanisms in the resolution of infectious inflammation: Evidence for vagus regulation. J Intern Med 286(3): 240-258. https://doi.org/10.1111/joim.12871

Sharma V, Holmes JH, Sarkar IN (2016) Identifying complementary and alternative medicine usage information from internet resources. A systematic review. Methods Inf Med 55(4): 322-332. https://doi.org/10.3414/ME15-01-0154

Shi Y, Zhou K, Li D, Guyonnet V, Hincke MT, Mine Y (2021) Avian eggshell membrane as a novel biomaterial: A review. Foods 10(9): 2178. https://doi.org/10.3390/foods10092178

Sim WJ, Ahn J, Lim W, Son DJ, Lee E, Lim TG (2023) Anti-skin aging activity of eggshell membrane administration and its underlying mechanism. Mol Cell Toxicol 19: 165–176. https://doi.org/10.1007/s13273-022-00291-5

Soehnlein O, Steffens S, Hidalgo A, Weber C (2017) Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17(4): 248-261. https://doi.org/10.1038/nri.2017.10

Son ES, Park JW, Kim SH, Park HR, Han W, Kwon OC, Nam JY, Jeong SH, Lee CS (2020) Anti‑inflammatory activity of 3,5,6,7,3',4'‑hexamethoxyflavone via repression of the NF‑κB and MAPK signaling pathways in LPS‑stimulated RAW264.7 cells. Mol Med Rep 22(3): 1985-1993. https://doi.org/10.3892/mmr.2020.11252

Stockley RA (1999) Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med 160(5 Pt 2): S49-52. https://doi.org/10.1164/ajrccm.160.supplement_1.13

Sukmawan YP, Alifiar I, Nurdianti L, Ningsih WR (2021) Wound healing effectivity of the ethanolic extracts of Ageratum conyzoides L. leaf (white and purple flower type) and Centella asiatica and astaxanthin combination gel preparation in animal model. Turk J Pharm Sci 18(5): 609-615. https://doi.org/10.4274/tjps.galenos.2021.34676

Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X (2022) NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 50(D1): D1324-D1333. https://doi.org/10.1093/nar/gkab913

Tambunan AP, Bahtiar A, Tjandrawinata RR (2017) Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from Ageratum conyoides L. leaves. Pharmacogn J 9(6): 767–774. https://doi.org/10.5530/pj.2017.6.121

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int J Mol Sci 19(6): 1578. https://doi.org/10.3390/ijms19061578

Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86: 2-10. https://doi.org/10.1016/j.addr.2015.01.009

Uhegbu FO, Imo C, Onwuegbuchulam CH (2016) Lipid lowering, hypoglycemic and antioxidant activities of Chromolaena odorata (L) and Ageratum conyzoides (L) ethanolic leaf extracts in albino rats. J Med Plants Stud 4(2): 155–159.

Vigil de Mello SV, da Rosa JS, Facchin BM, Luz AB, Vicente G, Faqueti LG, Rosa DW, Biavatti MW, Fröde TS (2016) Beneficial effect of Ageratum conyzoides Linn (Asteraceae) upon inflammatory response induced by carrageenan into the mice pleural cavity. J Ethnopharmacol 194: 337-347. https://doi.org/10.1016/j.jep.2016.09.003

Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2022) Antiinflammation and antioxidant effect of ethanolic extract of Ageratum conyzoides leaves. IOP Conf Ser: Earth Environ Sci 1104(1): 012024. https://doi.org/10.1088/1755-1315/1104/1/012024

Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2024) Anti-inflammatory effects of eggshell membrane hydrolysates on carrageenan-induced rat. Pharm Educ 24(2): 152–157. https://doi.org/10.46542/pe.2024.242.152157

Vuong TT, Rønning SB, Suso HP, Schmidt R, Prydz K, Lundström M, Moen A, Pedersen ME (2017) The extracellular matrix of eggshell displays anti-inflammatory activities through NF-κB in LPS-triggered human immune cells. J Inflamm Res 10: 83-96. https://doi.org/10.2147/JIR.S130974

Vuong TT, Rønning SB, Ahmed TAE, Brathagen K, Høst V, Hincke MT, Suso HP, Pedersen ME (2018) Processed eggshell membrane powder regulates cellular functions and increase MMP-activity important in early wound healing processes. PLoS ONE 13(8): e0201975. https://doi.org/10.1371/journal.pone.0201975

Wang CZ, Moss J, Yuan CS (2015) Commonly used dietary supplements on coagulation function during surgery. Medicines (Basel) 2(3): 157-185. https://doi.org/10.3390/medicines2030157

Webb BCW, Rafferty S, Vreugdenhil AJ (2022) Preparation and characterization of antibacterial films with eggshell-membrane biopolymers incorporated with chitosan and plant extracts. Polymers 14(3): 383. https://doi.org/10.3390/polym14030383

Wedekind KJ, Ruff KJ, Atwell CA, Evans JL, Bendele, AM (2017) Beneficial effects of natural eggshell membrane (NEM) on multiple indices of arthritis in collagen-induced arthritic rats. Mod Rheumatol 27(5): 838–848. https://doi.org/10.1080/14397595.2016.1259729

Yadav N, Ganie SA, Singh B, Chhillar AK, Yadav SS (2019) Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phytother Res 33(9): 2163-2178. https://doi.org/10.1002/ptr.6405

Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, Yoo BC, Cho JY (2014) Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014: 352371. https://doi.org/10.1155/2014/352371

Yoo J, Park K, Yoo Y, Kim J, Yang H, Shin Y (2014) Effects of egg shell membrane hydrolysates on anti-inflammatory, anti-wrinkle, anti-microbial activity and moisture-protection. Korean J Food Sci Anim Resour 34(1): 26-32. https://doi.org/10.5851/kosfa.2014.34.1.26

Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5): 559. https://doi.org/10.3390/molecules21050559

Zhu L, Ma M, Ahn DU, Guyonnet V, Wang L, Zheng Y, He Q, Xiong H, Huang X (2022a) Hatched eggshell membrane can be a novel source of antioxidant hydrolysates to protect against H2O2-induced oxidative stress in human chondrocytes. Antioxidants (Basel) 11(12): 2428. https://doi.org/10.3390/antiox11122428

Zhu L, Xiong H, Huang X, Guyonnet V, Ma M, Chen X, Zheng Y, Wang L, Hu G (2022b) Identification and molecular mechanisms of novel antioxidant peptides from two sources of eggshell membrane hydrolysates showing cytoprotection against oxidative stress: A combined in silico and in vitro study. Food Res Int 57: 111266. https://doi.org/10.1016/j.foodres.2022.111266

Zuo HL, Huang HY, Lin YC, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD (2022) Enzyme activity of natural products on cytochrome P450. Molecules 27(2): 515. https://doi.org/10.3390/molecules27020515

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio