Anti-aging activity of Muntingia calabura

J. Pharm. Pharmacogn. Res., vol. 9, no. 4, pp. 409-421, July-August 2021.

Original article

In vitro anti-aging activity of Muntingia calabura L. fruit extract and its fractions

[Actividad anti-envejecimiento in vitro del extracto del fruto de Muntingia calabura L. y sus fracciones]

Syamsu Nur1*, Aprilia Angreiny Angelina1, Muhammad Aswad2, Risfah Yulianty2, Asril Burhan1, Nursamsiar1

1Department of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi, Makassar, 90242, Indonesia.

2Pharmacy Faculty, Hasanuddin University, Makassar, 90242, Indonesia.



Context: Premature aging usually occurred due to free radicals reducing the skins’ physiological functions. Muntingia calabura, a plant containing rich antioxidants, has the potential to overcome this problem.

Aims: To evaluate the antioxidant capacity of M. calabura in inhibiting the premature aging process, to be potentially developed into an antiaging active ingredient.

Methods: The samples were extracted using ethanol 96%, and processed into n-hexane, ethyl acetate, and ethanol fractions, respectively. Total phenolic content was determined, followed by the evaluation of antioxidant capacity through DPPH, FRAP, and ABTS assay. Further, anti-elastase was conducted using human neutrophil elastase as a skin degradation enzyme, followed by an anti-collagenase test. Finally, normal cell proliferation was also evaluated via the MTT method measuring cell viability on HDFa cells.

Results: As the results, ethanol extract, ethyl acetate fraction, and ethanol fraction showed a strong antioxidant effect, having great capacity reducing DPPH, ABTS radicals, and also iron reduction, in contrast to n-hexane fraction that exhibited only weak activity. The antioxidant trend capacities were found directly correlated to total phenolic contents. Furthermore, the ethyl acetate fraction was found to have optimum activity in inhibiting elastase and collagenase enzymes, showing a similar impact on cell viability.

Conclusions: The ethyl acetate fraction from M. calabura exhibits the prospect for further development to support its effectiveness as an active ingredient in antiaging cosmetics.

Keywords: antiaging; antioxidant; cell viability; cosmetic; Muntingia calabura L.

This image has an empty alt attribute; its file name is jppres_pdf_free.png


Contexto: El envejecimiento prematuro generalmente se produce debido a que los radicales libres reducen las funciones fisiológicas de la piel. Muntingia calabura, una planta que contiene ricos antioxidantes tiene el potencial de superar este problema.

Objetivos: Evaluar la capacidad antioxidante de M. calabura para inhibir el proceso de envejecimiento prematuro, para convertirse potencialmente en un ingrediente activo antienvejecimiento.

Métodos: Las muestras se extrajeron con etanol al 96% y se procesaron en fracciones de n-hexano, acetato de etilo y etanol, respectivamente. Se determinó el contenido fenólico total, seguido de la evaluación de la capacidad antioxidante mediante el ensayo DPPH, FRAP y ABTS. Además, la evaluación anti-elastasa se llevó a cabo utilizando elastasa de neutrófilos humanos como enzima de degradación de la piel, seguida de una prueba anti-colagenasa. Finalmente, también se evaluó la proliferación celular normal mediante el método MTT que mide la viabilidad celular en células HDFa.

Resultados: El extracto de etanol, las fracciones de acetato de etilo y de etanol mostraron un fuerte efecto antioxidante, teniendo gran capacidad reductora de radicales DPPH, ABTS y también reducción de hierro, en contraste con la fracción n-hexano que exhibió solo actividad débil. Las capacidades de tendencia antioxidante se correlacionaron directamente con el contenido total de fenoles. Además, se encontró que la fracción de acetato de etilo tiene una actividad óptima para inhibir las enzimas elastasa y colagenasa, mostrando un impacto similar en la viabilidad celular.

Conclusiones: La fracción de acetato de etilo de M. calabura presenta la posibilidad de un mayor desarrollo para respaldar su eficacia como ingrediente activo en cosméticos antienvejecimiento

Palabras Clave: clave: anti-envejecimiento; antioxidante; cosmético; Muntingia calabura L.; viabilidad celular.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Nur S, Angelina AA, Aswad M, Yulianti R, Burhan A, Nursamsiar N (2021) In vitro anti-aging activity of Muntingia calabura L. fruit extract and its fractions. J Pharm Pharmacogn Res 9(4): 409–421.

Abdul Karim A, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, Abdullah NA (2014) Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Alternat Med 14: 381.

Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoǧlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12(7): 1496–1547.

Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: Interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47(4): 236–242.

Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200.

Brás NF, Gonçalves R, Mateus N, Fernandes, PA, Ramos MJ, De Freitas V (2010) Inhibition of pancreatic elastase by polyphenolic compounds. J Agric Food Chem 19: 10668–10676.

Cox SE, Stushnoff C, Sampson DA (2003) Relationship of fruit color and light exposure to lycopene content and antioxidant properties of tomato. Can J Plant Sci 83: 913–919.

Farage MA, Miller KW, Elsner P, Maibach HI (2008) Intrinsic and extrinsic factors in skin ageing: A review. Int J Cos Sci 30(2): 87–95.

Floegel A, Chung S J, Von Ruesten A, Yang M, Chung CE, Song WO, Koo SI, Pischon T, Chun OK (2011) Antioxidant intake from diet and supplements and elevated serum C-reactive protein and plasma homocysteine concentrations in US adults: A cross-sectional study. Pub Health Nut 14(11): 2055–2064.

Freshney RI (2011) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications: Sixth Edition. New York: Wiley Online Library, pp 187–206.

Garg C, Khurana P, Garg M (2017) Molecular mechanisms of skin photoaging and plant inhibitors. Int J Green Pharm 11(2): S217–S232.

Ghimeray AK, Jung US, Lee HY, Kim YH, Ryu EK, Chang MS (2015) In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract. Clin Cosmet Investig Dermatol 16(8): 389–396.

Giampieri F, Alvarez-Suarez JM, Mazzoni L, Forbes-Hernandez TY, Gasparrini M, González-Paramás AM, Santos-Buelga C, Quiles JL, Bompadre S, Mezzetti B, Battino M (2014) Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality. Molecules 19(6): 7798–7816.

González MC, Bernal DG, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodríguez-Lozano FJ (2017) Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J 50(9): 875-884.

Gordon MH (1990) The Mechanism of Antioxidant Action in Vitro. In Food Antioxidants. United Kingdom: Springer, pp 1–18.

Halliwell B, Gutteridge JMC (2015) Free Radicals in Biology and Medicine. In: Free Radicals in Biology and Medicine. USA: Pergamon Press, pp 331–334.

Helfrich YR, Sachs DL, Voorhees JJ (2008) Overview of skin aging and photoaging. Dermatol Nurs 20(3): 177–183.

Hodzic Z, Pasalic H, Memisevic A, Srabovic M, Saletovic M, Poljakovic M (2009) The influence of total phenols content on antioxidant capacity in the whole grain extracts. Eur J Sci Res 28(3): 471–477.

Huang WY, Cai YZ, Corke H, Sun M (2010) Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in Hong Kong. J Food Compos Anal 23(6): 510–517.

Hwang E, Park SY, Yin CS, Kim HT, Kim YM, Yi TH (2017) Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 41(1): 69–77.

Hwang KA, Yi BR, Choi KC (2011) Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alteration. Lab Animal Res 27(1): 1–8.

Jenkins G (2002) Molecular mechanisms of skin ageing. In Mechanisms of Ageing and Development. New York: Elsevier, pp 801–810.

Landau M (2007) Exogenous factors in skin aging. Curr Probl Dermatol 35: 1–13.

Lee HJ, Lee JY, Song KC, Kim JH, Park JH, Chun KH, Hwang GS (2012) Protective effect of processed Panax ginseng, sun ginseng on UVB-irradiated human skin keratinocyte and human dermal fibroblast. J Ginseng Res 36(1): 68–77.

Makrantonaki E, Zouboulis CC (2007) Characteristics and pathomechanisms of endogenously aged skin. Dermatology 214: 352–360.

Mardhiyah S, Elya B, Noviani A (2020) Elastase activity inhibition by the most active fraction of star fruit (Averrhoa carambola L.) leaves from three West Java regions. Int J App Pharm 12(1): 101–106.

Mastuki SN, Faudzi SMM, Ismail N, Saad N (2019) Muntingia calabura: Chemical composition, bioactive component and traditional uses. In Wild Fruits: Composition, Nutritional Value and Products. Champ: Springer, pp 549–564.

Mistriyani, Riyanto S, Rohman A (2018) Antioxidant activities of rambutan (Nephelium lappaceum L) peel in vitro. Food Res 2(1): 119–123.

Nur S, Mubarak F, Jannah C, Winarni DA, Rahman DA, Hamdayani LA, Sami FJ (2019) Total phenolic and flavonoid compounds, antioxidant and toxicity profile of extract and fractions of paku atai tuber (Angiopteris ferox Copel). Food Res 3(6): 734–740.

Pandel R, Poljšak B, Godic A, Dahmane R (2013) Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol 2013: 930164.

Paşayeva L, Köngül Şafak E, Arıgün T, Fatullayev H, Tugay O (2020) In vitro antioxidant capacity and phytochemical characterization of Eryngium kotschyi Boiss. J Pharm Pharmacogn Res 8(1): 18–31.

Pereira GA, Arruda HS, de Morais DR, Eberlin MN, Pastore GM (2018) Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Res Int 108: 264–273.

Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17(6): 868.

Poljšak B, Dahmane RG, Godić A (2012) Intrinsic skin aging: The role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat 21(2): 33–36.

Pouillot A, Polla LL, Tacchini P, Neequaye A, Polla A, Polla B (2011) Natural Antioxidants and their Effects on the Skin. In Formulating, Packaging, and Marketing of Natural Cosmetic Products. Willey, pp 239–257.

Preethi K, Vijayalakshmi N, Shamna R, Sasikumar JM (2010) In vitro antioxidant activity of extracts from fruits of Muntingia calabura Linn. from India. Pharmacogn J 2(14): 11–18.

Rabeta MS, Nur Faraniza R (2013) Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora. Int Food Res J 20: 1691-1696.

Sahasrabudhe A, Deodhar M (2010) Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int J Bot 6(3): 299–303.

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299: 152–178.

Steinbrecher T, Hrenn A, Dormann KL, Merfort I, Labahn A (2008) Bornyl (3,4,5-trihydroxy)-cinnamate – An optimized human neutrophil elastase inhibitor designed by free energy calculations. Bioorg Med Chem 16(5): 2385–2390.

Thaman LA, Draelos ZD (2005) What Is Next in Skin Care Cosmetic Products. In Cosmetic Formulation of Skin Care Products. New York: Taylor and Fracis Group, pp 403-408.

Wootton-Beard PC, Ryan L (2011) A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J Funct Food 3(4): 329–334.

Xie C, Jin J, Lv X, Tao J, Wang R, Miao D (2015) Antiaging effect of transplanted amniotic membrane mesenchymal stem cells in a premature aging model of BMI-1 deficiency. Sci Rep 5: 13975.

Yahaya ES, Cordier W, Steenkamp PA, Steenkamp V (2020) Protective effect of Erythrina senegalensis sequential extracts against oxidative stress in SC-1 fibroblasts and THP-1 macrophages. J Pharm Pharmacogn Res 8(4): 247–259.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)