Antinociceptive effect of homoeriodictyol

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 615-623, Jul-Aug 2024. DOI: https://doi.org/10.56499/jppres23.1878_12.4.615 Original Article Exploring the antinociceptive potential of homoeriodictyol in nociception models [Exploración del potencial antinociceptivo del homoeriodictyol en modelos de nocicepción] Manal H. Al-Bzour1, Yousra Bsieso2, Omar Gammoh3, Mohammed Alqudah4, Esam Y. Qnais2, Mohammed Wedyan2, Abdelrahim Alqudah5* 1Department of Chemistry, Faculty … Continue reading Antinociceptive effect of homoeriodictyol

J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 615-623, Jul-Aug 2024.

DOI: https://doi.org/10.56499/jppres23.1878_12.4.615

Original Article

Exploring the antinociceptive potential of homoeriodictyol in nociception models

[Exploración del potencial antinociceptivo del homoeriodictyol en modelos de nocicepción]

Manal H. Al-Bzour1, Yousra Bsieso2, Omar Gammoh3, Mohammed Alqudah4, Esam Y. Qnais2, Mohammed Wedyan2, Abdelrahim Alqudah5*

1Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan.

2Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan.

3Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.

4Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain.

5Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.

*E-mail: abdelrahim@hu.edu.jo

Abstract

Context: Homoeriodictyol is a flavonoid with known antioxidant, anti-inflammatory, and anti-tumor properties found in various plants. However, its potential analgesic effects have not been explored.

Aims: To investigate the pain-relieving properties of homoeriodictyol using different mouse models of nociception.

Methods: Various doses of homoeriodictyol (50, 100, 150, and 200 µg/kg) were administered to mice and evaluated using the acetic acid-induced writhing test, the hot plate test, and the formalin-induced paw licking assay. These effects were compared with those of mice treated with acetylsalicylic acid or morphine, both with and without naloxone, an opioid receptor antagonist. Additionally, capsaicin- and glutamate-induced paw-licking tests were conducted to assess the involvement of the vanilloid and glutamatergic systems, respectively.

Results: Homoeriodictyol demonstrated a significant and dose-dependent reduction in nociceptive behavior in the acetic acid-induced writhing test, achieving a 52.4% inhibition at a dose of 200 µg/kg. It also substantially increased the latency period in response to the hot plate test (65.8% at 200 µg/kg) and significantly suppressed both the neurogenic and inflammatory phases in the formalin-induced paw-licking test. Notably, the effects of homoeriodictyol in the hot plate test and formalin-induced paw-licking test were significantly reversed by naloxone. Furthermore, homoeriodictyol effectively reduced neurogenic nociception induced by intraplantar injections of glutamate and capsaicin (57.8% and 76.9%, respectively, at a dose of 200 µg/kg).

Conclusions: This study concludes that homoeriodictyol exhibits antinociceptive activity in mice, acting through both central and peripheral pathways.

Keywords: glutamate; homoeriodictyol; naloxone; nociception; vanilloid.

PDF Download

Resumen

Contexto: El homoeriodictiol es un flavonoide con conocidas propiedades antioxidantes, antiinflamatorias y antitumorales que se encuentra en diversas plantas. Sin embargo, no se han explorado sus posibles efectos analgésicos.

Objetivos: Investigar las propiedades analgésicas del homoeriodictyol utilizando diferentes modelos de nocicepción en ratones.

Métodos: Se administraron varias dosis de homoeriodictyol (50, 100, 150 y 200 µg/kg) a ratones y se evaluaron mediante el ensayo de retorcimiento inducido por ácido acético, el ensayo de la placa caliente y el ensayo de lamido de la pata inducido por formalina. Estos efectos se compararon con los de ratones tratados con ácido acetilsalicílico o morfina, con y sin naloxona, un antagonista de los receptores opioides. Además, se realizaron pruebas de lamido de la pata inducidas por capsaicina y glutamato para evaluar la implicación de los sistemas vanilloide y glutamatérgico, respectivamente.

Resultados: El homoeriodictiol demostró una reducción significativa y dependiente de la dosis del comportamiento nociceptivo en la prueba de retorcimiento inducido por ácido acético, alcanzando una inhibición del 52,4% a una dosis de 200 µg/kg. También aumentó sustancialmente el período de latencia en respuesta a la prueba de la placa caliente (65,8% a 200 µg/kg) y suprimió significativamente tanto la fase neurogénica como la inflamatoria en la prueba de lamido de la pata inducida por formalina. En particular, los efectos del homoeriodictyol en la prueba de la placa caliente y en la prueba de lamido de la pata inducido por formalina se invirtieron significativamente con la naloxona. Además, el homoeriodictyol redujo eficazmente la nocicepción neurogénica inducida por inyecciones intraplantar de glutamato y capsaicina (57,8% y 76,9%, respectivamente, a una dosis de 200 µg/kg).

Conclusiones: Este estudio concluye que el homoeriodictyol exhibe actividad antinociceptiva en ratones, actuando tanto a través de vías centrales como periféricas.

Palabras Clave: homoeriodictyol; glutamato; naloxona; nocicepción; vanilloide.

PDF Download
 
Citation Format: Al-Bzour M, Bsieso Y, Gammoh O, Alqudah M, Qnais E, Wedyan M, Alqudah A (2024) Exploring the antinociceptive potential of homoeriodictyol in nociception models. J Pharm Pharmacogn Res 12(4): 615–623. https://doi.org/10.56499/jppres23.1878_12.4.615
References

Alqudah A, Qnais EY, Wedyan MA, Altaber S, Bseiso Y, Oqal M, AbuDalo R, Alrosan K, Alrosan AZ, Bani Melhim S, Alqudah M, Athamneh RY, Gammouh O (2023a) Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/streptozotocin diabetic mice model. Molecules 28: 502. https://doi.org/10.3390/molecules28020502

Alqudah A, Qnais EY, Wedyan MA, Oqal M, Alqudah M, AbuDalo R, AL-Hashimi N (2022) Ceratonia siliqua leaves ethanol extracts exert anti-nociceptive and anti-inflammatory effects. Heliyon 8: e10400. https://doi.org/10.1016/j.heliyon.2022.E10400

Alqudah A, Qnais EY, Wedyan MA, AlKhateeb H, Abdalla SS, Gammoh O, AlQudah MA (2023b) Lysionotin exerts antinociceptive effects in various models of nociception induction. Heliyon 9: e15619. https://doi.org/10.1016/j.heliyon.2023.e15619

Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313. https://doi.org/10.1126/science.288.5464.306

Coderre TJ, Melzack R (1992) The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. Journal of Neuroscience 12: 3665–3670. https://doi.org/10.1523/jneurosci.12-09-03665.1992

Fundytus ME (2001) Glutamate receptors and nociception. Mol Diag Ther 15: 29–58. https://doi.org/10.2165/00023210-200115010-00004

Gammoh OS, Qnais E, Bseiso Y, Alrosan K, Alqudah A (2023) Evaluation of the antinociceptive effect of valerian and hops combination in experimental animal models: Involvement of the opioid system. Heliyon 9: e14185. https://doi.org/10.1016/j.heliyon.2023.e14185

Islam A, Islam MS, Rahman MK, Uddin MN, Akanda MR (2020) The pharmacological and biological roles of eriodictyol. Arch Pharm Res 43: 582–592. https://doi.org/10.1007/S12272-020-01243-0

Koster R, Anderson M, De Beer E (1959) Acetic acid for analgesic screening. Fed Proc 18: 412. https://ci.nii.ac.jp/naid/10029461846 (September 10, 2020).

Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: An overview. Sci World J 2013: 162750. https://doi.org/10.1155/2013/162750

Li Y, Chi G, Shen B, Tian Y, Feng H (2016) Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling. Inflammation 39: 1291–1301. https://doi.org/10.1007/S10753-016-0361-Z

Meotti FC, Coelho I dos S, Santos AR (2010) The nociception induced by glutamate in mice is potentiated by protons released into the solution. J Pain 11: 570–578. https://doi.org/10.1016/j.jpain.2009.09.012

Miyake Y, Shimoi K, Kumazawa S, Yamamoto K, Kinae N, Osawa T (2000) Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J Agric Food Chem 48: 3217–3224. https://doi.org/10.1021/jf990994g

Saquib Q, Ahmed S, Ahmad MS, Al-Rehaily AJ, Siddiqui MA, Faisal M, Ahmad J, Alsaleh AN, Alatar AA, Al-Khedhairy AA (2020) Anticancer efficacies of persicogenin and homoeriodictyol isolated from Rhus retinorrhoea. Process Biochem 95: 186–196. https://doi.org/10.1016/j.procbio.2020.02.008

Shen T, Li HZ, Li AL, Li YR, Wang XN, Ren DM (2018) Homoeriodictyol protects human endothelial cells against oxidative insults through activation of Nrf2 and inhibition of mitochondrial dysfunction. Vascul Pharmacol 109: 72–82. https://doi.org/10.1016/j.vph.2018.06.007

Silberberg M, Morand C, Mathevon T, Besson C, Manach C, Scalbert A, Remesy C (2006) The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur J Nutr 45: 88–96. https://doi.org/10.1007/s00394-005-0568-5

Smith WL (2005) Cyclooxygenases, peroxide tone and the allure of fish oil. Curr Opin Cell Biol 17: 174–182. https://doi.org/10.1016/j.ceb.2005.02.005

Stein C (2016) Opioid receptors. 67: 433–451. https://doi.org/10.1146/annurev-med-062613-093100

Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: An evaluation of the method. Pain 51: 5-17. https://doi.org/10.1016/0304-3959(92)90003-t

Tracey WD (2017) Nociception. Curr Biol 27: R129–R133. https://doi.org/10.1016/j.cub.2017.01.037

Vardeh D, Mannion RJ, Woolf CJ (2016) Toward a Mechanism-Based Approach to Pain Diagnosis. J Pain 17: T50–T69. https://doi.org/10.1016/j.jpain.2016.03.001

Walker J, Reichelt K V., Obst K, Widder S, Hans J, Krammer GE, Ley JP, Somoza V (2016) Identification of an anti-inflammatory potential of Eriodictyon angustifolium compounds in human gingival fibroblasts. Food Funct 7: 3046–3055. https://doi.org/10.1039/c6fo00482b

Wallace JL (2001) Pathogenesis of NSAID-induced gastroduodenal mucosal injury. Best Pract Res Clin Gastroenterol 15: 691–703. https://doi.org/10.1053/bega.2001.0229

Walters ET (2018) Nociceptive biology of molluscs and arthropods: Evolutionary clues about functions and mechanisms potentially related to pain. Front Physiol 9: 1049. https://doi.org/10.3389/fphys.2018.01049

Walters ET, De C Williams AC (2019) Evolution of mechanisms and behaviour important for pain. Philos Trans R Soc Lond B Biol Sci 374: 20190275. https://doi.org/10.1098/rstb.2019.0275

Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H (2014) Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J Ethnopharmacol 151: 944–950. https://doi.org/10.1016/j.jep.2013.12.003

Xue N, Wu X, Wu L, Li L, Wang F (2019) Antinociceptive and anti-inflammatory effect of naringenin in different nociceptive and inflammatory mice models. Life Sci 217: 148–154. https://doi.org/10.1016/j.lfs.2018.11.013

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio