J. Pharm. Pharmacogn. Res., vol. 11, no. 6, pp. 926-933, Nov-Dec 2023.
DOI: https://doi.org/10.56499/jppres23.1695_11.6.926
Original Article
Check update pattern of tumorigenic vasculature signature based on MMP9 and CXCR4 expression in locally advanced breast cancer
[Comprobación del patrón de actualización de la señal de vasculatura tumorigénica basada en la expresión de MMP9 y CXCR4 en el cáncer de mama localmente avanzado]
Mochamad Bachtiar Budianto1, Hamzah Sulaiman Lubis2, Muhammad Luqman Fadli3, Wiwit Nurwidyaningtyas4,5*
1Department Oncology of Saiful Anwar General Hospital, Malang 65112, Indonesia.
2Department Oncology of Medan Hajj General Hospital, Sumatera Utara 20371,Indonesia.
3Department Anatomy Pathology of Saiful Anwar General Hospital, Malang 65112, Indonesia.
4Department Molecular and Cellular Biology, Sekolah Tinggi Ilmu Kesehatan Kendedes, Malang, 65126, Indonesia.
5Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Genomic Building, Cibinong Science Center, Jl. Raya Bogor No. 490, Cibinong – Bogor Km. 46, Bogor, West Java, Indonesia.
*E-mail: wiwi026@brin.go.id
Abstract
Context: Locally advanced breast cancers (LABC) are the most common women malignant tumors. Appropriate vasculature is required for tumor growth support, formed by involving protein signaling, including matrix metalloprotein 9 (MMP9) and C-X-C chemokine receptor type 4 (CXCR4). Neoadjuvant chemotherapy (NAC) administration to inoperable LABC commonly exhibits a positive response, although recurrences may be encountered in a few cases.
Aims: To evaluate the MMP9 and CXCR4 expression shifting after the NAC procedure to establish evidence of the anti-angiogenic effect of NAC, which encourages knowledge of tumor size reduction pathways in LABC.
Methods: Observational designs were conducted in this study. Tissue specimens before and after NAC were collected from 45 LABC-enrolled subjects. The targeted protein expression was analyzed by immunohistochemistry, and stained sections were classified according to the percentage of nuclear-stained tumor cells. Clinicopathological features of LABC were recorded. Tumor size was measured by Vernier caliper before and after NAC.
Results: The results showed the nuclear expression of MMP9 and CXCR4 protein were observed in all tissue specimens. The expression of MMP9 and CXCR4 tended to decrease after the NAC but was not statistically significant for MMP9. There was a significant correlation between expression levels of CXCR4 and tumor size reduction (p<0.001) but not for MMP9.
Conclusions: The results of this study demonstrate the anti-angiogenic effect of NAC by inhibiting MMP9 and CXCR4, which may be integrated with tumor size reduction in LABC. Further studies are required to highlight the possibility of recurrence following inhibition of MMP9 and CXCR4 by NAC.
Keywords: breast cancers; CXCR4; MMP9; neoadjuvant chemotherapy; positive response.

Resumen
Contexto: Los cánceres de mama localmente avanzados (LABC) son los tumores malignos femeninos más frecuentes. Se requiere una vasculatura adecuada para el soporte del crecimiento tumoral, formada por la implicación de la señalización de proteínas, incluyendo la metaloproteína de matriz 9 (MMP9) y el receptor de quimioquinas C-X-C tipo 4 (CXCR4). La administración de quimioterapia neoadyuvante (NAC) al LABC inoperable suele mostrar una respuesta positiva, aunque en algunos casos pueden producirse recidivas.
Objetivos: Evaluar el cambio de expresión de MMP9 y CXCR4 tras el procedimiento NAC para establecer evidencias del efecto antiangiogénico de la NAC, lo que favorece el conocimiento de las vías de reducción del tamaño tumoral en el LABC.
Métodos: En este estudio se realizaron diseños observacionales. Se recogieron muestras de tejido antes y después de la NAC de 45 sujetos inscritos en el LABC. La expresión de la proteína diana se analizó mediante inmunohistoquímica, y las secciones teñidas se clasificaron según el porcentaje de células tumorales teñidas nuclearmente. Se registraron las características clinicopatológicas del LABC. El tamaño del tumor se midió con un calibre Vernier antes y después de la NAC.
Resultados: Los resultados mostraron la expresión nuclear de las proteínas MMP9 y CXCR4 en todas las muestras de tejido. La expresión de MMP9 y CXCR4 tendió a disminuir tras la NAC, pero no fue estadísticamente significativa para MMP-9. Se observó una correlación significativa entre los niveles de expresión de CXCR4 y la reducción del tamaño del tumor (p<0,001). Hubo una correlación significativa entre los niveles de expresión de CXCR4 y la reducción del tamaño del tumor (p<0,001), pero no para MMP9.
Conclusiones: os resultados de este estudio demuestran el efecto antiangiogénico de la NAC mediante la inhibición de MMP9 y CXCR4, que puede integrarse con la reducción del tamaño tumoral en el LABC. Se requieren más estudios para poner de relieve la posibilidad de recurrencia tras la inhibición de MMP9 y CXCR4 por NAC.
Palabras Clave: cánceres de mama; CXCR4; MMP9; quimioterapia neoadyuvante; respuesta positiva.

Citation Format: Budianto M, Lubis H, Fadli M, Nurwidyaningtyas W (2023) Check update pattern of tumorigenic vasculature signature based on MMP9 and CXCR4 expression in locally advanced breast cancer. J Pharm Pharmacogn Res 11(6): 926–933. https://doi.org/10.56499/jppres23.1695_11.6.926
References
ACS – The American Cancer Society Medical and Editorial Content Team (2021) Understanding a Breast Cancer Diagnosis. cancer.org. https://www.cancer.org/content/dam/CRC/PDF/Public/8580.00.pdf. [Accessed 12 June 2023].
Aebi S, Karlsson P, Wapnir IL (2022). Locally advanced breast cancer. Breast (Edinburgh, Scotland) 62: 58–62. https://doi.org/10.1016/j.breast.2021.12.011
Al-Saleh K, Salah T, Arafah M, Husain S, Al-Rikabi A, Abd El-Aziz N (2021) Prognostic significance of estrogen, progesterone, and HER2 receptors’ status conversion following neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from a tertiary Cancer Center in Saudi Arabia. PLoS One 16: e0247802. https://doi.org/10.1371/journal. pone.0247802
Angeles MA, Baissas P, Leblanc E, Lusque A, Ferron G, Ducassou A (2019) Magnetic resonance imaging after external beam radiotherapy and concurrent chemotherapy for locally advanced cervical cancer helps to identify patients at risk of recurrence. Int J Gynecol Cancer 29: 480−486. https://doi.org/10.1136/ijgc-2018-000168
An J, Peng C, Tang H, Liu X, Peng F (2021) New advances in the research of resistance to neoadjuvant chemotherapy in breast cancer. Int J Mol Sci 22: 9644. https://doi.org/10.3390/ijms22179644
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K (2022) MMP9: A tough target for targeted therapy for cancer. Cancers 14: 1847. https://doi.org/10.3390/cancers14071847
Ayoub NM, Jaradat SK, Al-Shami KM, Alkhalifa AE (2022) Targeting angiogenesis in breast cancer: Current evidence and future perspectives of novel anti-angiogenic approaches. Front Pharmacol 13: 838133. https://doi.org/10.3389/fphar.2022.838133
Balogun OD, Formenti SC (2015) Locally advanced breast cancer – strategies for developing nations. Front Oncol 5: 89. https://doi.org/10.3389/fonc.2015.00089
Barillari G (2020) The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process. Int J Mol Sci 21: 4526. https://doi.org/10.3390/ijms21124526
Bianchi ME, Mezzapelle R (2020) The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front Immunol 11: 2109. https://doi.org/10.3389/fimmu.2020.02109
Cadona FC, Machado AK, Montano MAE, Assmann CE, da Cruz IBM (2017) Overview of locally advanced breast cancer: A huge challenge to science. Int J Womens Health Wellness 3: 044. http://doi.org/10.23937/2474-1353/1510044
Chang A, Sloan EK, Antoni MH, Knight JM, Telles R, Lutgendorf SK (2022) Biobehavioral pathways and cancer progression: Insights for improving well-being and cancer outcomes. Integr Cancer Ther 21: 15347354221096081. https://doi.org/10.1177/15347354221096081
Cordoba A, Durand B, Escande A, Taieb S, Amor MBH, Le Deley MC, Michel A, Le Tinier F, Hudry D, Martinez C, Leblanc E, Becourt S, Abdedaim C, Bresson L, Lartigau E, Mirabel X and Narducci F (2022) Prognostic impact of tumor size reduction assessed by magnetic resonance imaging after radiochemotherapy in patients with locally advanced cervical cancer. Front Oncol 12: 1046087. https://doi.org/10.3389/fonc.2022.1046087
Dhanushkodi M, Sridevi V, Shanta V, Rama R, Swaminathan R, Selvaluxmy G, Ganesan TS (2021) Locally Advanced Breast Cancer (LABC): Real-world outcome of patients from Cancer Institute, Chennai. JCO Glob Oncol 7: 767–781. https://doi.org/10.1200/GO.21.00001
Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, Colaço B, Pires MJ, Colaço J, Ferreira R, Ginja M (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Animal 42: 217–224. https://doi.org/10.1038/laban.254
Gogia A, Deo SV, Shukla NK, Mathur S, Sharma DN, Tiwari A (2018) Clinicopathological profile of breast cancer: An institutional experience. Indian J Cancer 55: 210–213. https://doi.org/10.4103/ijc.IJC_73_18
Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W (2016) CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35: 816–826. https://doi.org/10.1038/onc.2015.139
He W, Yang T, Gong XH, Qin RZ, Zhang XD, Liu, WD (2018) Targeting CXC motif chemokine receptor 4 inhibits the proliferation, migration, and angiogenesis of lung cancer cells. Oncology Lett 16: 3976–3982. https://doi.org/10.3892/ol.2018.9076
Jiang H, Li H (2021) Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer 21: 149. https://doi.org/10.1186/s12885-021-07860-2
Joseph C, Alsaleem M, Orah N, Narasimha PL, Miligy IM, Kurozumi S, Ellis IO, Mongan NP, Green AR, Rakha EA (2020) Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res Treat 182: 267–282. https://doi.org/10.1007/s10549-020-05670-x
Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Hwang ES, Khan SA, Loibl S, Morris EA, Perez A, Regan MM, Spears PA, Sudheendra PK, Symmans WF, Yung RL, Harvey BE, Hershman DL (2021) Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO Guideline. J Clin Oncol 39: 1485–1505. https://doi.org/10.1200/JCO.20.03399
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J (2021) New angiogenic regulators produced by TAMs: Perspective for targeting tumor angiogenesis. Cancers 13: 3253. https://doi.org/10.3390/cancers13133253
Lefort S, Thuleau A, Kieffer Y, Sirven P, Bieche I, Marangoni E, Vincent-Salomon A, Mechta-Grigoriou F (2017) CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients. Oncogene 36: 1211–1222. https://doi.org/10.1038/onc.2016.284
Li H, Qiu Z, Li F, Wang C (2017) The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncology Lett 14: 5865–5870. https://doi.org/10.3892/ol.2017.6924
Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS, Coggins NL, Thomas DG, Luker GD (2012) Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 31: 4750–4758. https://doi.org/10.1038/onc.2011.633
Ma J, Su H, Yu B, Guo T, Gong Z, Qi J, Zhao X, Du J (2018) CXCL12 gene silencing down-regulates metastatic potential via blockage of MAPK/PI3K/AP-1 signaling pathway in colon cancer. Clin Transl Oncol 20: 1035–1045. https://doi.org/10.1007/s12094-017-1821-0
Masood S (2016) Neoadjuvant chemotherapy in breast cancers. Womens Health 12: 480–491. https://doi.org/10.1177/1745505716677139
Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Nagahashi M, Matsuyama R, Endo I, Takabe K (2020) The E2F pathway score as a predictive biomarker of response to neoadjuvant therapy in ER+/HER2- breast cancer. Cells 9: 1643. https://doi.org/10.3390/cells9071643
Poltavets V, Faulkner JW, Dhatrak D, Whitfield RJ, McColl SR, Kochetkova M (2021) CXCR4-CCR7 heterodimerization is a driver of breast cancer progression. Life 11: 1049. https://doi.org/10.3390/life11101049
Shi Y, Riese DJ, Shen J (2020) The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol 11: 574667. https://doi.org/10.3389/fphar.2020.574667
Soliman NA, Yussif SM (2016) Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med 13: 496–504. https://doi.org/10.20892/j.issn.2095-3941.2016.0066
Wei DM, Chen WJ, Meng RM (2018) Augmented expression of Ki-67 is correlated with clinicopathological characteristics and prognosis for lung cancer patients: an up-dated systematic review and meta-analysis with 108 studies and 14,732 patients. Respir Res 19: 150. https://doi.org/10.1186/s12931-018-0843-7
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Comm 11: 5120. https://doi.org/10.1038/s41467-020-18794-x
Wu HT, Lin J, Liu YE, Chen HF, Hsu KW, Lin SH, Peng KY, Lin KJ, Hsieh CC, & Chen DR (2021) Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine 81: 153437. https://doi.org/10.1016/j.phymed.2020.153437
Xu C, Zhao H, Chen H, Yao Q (2015) CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther 9: 4953–4964. https://doi.org/10.2147/DDDT.S84932
Zielińska KA, Katanaev VL (2020) The signaling duo CXCL12 and CXCR4: Chemokine fuel for breast cancer tumorigenesis. Cancers 12: 3071. https://doi.org/10.3390/cancers12103071
Zhang Z, Ni C, Chen W, Wu P, Wang Z, Yin J, Huang J, Qu F (2014) Expression of CXCR4 and breast cancer prognosis: a systematic review and meta-analysis. BMC Cancer 14: 49. https://doi.org/10.1186/1471-2407-14-49
© 2023 Journal of Pharmacy & Pharmacognosy Research