All posts by jppres

About jppres

The Journal of Pharmacy & Pharmacognosy Research (JPPRes) is an international, specialized and peer-reviewed open access journal, which publishes studies in the pharmaceutical and herbal fields concerned with the physical, botanical, chemical, biological, toxicological properties and clinical applications of molecular entities, active pharmaceutical ingredients, devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture, evaluation and marketing. This journal publishes research papers, reviews, commentaries and letters to the editor as well as special issues and review of pre-and post-graduate thesis from pharmacists or professionals involved in Pharmaceutical Sciences or Pharmacognosy.

Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 972-993, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres24.1956_12.5.972

Original Article

Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions

[Efecto antiinflamatorio de la mezcla de extracto de Ageratum conyzoides L. e hidrolizados de membrana de cáscara de huevo, y predicción in silico de compuestos activos]

Suci Nar Vikasari1,3*, Elin Yulinah Sukandar3, Tri Suciati2, I Ketut Adnyana1*

1Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.

2Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.

3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia.

*E-mail: uci.vikasari@lecture.unjani.ac.id; ketut@itb.ac.id

Abstract

Context: Ageratum conyzoides L. and eggshell membrane have the potential to be used as medicine. The independent use of A. conyzoides extract or eggshell membrane hydrolysates independently as a natural medicine has been widely known, but the mixture of the two as an anti-inflammatory has not been studied.

Aims: To evaluate both the in vivo and in vitro anti-inflammatory effects of A. conyzoides extract and eggshell membrane hydrolysates, independently and in combination. In silico testing was conducted to identify chemicals that have a key role in inflammation signaling pathways.

Methods: The chronic anti-inflammatory effects of A. conyzoides extract and eggshell membrane hydrolysates were evaluated on cotton pellet-induced rats using diclofenac-Na as a control. In vitro anti-inflammatory effects were studied via protein denaturation, membrane stability, and antiprotease activity. Furthermore, molecular docking was performed on the p38-MAPK signaling pathway using compounds found in A. conyzoides extract and eggshell membrane hydrolysates.

Results: A. conyzoides extract and eggshell membrane hydrolysates given separately or in combination can inhibit the formation of exudates and granulomas. Molecular docking simulations showed that the metabolites in the extract and hydrolysate interact with p38-MAPK. Nobiletin in the extract is the potential metabolite that interacts with the p38-MAPK receptor with a free energy of binding and inhibition constant of -8.92 kcal/mol and 260.80 nM. Amino acids in the hydrolysates showed weaker interactions compared to the compound in the extract.

Conclusions: A. conyzoides extract and eggshell membrane hydrolysates work additively to inhibit the severity of chronic inflammation.

Keywords: Ageratum conyzoides; anti-inflammatory; eggshell membrane hydrolysates; molecular docking; p38-MAPK.

PDF Download

Resumen

Contexto: El Ageratum conyzoides L. y la membrana de cáscara de huevo tienen potencial para ser utilizados como medicamentos. El uso independiente del extracto de A. conyzoides o de los hidrolizados de membrana de cáscara de huevo como medicina natural es ampliamente conocido, pero no se ha estudiado la mezcla de ambos como antiinflamatorio.

Objetivos: Evaluar los efectos antiinflamatorios in vivo e in vitro del extracto de A. conyzoides y de los hidrolizados de membrana de cáscara de huevo, independientemente y en combinación. Se realizaron pruebas in silico para identificar sustancias químicas que desempeñan un papel clave en las vías de señalización de la inflamación.

Métodos: Se evaluaron los efectos antiinflamatorios crónicos del extracto de A. conyzoides y de los hidrolizados de membrana de cáscara de huevo en ratas inducidas por gránulos de algodón, utilizando diclofenaco-Na como control. In vitro, los efectos antiinflamatorios se estudiaron mediante la desnaturalización de proteínas, la estabilidad de la membrana y la actividad antiproteasa. Además, se realizó un acoplamiento molecular de la vía de señalización p38-MAPK utilizando compuestos presentes en el extracto de A. conyzoides y en los hidrolizados de membrana de cáscara de huevo.

Resultados: El extracto de A. conyzoides y los hidrolizados de membrana de cáscara de huevo administrados por separado o en combinación pueden inhibir la formación de exudados y granulomas. Las simulaciones de acoplamiento molecular mostraron que los metabolitos del extracto y el hidrolizado interactúan con p38-MAPK. La nobiletina del extracto es el metabolito potencial que interactúa con el receptor p38-MAPK con una energía libre de unión y una constante de inhibición de -8,92 kcal/mol y 260,80 nM. Los aminoácidos de los hidrolizados mostraron interacciones más débiles en comparación con el compuesto del extracto.

Conclusiones: El extracto de A. conyzoides y los hidrolizados de membrana de cáscara de huevo actúan de forma aditiva para inhibir la gravedad de la inflamación crónica.

Palabras Clave: acoplamiento molecular; Ageratum conyzoides; anti-inflamatorio; hidrolizados de membrana de cáscara de huevo; p38-MAPK.

PDF Download
 
Citation Format: Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2024) Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions. J Pharm Pharmacogn Res 12(5): 972–993. https://doi.org/10.56499/jppres24.1956_12.5.972
References

Adianingsih OR, Khasanah U, Anandhy, Yurina V (2022) In silico ADME-T and molecular docking study of phytoconstituents from Tithonia diversifolia (Hemsl.) A. Gray on various targets of diabetic nephropathy. J Pharm Pharmacogn Res 10(4): 571–594. https://doi.org/10.56499/jppres22.1345.10.4.571

Aligita W, Singgih M, Sutrisno E, Adnyana IK (2023) Hepatoprotective study of Indonesian water kefir against CCl4-induced liver injury in rats. J Pharm Pharmacogn Res 11(6): 1002–1016. https://doi.org/10.56499/jppres23.1732_11.6.1002

Ansar W, Ghosh S (2016) Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. In: Biology of C Reactive Protein in Health and Disease. New Delhi: Springer, pp. 67–107. https://doi.org/10.1007/978-81-322-2680-2_4

Asnawi A, Nedja M, Febrina E, Purwaniati P (2023) Prediction of a stable complex of compounds in the ethanol extract of celery leaves (Apium graveolens L.) function as a VKORC1 antagonist. Trop J Nat Prod Res 7(2): 2362-2370. https://doi.org/10.26538/tjnpr/v7i2.10

AL Azzam K (2023) SwissADME and pkCSM webservers predictors: An integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Compl Use Min Resour 325(2): 14–21. https://doi.org/10.31643/2023/6445.13

Bamidele O, Akinnuga AM, Anyakudo MMC, Ojo OA, Ojo GB, Olorunfemi OJ, Johnson OP (2010) Haemostatic effect of methanolic leaf extract of Ageratum conyzoides in albino rats. J Med Plant Res 4(20): 2075–2079.

Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1): W257-W263. https://doi.org/10.1093/nar/gky318

Bayraktar O, Galanakis CM, Aldawoud TMS, Ibrahim SA, Köse MD, Uslu ME (2021) Utilization of eggshell membrane and olive leaf extract for the preparation of functional materials. Foods 10(4): 806. https://doi.org/10.3390/foods10040806

Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016: 5698931. https://doi.org/10.1155/2016/5698931

Caesar LK, Cech NB (2019) Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 36(6): 869-888. https://doi.org/10.1039/c9np00011a

Cánovas F, Abellán-Ruíz MS, García-Muñoz AM, Luque-Rubia AJ, Victoria-Montesinos D, Pérez-Piñero S, Sánchez-Macarro M, López-Román FJ (2022) Randomised clinical trial to analyse the efficacy of eggshell membrane to improve joint functionality in knee osteoarthritis. Nutrients 14(11): 2340. https://doi.org/10.3390/nu14112340

Castanheira FVS, Kubes P (2019) Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133(20): 2178–2185. https://doi.org/10.1182/blood-2018-11-844530

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6): 7204-7218. https://doi.org/10.18632/oncotarget.23208

Choi HJ, Kim YM, Suh JY, Han JY (2021) Beneficial effect on rapid skin wound healing through carboxylic acid-treated chicken eggshell membrane. Mater Sci Eng C Mater Biol Appl 128: 112350. https://doi.org/10.1016/j.msec.2021.112350

Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL (2015) Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat Report (79): 1-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573565/

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1): 42717. https://doi.org/10.1038/srep42717

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2): 144. https://doi.org/10.3390/ijms17020144

Elangovan B, Ajayakumar AS, Anandraj RP (2020) Cardioprotective role of Ageratum conyzoides L. on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats. Int J Pharmacognosy Pharm Sci 2(2): 9–13. https://doi.org/10.33545/27067009.2020.v2.i2a.64

Fathihah B, Mahmood AA, Sidik K, Salmah I (2005) The Antiulcer and cytoprotective effect of Ageratum conyzoides’ honey combination in rats. J Health Trans Med 8(1): 28–32. https://doi.org/10.22452/jummec.vol8no1.6

Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 31(9): 1911-1918. https://doi.org/10.1002/jcc.21478

Galea I (2021) The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 18(11): 2489-2501. https://doi.org/10.1038/s41423-021-00757-x

Ganesan N, Ronsmans S, Vanoirbeek J, Hoet PHM (2022) Assessment of experimental techniques that facilitate human granuloma formation in an in vitro system: A systematic review. Cells 11(5): 864. https://doi.org/10.3390/cells11050864

Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR, Curtis JL, Martinez FJ, Zick S, Hershenson MB, Sajjan US (2010) Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 11(1): 131. https://doi.org/10.1186/1465-9921-11-131

Gros A, Ollivier V, Ho-Tin-Noé B (2015) Platelets in inflammation: Regulation of leukocyte activities and vascular repair. Front Immunol 5: 678. https://doi.org/10.3389/fimmu.2014.00678

Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV (2018) In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines 6(4): 107. https://doi.org/10.3390/biomedicines6040107

Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM (2017) Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol 79: 567-592. https://doi.org/10.1146/annurev-physiol-022516-034348

Jain S, Anal AK (2017) Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J Food Sci Technol 54(5): 1062-1072. https://doi.org/10.1007/s13197-017-2530-y

Jenne CN, Urrutia R, Kubes P (2013) Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 35(3): 254-261. https://doi.org/10.1111/ijlh.12084

Jia H, Hanate M, Aw W, Itoh H, Saito K, Kobayashi S, Hachimura S, Fukuda S, Tomita M, Hasebe Y, Kato H (2017) Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci Rep 7: 43993. https://doi.org/10.1038/srep43993

Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133(6 Suppl 1): 2052S-2056S. https://doi.org/10.1093/jn/133.6.2052S

Kamala Lakshmi B, Valarmathi S (2020) In vitro anti-inflammatory activity of aqueous extract of Albizia lebbeck leaf (L). J Phytopharmacol 9(5): 356-360. https://doi.org/10.31254/phyto.2020.9511

Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754(1-2): 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017

Kemppainen LM, Kemppainen TT, Reippainen JA, Salmenniemi ST, Vuolanto PH (2018) Use of complementary and alternative medicine in Europe: Health-related and sociodemographic determinants. Scand J Public Health 46(4): 448-455. http://doi.org/10.1177/1403494817733869

Kessenbrock K, Dau T, Jenne DE (2011) Tailor-made inflammation: How neutrophil serine proteases modulate the inflammatory response. J Mol Med (Berl) 89(1): 23-28. https://doi.org/10.1007/s00109-010-0677-3

Ketnawa S, Ogawa Y (2019) Evaluation of protein digestibility of fermented soybeans and changes in biochemical characteristics of digested fractions. J Funct Foods 52: 640–647. https://doi.org/10.1016/j.jff.2018.11.046

Kiers JL, Bult JHF (2021) Mildly processed natural eggshell membrane alleviates joint pain associated with osteoarthritis of the knee: A randomized double-blind placebo-controlled study. J Med Food 24(3): 292-298. https://doi.org/10.1089/jmf.2020.0034

Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: An update. Arch Toxicol 89(6): 867-882. https://doi.org/10.1007/s00204-015-1472-2

Klinger MH (1997) Platelets and inflammation. Anat Embryol (Berl) 196(1): 1-11. https://doi.org/10.1007/s004290050075

Klopf J, Brostjan C, Eilenberg W, Neumayer C (2021) Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci 22(2): 559. https://doi.org/10.3390/ijms22020559

Kotta JC, Lestari ABS, Candrasari DS, Hariono M (2020) Medicinal effect, in silico bioactivity prediction, and pharmaceutical formulation of Ageratum conyzoides L.: A review. Scientifica 2020: 6420909. https://doi.org/10.1155/2020/6420909

Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R (2013) Anti-inflammatory treatments for chronic diseases: A review. Inflamm Allergy Drug Targets 12(5): 349-361. https://doi.org/10.2174/18715281113129990053

Lee CH, Choi EY (2018) Macrophages and Inflammation. J Rheum Dis 25: 11-18. https://doi.org/10.4078/jrd.2018.25.1.11

Lee D, Bamdad F, Khey K, Sunwoo HH (2017) Antioxidant and anti-inflammatory properties of chicken egg vitelline membrane hydrolysates. Poult Sci 96(9): 3510-3516. https://doi.org/10.3382/ps/pex125

Li X, Cai Z, Ahn DU, Huang X (2019) Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids Surf B Biointerfaces 183: 110449. https://doi.org/10.1016/j.colsurfb.2019.110449

Lindvall JM, Blomberg KE, Smith CI (2003) In silico tools for signal transduction research. Brief Bioinform 4(4): 315-324. https://doi.org/10.1093/bib/4.4.315

Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Major MR, Wong VW, Nelson ER, Longaker MT, Gurtner GC (2015) The foreign body response: at the interface of surgery and bioengineering. Plast Reconstr Surg 135(5): 1489-1498. https://doi.org/10.1097/PRS.0000000000001193

Malik A, Najda A, Bains A, Nurzyńska-Wierdak R, Chawla P (2021) Characterization of Citrus nobilis peel methanolic extract for antioxidant, antimicrobial, and anti-inflammatory activity. Molecules 26(14): 4310. https://doi.org/10.3390/molecules26144310

Margraf A, Zarbock A (2019) Platelets in inflammation and resolution. J Immunol 203(9): 2357-2367. https://doi.org/10.4049/jimmunol.1900899

Mariani E, Lisignoli G, Borzì RM, Pulsatelli L (2019) Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 20(3): 636. https://doi.org/10.3390/ijms20030636

Missiroli S, Genovese I, Perrone M, Vezzani B, Vitto VAM, Giorgi C (2020) The role of mitochondria in inflammation: From cancer to neurodegenerative disorders. J Clin Med 9(3): 740. https://doi.org/10.3390/jcm9030740

Moreno-Fernández S, Garcés-Rimón M, Miguel M (2020) Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 104: 208–218. https://doi.org/10.1016/j.tifs.2020.08.002

Moura ACA, Silva ELF, Fraga MCA, Wanderley AG, Afiatpour P, Maia MBS (2005) Antiinflammatory and chronic toxicity study of the leaves of Ageratum conyzoides L. in rats. Phytomedicine 12(1–2): 138–142. https://doi.org/10.1016/j.phymed.2003.12.003

OPIE EL (1962) On the relation of necrosis and inflammation to denaturation of proteins. J Exp Med 115(3): 597-608. https://doi.org/10.1084/jem.115.3.597

Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F, Aliberti S (2021) Protease-antiprotease imbalance in bronchiectasis. Int J Mol Sci 22(11): 5996. https://doi.org/10.3390/ijms22115996

Osman NI, Sidik NJ, Awal A, Adam NA, Rezali NI (2016) In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J Intercult Ethnopharmacol 5(4): 343-349. https://doi.org/10.5455/jice.20160731025522

Paul S, Datta BK, Ratnaparkhe MB, Dholakia BB (2022) Turning waste into beneficial resource: Implication of Ageratum conyzoides L. in sustainable agriculture, environment and biopharma sectors. Mol Biotechnol 64(3): 221-244. https://doi.org/10.1007/s12033-021-00409-5

Pires DE, Blundell TL, Ascher DB (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9): 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Pober JS, Sessa WC (2015) Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol 7(1): a016345. https://doi.org/10.1101/cshperspect.a016345

Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N (2023) Experimental animal models of chronic inflammation. Curr Res Immunol 4: 100063. https://doi.org/10.1016/j.crimmu.2023.100063

Roleff S, Arndt G, Bottema B, Junker L, Grabner A, Kohn B (2007) Clinical evaluation of the CA530-VET hematology analyzer for use in veterinary practice. Vet Clin Pathol 36(2): 155-166. https://doi.org/10.1111/j.1939-165X.2007.tb00202.x

Ruff KJ, Morrison D, Duncan SA, Back M, Aydogan C, Theodosakis J (2018) Beneficial effects of natural eggshell membrane versus placebo in exercise-induced joint pain, stiffness, and cartilage turnover in healthy, postmenopausal women. Clin Interv Aging 13: 285-295. https://doi.org/10.2147/CIA.S153782

Ruff KJ, DeVore DP (2014) Reduction of pro-inflammatory cytokines in rats following 7-day oral supplementation with a proprietary eggshell membrane-derived product. Mod Res Inflamm 3(1): 19–25. https://doi.org/10.4236/mri.2014.31003

Saleem A, Saleem M, Akhtar MF (2020) Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family. S Afr J Bot 128: 246–256. https://doi.org/10.1016/j.sajb.2019.11.023

Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P (2012) Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Curr Pharm 18(9): 1173-1185. https://doi.org/10.2174/138161212799436368

Seemakhan S, Srisook K (2014) Ageratum conyzoides leaf extract inhibits inflammatory response via suppression of NF-NB and MAPKs pathway in LPS-induced macrophages. Conference Proceedings. The 5th International Conference on Natural Products for Health and Beauty, Phuket, Thailand, May 6-8, pp. 158–163.

Serhan CN, de la Rosa X, Jouvene C (2019) Novel mediators and mechanisms in the resolution of infectious inflammation: Evidence for vagus regulation. J Intern Med 286(3): 240-258. https://doi.org/10.1111/joim.12871

Sharma V, Holmes JH, Sarkar IN (2016) Identifying complementary and alternative medicine usage information from internet resources. A systematic review. Methods Inf Med 55(4): 322-332. https://doi.org/10.3414/ME15-01-0154

Shi Y, Zhou K, Li D, Guyonnet V, Hincke MT, Mine Y (2021) Avian eggshell membrane as a novel biomaterial: A review. Foods 10(9): 2178. https://doi.org/10.3390/foods10092178

Sim WJ, Ahn J, Lim W, Son DJ, Lee E, Lim TG (2023) Anti-skin aging activity of eggshell membrane administration and its underlying mechanism. Mol Cell Toxicol 19: 165–176. https://doi.org/10.1007/s13273-022-00291-5

Soehnlein O, Steffens S, Hidalgo A, Weber C (2017) Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17(4): 248-261. https://doi.org/10.1038/nri.2017.10

Son ES, Park JW, Kim SH, Park HR, Han W, Kwon OC, Nam JY, Jeong SH, Lee CS (2020) Anti‑inflammatory activity of 3,5,6,7,3′,4’‑hexamethoxyflavone via repression of the NF‑κB and MAPK signaling pathways in LPS‑stimulated RAW264.7 cells. Mol Med Rep 22(3): 1985-1993. https://doi.org/10.3892/mmr.2020.11252

Stockley RA (1999) Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med 160(5 Pt 2): S49-52. https://doi.org/10.1164/ajrccm.160.supplement_1.13

Sukmawan YP, Alifiar I, Nurdianti L, Ningsih WR (2021) Wound healing effectivity of the ethanolic extracts of Ageratum conyzoides L. leaf (white and purple flower type) and Centella asiatica and astaxanthin combination gel preparation in animal model. Turk J Pharm Sci 18(5): 609-615. https://doi.org/10.4274/tjps.galenos.2021.34676

Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X (2022) NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 50(D1): D1324-D1333. https://doi.org/10.1093/nar/gkab913

Tambunan AP, Bahtiar A, Tjandrawinata RR (2017) Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from Ageratum conyoides L. leaves. Pharmacogn J 9(6): 767–774. https://doi.org/10.5530/pj.2017.6.121

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int J Mol Sci 19(6): 1578. https://doi.org/10.3390/ijms19061578

Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86: 2-10. https://doi.org/10.1016/j.addr.2015.01.009

Uhegbu FO, Imo C, Onwuegbuchulam CH (2016) Lipid lowering, hypoglycemic and antioxidant activities of Chromolaena odorata (L) and Ageratum conyzoides (L) ethanolic leaf extracts in albino rats. J Med Plants Stud 4(2): 155–159.

Vigil de Mello SV, da Rosa JS, Facchin BM, Luz AB, Vicente G, Faqueti LG, Rosa DW, Biavatti MW, Fröde TS (2016) Beneficial effect of Ageratum conyzoides Linn (Asteraceae) upon inflammatory response induced by carrageenan into the mice pleural cavity. J Ethnopharmacol 194: 337-347. https://doi.org/10.1016/j.jep.2016.09.003

Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2022) Antiinflammation and antioxidant effect of ethanolic extract of Ageratum conyzoides leaves. IOP Conf Ser: Earth Environ Sci 1104(1): 012024. https://doi.org/10.1088/1755-1315/1104/1/012024

Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2024) Anti-inflammatory effects of eggshell membrane hydrolysates on carrageenan-induced rat. Pharm Educ 24(2): 152–157. https://doi.org/10.46542/pe.2024.242.152157

Vuong TT, Rønning SB, Suso HP, Schmidt R, Prydz K, Lundström M, Moen A, Pedersen ME (2017) The extracellular matrix of eggshell displays anti-inflammatory activities through NF-κB in LPS-triggered human immune cells. J Inflamm Res 10: 83-96. https://doi.org/10.2147/JIR.S130974

Vuong TT, Rønning SB, Ahmed TAE, Brathagen K, Høst V, Hincke MT, Suso HP, Pedersen ME (2018) Processed eggshell membrane powder regulates cellular functions and increase MMP-activity important in early wound healing processes. PLoS ONE 13(8): e0201975. https://doi.org/10.1371/journal.pone.0201975

Wang CZ, Moss J, Yuan CS (2015) Commonly used dietary supplements on coagulation function during surgery. Medicines (Basel) 2(3): 157-185. https://doi.org/10.3390/medicines2030157

Webb BCW, Rafferty S, Vreugdenhil AJ (2022) Preparation and characterization of antibacterial films with eggshell-membrane biopolymers incorporated with chitosan and plant extracts. Polymers 14(3): 383. https://doi.org/10.3390/polym14030383

Wedekind KJ, Ruff KJ, Atwell CA, Evans JL, Bendele, AM (2017) Beneficial effects of natural eggshell membrane (NEM) on multiple indices of arthritis in collagen-induced arthritic rats. Mod Rheumatol 27(5): 838–848. https://doi.org/10.1080/14397595.2016.1259729

Yadav N, Ganie SA, Singh B, Chhillar AK, Yadav SS (2019) Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phytother Res 33(9): 2163-2178. https://doi.org/10.1002/ptr.6405

Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, Yoo BC, Cho JY (2014) Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014: 352371. https://doi.org/10.1155/2014/352371

Yoo J, Park K, Yoo Y, Kim J, Yang H, Shin Y (2014) Effects of egg shell membrane hydrolysates on anti-inflammatory, anti-wrinkle, anti-microbial activity and moisture-protection. Korean J Food Sci Anim Resour 34(1): 26-32. https://doi.org/10.5851/kosfa.2014.34.1.26

Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5): 559. https://doi.org/10.3390/molecules21050559

Zhu L, Ma M, Ahn DU, Guyonnet V, Wang L, Zheng Y, He Q, Xiong H, Huang X (2022a) Hatched eggshell membrane can be a novel source of antioxidant hydrolysates to protect against H2O2-induced oxidative stress in human chondrocytes. Antioxidants (Basel) 11(12): 2428. https://doi.org/10.3390/antiox11122428

Zhu L, Xiong H, Huang X, Guyonnet V, Ma M, Chen X, Zheng Y, Wang L, Hu G (2022b) Identification and molecular mechanisms of novel antioxidant peptides from two sources of eggshell membrane hydrolysates showing cytoprotection against oxidative stress: A combined in silico and in vitro study. Food Res Int 57: 111266. https://doi.org/10.1016/j.foodres.2022.111266

Zuo HL, Huang HY, Lin YC, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD (2022) Enzyme activity of natural products on cytochrome P450. Molecules 27(2): 515. https://doi.org/10.3390/molecules27020515

© 2024 Journal of Pharmacy & Pharmacognosy Research

SS-31 for diabetic nephropathy

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 956-971, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1904_12.5.956

Review

SS-31 protects diabetic nephropathy progression: A systematic review of in vivo and in vitro studies

[El SS-31 protege la progresión de la nefropatía diabética: Una revisión sistemática de estudios in vivo e in vitro]

Jonathan Christianto Sutadji1#, Dian Anggraini Permatasari Musalim1#, David Setyo Budi1#, Jennifer Susanto1, Fanny Gunawan1, Chaq El Chaq Zamzam Multazam2, Citrawati Dyah Kencono Wungu3,4*

1Faculty of Medicine, Universitas Airlangga, Indonesia.

2National Heart and Lung Institute, Imperial College London, London, United Kingdom.

3Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Indonesia.

4Institute of Tropical Disease, Universitas Airlangga, Indonesia.

#JCS, DAPM, and DSB are joint first authors.

*E-mail: citrawati.dyah@fk.unair.ac.id

Abstract

Context: Diabetic nephropathy is the leading cause of end-stage renal disease and also death in the world. Administration of Szeto-Schiller-31 (SS-31) as a potential therapeutic candidate that can decrease the renal function damage progressivity in diabetes needs to be comprehensively analyzed.

Aims: To assess the protective effects of SS31 against the progressivity of diabetic nephropathy.

Methods: This systematic review follows PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines 2020. Searches of databases (Pubmed, Science Direct, Scopus, ProQuest, and Springer) were done on 17 September 2023 in order to find articles related to the animal diabetic model and SS-31 treatment. Manual searches from medRxiv were also conducted to obtain additional evidence. Renal function, histopathology analysis, reactive oxygen species in vivo, and in vitro analysis were described.

Results: There were six in vivo studies, each of which discussed the renal function, histopathology, and reactive oxygen species (ROS), and four in vitro studies that discussed ROS. The available data suggested that SS-31 improves kidney function by lowering urinary albumin excretion, proteinuria, serum creatinine, creatinine clearance, and BUN, supported by histopathological improvements. In addition, SS-31 also has the effect of lowering 8-hydroxy-2-deoxyguanosine (8-OHdG) level, malondialdehyde (MDA) level, and nicotinamide adenine dinucleotide phosphate (NADPH) expression.

Conclusions: SS31 had a renoprotective effect that could prevent the worsening of renal function in diabetic mice. In addition, the results of histopathology and ROS analysis also support the positive results of SS-31 treatment. Further studies are required to confirm its findings.

Keywords: diabetic nephropathy; elamipretide; mitochondria targeted peptide; SS-31.

PDF Download

Resumen

Contexto: La nefropatía diabética es la principal causa de enfermedad renal terminal y también de muerte en el mundo. Es necesario analizar exhaustivamente la administración de Szeto-Schiller-31 (SS-31) como posible candidato terapéutico capaz de disminuir la progresividad del daño de la función renal en la diabetes.

Objetivos: Evaluar los efectos protectores del SS31 contra la progresividad de la nefropatía diabética.

Métodos: Esta revisión sistemática sigue las directrices PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) 2020. Se realizaron búsquedas en bases de datos (Pubmed, Science Direct, Scopus, ProQuest y Springer) el 17 de septiembre de 2023 para encontrar artículos relacionados con el modelo diabético animal y el tratamiento con SS-31. También se realizaron búsquedas manuales en medRxiv para obtener pruebas adicionales. Se describieron la función renal, el análisis histopatológico, las especies reactivas de oxígeno in vivo y el análisis in vitro.

Resultados: Hubo seis estudios in vivo, cada uno de los cuales analizaba la función renal, la histopatología y las especies reactivas del oxígeno (ROS), y cuatro estudios in vitro que analizaban las ROS. Los datos disponibles sugirieron que el SS-31 mejora la función renal al reducir la excreción urinaria de albúmina, la proteinuria, la creatinina sérica, el aclaramiento de creatinina y el BUN, apoyado por mejoras histopatológicas. Además, el SS-31 también tiene el efecto de reducir el nivel de 8-hidroxi-2-deoxiguanosina (8-OHdG), el nivel de malondialdehído (MDA) y la expresión de nicotinamida adenina dinucleótido fosfato (NADPH).

Conclusiones: El SS31 tuvo un efecto renoprotector que pudo prevenir el empeoramiento de la función renal en ratones diabéticos. Además, los resultados de la histopatología y el análisis de ROS también apoyan los resultados positivos del tratamiento con SS-31. Se requieren más estudios para confirmar sus resultados.

Palabras Clave: elamipretida; nefropatía diabética; péptido dirigido a las mitocondrias; SS-31.

PDF Download
 
Citation Format: Sutadji JC, Musalim DAP, Budi DS, Susanto J, Gunawan F, Multazam CEZ, Wungu CDK (2024) SS-31 protects diabetic nephropathy progression: A systematic review of in vivo and in vitro studies. J Pharm Pharmacogn Res 12(5): 956–971. https://doi.org/10.56499/jppres23.1904_12.5.956
References

Alam NM, Mills WC 4th, Wong AA, Douglas RM, Szeto HH, Prusky GT (2015) A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech 8: 701–710. https://doi.org/10.1242/dmm.020248

Al-Aubaidy HA, Jelinek HF (2010) 8-Hydroxy-2-deoxy-guanosine identifies oxidative DNA damage in a rural prediabetes cohort. Redox Rep 15:155–160. https://doi.org/10.1179/174329210X12650506623681

Chaudhary N, Tyagi N (2018) Diabetes mellitus: An Overview. Int J Res Dev Pharm Life Sci 7: 3030–3033. https://doi.org/10.21276/IJRDPL.2278

Chen X, Chen X (2020) Dexmedetomidine contributes to reduced anesthesia dosages and improves anesthetic effectiveness in the radical resection of gastric cancer. Int J Clin Exp Med 13: 6533–6541.

Chen Y, Lee K, Ni Z, He JC (2020) Diabetic kidney disease: Challenges, advances, and opportunities. Kidney Dis 6: 215–225. https://doi.org/10.1159/000506634

Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR (2021) Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in diabetes mellitus and Alzheimer’s disease. Pharmacol Res 171:105783. https://doi.org/10.1016/j.phrs.2021.105783

Du X, Zeng Q, Luo Y, He L, Zhao Y, Li N, Han C, Zhang G, Liu W (2024) Application research of novel peptide mitochondrial-targeted antioxidant SS-31 in mitigating mitochondrial dysfunction. Mitochondrion 75: 101846. https://doi.org/10.1016/j.mito.2024.101846

El Baky AMNEDA, Ismail NA, Abo-Hashesh MM, Kandil ME, Rasheed IA, Thabet EH, El-Lebedy D (2017) Assessment of serum malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) in Egyptian children with type i diabetes mellitus and factors affecting. Res J Pharm Biol Chem Sci 8: 342-349.

Escribano-López I, de Marañon AM, Iannantuoni F, López-Domènech S, Abad-Jiménez Z, Díaz P, Solá E, Apostolova N, Rocha M, Víctor VM (2019) The mitochondrial antioxidant SS-31 modulates oxidative stress, endoplasmic reticulum stress, and autophagy in type 2 diabetes. J Clin Med 8: 1322. https://doi.org/10.3390/jcm8091322

Garofalo C, Borrelli S, Liberti ME, Andreucci M, Conte G, Minutolo R, Provenzano M, De Nicola L (2019) SGLT2 Inhibitors: Nephroprotective efficacy and side effects. Medicina (Kaunas) 55: 268. https://doi.org/10.3390/medicina55060268

Higgins GC, Coughlan MT, Higgins G (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 171: 1917–1942. https://doi.org/10.1111/bph.12503

Hojs NV, Bevc S, Ekart R, Hojs R (2020) Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 9: 925. https://doi.org/10.3390/antiox9100925

Hou Y, Li S, Wu M, Wei J, Ren Y, Du C, Wu H, Han C, Duan H, Shi Y (2016) Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol 310: F547–F559. https://doi.org/10.1152/ajprenal.00574.2014

Hou Y, Shi Y, Han B, Liu X, Qiao X, Qi Y, Wang L (2018) The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrol Dial Transplant 33:1908–1918. https://doi.org/10.1093/ndt/gfy021

Li J, Chen X, Xiao W, Ma W, Li T, Huang J, Liu X, Liang X, Tang S, Luo Y (2011) Mitochondria-targeted antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem Biophys Res Commun 404: 349–356. https://doi.org/10.1016/j.bbrc.2010.11.122

Lim AKH (2014) Diabetic nephropathy – Complications and treatment. Int J Nephrol Renovasc Dis 7: 361–381. https://doi.org/10.2147/IJNRD.S40172

Lin YC, Chang YH, Yang SY, Wu KD, Chu TS (2018) Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc 117: 662–675. https://doi.org/10.1016/j.jfma.2018.02.007

Liu D, Jin F, Shu G, Xu X, Qi J, Kang X, Yu H, Lu K, Jiang S, Han F, You J, Du Y, Ji J (2019) Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 211: 57-67. https://doi.org/10.1016/j.biomaterials.2019.04.034

McGrath K, Edi R (2019) Diabetic kidney disease: Diagnosis, treatment, and prevention. Am Fam Physician 99: 751–759. https://pubmed.ncbi.nlm.nih.gov/31194487/

Miyamoto S, Zhang G, Hall D, Oates PJ, Maity S, Madesh M, Han X, Sharma K (2020) Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects db/db mice against progression of diabetic kidney disease. J Biol Chem 295: 7249–7260. https://doi.org/10.1074/jbc.RA119.011110

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372: n71. https://doi.org/10.1136/bmj.n71

Pasupuleti VR, Arigela CS, Gan SH, Salam SKN, Krishnan KT, Rahman NA, Jeffree MS (2020) A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid Med Cell Longev 2020: 8878172. https://doi.org/10.1155/2020/8878172

Qadarsih S, Zainuddin A, Yustisia I, Astuti N, Idris I, Santoso A (2022) 8- Hydroxy-Deoxyguanosine (8-OhDG) urine as a biomarker of oxidative damage in late elderly diabetes mellitus. Int J Health Sci (Qassim) 6: 2316–2327. https://doi.org/10.53730/ijhs.v6ns6.9983

Qi C, Mao X, Zhang Z, Wu H (2017) Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res 2017: 8637138. https://doi.org/10.1155/2017/8637138

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157: 107843. https://doi.org/10.1016/j.diabres.2019.107843

Thompson WR, Hornby B, Manuel R, Bradley E, Laux J, Carr J, Vernon HJ (2021) A phase 2/3 randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism. Genet Med 23: 471–478. https://doi.org/10.1038/s41436-020-01006-8

Wang , Tang D, Zou Y, Wu X, Chen Y, Li H, Chen S, Shi Y, Niu H (2019) A mitochondrial-targeted peptide ameliorated podocyte apoptosis through a HOCl-alb-enhanced and mitochondria-dependent signalling pathway in diabetic rats and in vitro. J Enzyme Inhib Med Chem 34: 394–404. https://doi.org/10.1080/14756366.2018.1488697

Wyss JC, Kumar R, Mikulic J, Schneider M, Mary JL, Aebi JD, Juillerat-Jeanneret L, Golshayan D (2019) Differential effects of the mitochondria-active tetrapeptide SS-31 (D-ARG-dimethyltyr-lysphe-NH2) and its peptidase-targeted prodrugs in experimental acute kidney injury. Front Pharmacol 10: 1209. https://doi.org/10.3389/fphar.2019.01209

Yang Q, Xie W, Wang X, Luo J, Zhou Y, Cao H, Sun Q, Jiang L, Yang J (2022) SS31 Ameliorates podocyte injury via inhibiting OMA1-mediated hydrolysis of OPA1 in diabetic kidney disease. Front Pharmacol 12: 707006. https://doi.org/10.3389/fphar.2021.707006

Yang SK, Li AM, Han YC, Peng CH, Song N, Yang M, Zhan M, Zeng LF, Song PA, Zhang W, Tang SQ, Zhang H (2019a) Mitochondria-targeted peptide SS31 attenuates renal tubulointerstitial injury via inhibiting mitochondrial fission in diabetic mice. Oxid Med Cell Longev. 2019: 2346580. https://doi.org/10.1155/2019/2346580

Yang W, Kong LS, Zhu XX, Wang RX, Liu Y, Chen LR (2019b) Effect of dexmedetomidine on postoperative cognitive dysfunction and inflammation in patients after general anaesthesia: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 98: e15383. https://doi.org/10.1097/MD.0000000000015383

Zhao WY, Han S, Zhang L, Zhu YH, Wang LM, Zeng L (2013) Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell Physiol Biochem 32: 591–600. https://doi.org/10.1159/000354463

Zoungas S, de Boer IH (2021) Sglt2 inhibitors in diabetic kidney disease. Clin J Am Soc Nephrol 16: 631–633. https://doi.org/10.2215/CJN.18881220

© 2024 Journal of Pharmacy & Pharmacognosy Research

Hypertension knowledge and its associated factors in primary care

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 943-955, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres24.1955_12.5.943

Original Article

Hypertension knowledge and its associated factors among hypertensive patients in primary care settings in Central Vietnam: A cross-sectional study

[Conocimiento de la hipertensión y sus factores asociados entre pacientes hipertensos en entornos de atención primaria en el centro de Vietnam: Un estudio transversal]

Ho Anh Hien1,2, Nguyen Minh Tam1, Dirk Devroey2, Stefan Heytens3, Vo Tam4, Tran Binh Thang5, Vo Nu Hong Duc5, Dang Thi Thanh Nha5, Doan Pham Phuoc Long4, Nguyen Vu Phong6, Huynh Van Minh4, Hoang Anh Tien4,6*

1Department of Family Medicine, University of Medicine and Pharmacy, Hue University, Hue, Vietnam.

2Department of Family Medicine and Chronic Care, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.

3Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.

4Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue, Vietnam.

5Faculty of Public Health, University of Medicine and Pharmacy, Hue University, Hue, Vietnam.

6Cardiovascular Center, Hue University of Medicine and Pharmacy Hospital, Hue, Vietnam.

*E-mail: hatien@hueuni.edu.vn

Abstract

Context: Hypertension is highly prevalent in Vietnam, yet the rate of controlled hypertension remains low. Knowledge about hypertension is linked to patient beliefs and medication adherence. However, there’s limited data on hypertension knowledge among primary care patients in Vietnam.

Aims: To evaluate the knowledge of hypertension among hypertensive patients in primary care settings in Central Vietnam and identify factors affecting their knowledge.

Methods: A cross-sectional study was conducted, and a thorough examination was performed to assess hypertension knowledge and its related factors. Utilizing the Hypertension Knowledge Level Scale and Medication Adherence Report Scale, hypertension knowledge and medication adherence were evaluated. Additionally, demographic, clinical, lifestyle, and patient belief data were gathered. Statistical analyses and logistic regression models were applied to pinpoint key factors associated with hypertension knowledge.

Results: In the study involving 761 participants (55.7% male), the average hypertension knowledge score was 15.0 (SD = 4.6), with only 45.3% demonstrating a high level of knowledge. Significant correlations were observed between hypertension knowledge and variables such as education level, ethnicity, home blood pressure monitoring, patient beliefs, and medication adherence. Logistic regression analysis indicated that higher education levels and belonging to the majority ethnicity were linked to enhanced hypertension knowledge. Notably, individuals with better hypertension knowledge tended to recognize the necessity of their prescribed medications.

Conclusions: Hypertension knowledge among primary care patients in Central Vietnam is suboptimal, with approximately half having a high knowledge level. These findings emphasize the importance of hypertension knowledge in shaping patient beliefs, perceptions, and medication adherence. Tailored educational interventions are crucial, especially for those with lower education and minority backgrounds, to enhance hypertension management.

Keywords: blood pressure; hypertension knowledge; medication adherence.

PDF Download

Resumen

Contexto: La hipertensión tiene una alta prevalencia en Vietnam, pero la tasa de hipertensión controlada sigue siendo baja. El conocimiento sobre la hipertensión está vinculado a las creencias del paciente y la adherencia a la medicación. Sin embargo, hay datos limitados sobre el conocimiento de la hipertensión entre los pacientes de atención primaria en Vietnam.

Objetivos: Evaluar el conocimiento sobre la hipertensión entre pacientes hipertensos en entornos de atención primaria en el centro de Vietnam e identificar factores que afectan su conocimiento.

Métodos: Se realizó un estudio transversal y un examen exhaustivo para evaluar el conocimiento sobre la hipertensión y sus factores relacionados. Utilizando la Escala de Nivel de Conocimiento sobre Hipertensión y la Escala de Informe de Adherencia a la Medicación, se evaluaron el conocimiento sobre hipertensión y la adherencia a la medicación. Además, se recopilaron datos demográficos, clínicos, de estilo de vida y de creencias de los pacientes. Se aplicaron análisis estadísticos y modelos de regresión logística para identificar factores clave asociados con el conocimiento sobre la hipertensión.

Resultados: En el estudio que involucró a 761 participantes (55,7% hombres), la puntuación promedio de conocimiento sobre hipertensión fue de 15,0 (DE = 4,6), y solo el 45,3% demostró un alto nivel de conocimiento. Se observaron correlaciones significativas entre el conocimiento sobre la hipertensión y variables como el nivel educativo, el origen étnico, el control de la presión arterial en el hogar, las creencias de los pacientes y la adherencia a la medicación. El análisis de regresión logística indicó que los niveles de educación más altos y la pertenencia a la etnia mayoritaria estaban relacionados con un mayor conocimiento sobre la hipertensión. En particular, las personas con mejores conocimientos sobre hipertensión tendían a reconocer la necesidad de los medicamentos recetados.

Conclusiones: El conocimiento sobre hipertensión entre los pacientes de atención primaria en el centro de Vietnam es subóptimo, y aproximadamente la mitad tiene un alto nivel de conocimiento. Estos hallazgos enfatizan la importancia del conocimiento sobre la hipertensión a la hora de moldear las creencias, percepciones y la adherencia a la medicación de los pacientes. Las intervenciones educativas personalizadas son cruciales, especialmente para aquellos con menor educación y antecedentes minoritarios, para mejorar el manejo de la hipertensión.

Palabras Clave: adherencia a la medicación; conocimientos sobre hipertensión; presión arterial.

PDF Download

 

 
 
Citation Format: Hien HA, Tam NM, Devroey D, Heytens S, Tam V, Thang TB, Duc VNH, Nha DTT, Long DDP, Phong NV, Minh HV, Tien HA (2024) Hypertension knowledge and its associated factors among hypertensive patients in primary care settings in Central Vietnam: A cross-sectional study. J Pharm Pharmacogn Res 12(5): 943–955. https://doi.org/10.56499/jppres24.1955_12.5.943
References

Andrew A, Hariharan M, Monteiro SR, Padhy M, Chivukula U (2022) Enhancing adherence and management in patients with hypertension: Impact of form and frequency of knowledge intervention. Indian Heart J 74(4): 302–306. https://doi.org/10.1016/j.ihj.2022.06.002

Beaton DE, Bombardier C, Guillemin F, Ferraz MB (2000) Guidelines for the process of cross-cultural adaptation of self-report measures. Spine 25(24): 3186-3191 https://doi.org/10.1097/00007632-200012150-00014

Bitton A, Gaziano TA (2010) The Framingham Heart Study’s impact on global risk assessment. Prog Cardiovasc Dis 53(1): 68-78. https://doi.org/10.1016/j.pcad.2010.04.001

Broadbent E, Petrie KJ, Main J, Weinman J (2006) The brief illness perception questionnaire. J Psychosom Res 60(6): 631-637. https://doi.org/10.1016/j.jpsychores.2005.10.020

Chan AHY, Horne R, Hankins M, Chisari C (2020) The Medication Adherence Report Scale: A measurement tool for eliciting patients’ reports of nonadherence. Br J Clin Pharmacol 86(7): 1281–1288. https://doi.org/10.1111/bcp.14193

Cross AJ, Elliott RA, Petrie K, Kuruvilla L, George J (2020) Interventions for improving medication-taking ability and adherence in older adults prescribed multiple medications. Cochrane Database Syst Rev 5(5): CD012419. https://doi.org/10.1002/14651858.CD012419.pub2

Dhar L, Dantas J, Ali M (2017) A systematic review of factors influencing medication adherence to hypertension treatment in developing countries. Open J Epidemiol 7: 211–250. https://doi.org/10.4236/ojepi.2017.73018

Erkoc SB, Isikli B, Metintas S, Kalyoncu C (2012) Hypertension Knowledge-Level Scale (HK-LS): A study on development, validity and reliability. Int J Environ Res Public Health 29(3): 1018–1029. https://doi.org/10.3390/ijerph9031018

General Statistics Office of Vietnam (2019) Completed Results of the 2019 Viet Nam Population and Housing Census. Statistical Publishing House. Hanoi, Vietnam.

Hien HA, Tam NM, Tam V, Derese A, Devroey D (2018) Prevalence, awareness, treatment, and control of hypertension and its risk factors in (Central) Vietnam. Int J Hypertens 2018: 6326984. https://doi.org/10.1155/2018/6326984

Hoa NP, Rao C, Hoy DG, Hinh ND, Chuc NT, Ngo DA (2012) Mortality measures from sample-based surveillance: evidence of the epidemiological transition in Viet Nam. Bull World Health Organ 90(10): 764–772. https://doi.org/10.2471/BLT.11.100750

Horne R, Weinman J, Hankins M (1999) The Beliefs about medicines questionnaire: The development and evaluation of a new method for assessing the cognitive representation of medication. Psychol Health 14: 1–24. http://dx.doi.org/10.1080/08870449908407311

Ihm SH, Park JH, Kim JY, Kim JH, Kim KI, Lee EM, Lee HY, Park S, Shin J, Kim CH (2022) Home blood pressure monitoring: A position statement from the Korean Society of Hypertension Home Blood Pressure Forum. Clin Hypertens 28: 38. https://doi.org/10.1186/s40885-022-00218-1

Jankowska-Polańska B, Uchmanowicz I, Dudek K, Mazur G (2016) Relationship between patients’ knowledge and medication adherence among patients with hypertension. Patient Prefer Adherence 10: 2437–2447. https://doi.org/10.2147/PPA.S117269

Minh HV, Poulter NR, Viet NL, Sinh CT, Hung PN, Ngoc NTM, Hung NV, Son TK, Dong NT, Thang DC, Thuan ND, Tuan TA, Beaney T, Partington G, Tien HA (2021) Blood pressure screening results from May Measurement Month 2019 in Vietnam. Eur Heart J Suppl 23(Suppl B): B154–B157. https://doi.org/10.1093/eurheartj/suab035

Náfrádi L, Nakamoto K, Schulz PJ (2017) Is patient empowerment the key to promote adherence? A systematic review of the relationship between self-efficacy, health locus of control and medication adherence. PLoS One 12(10): e0186458. https://doi.org/10.1371/journal.pone.0186458

Nguyen T, Cao HTK, Quach DN, Le KK, Au SX, Pham ST, Nguyen TH, Pham TT, Taxis K (2019) The Vietnamese version of the brief illness perception questionnaire and the beliefs about medicines questionnaire: Translation and cross-cultural adaptation. Trop Med Int Health 24(12): 1465–1474. https://doi.org/10.1111/tmi.13312

Nguyen TP, Schuiling-Veninga CC, Nguyen TB, Vu TH, Wright EP, Postma MJ (2017) Adherence to hypertension medication: Quantitative and qualitative investigations in a rural Northern Vietnamese community. PLoS One 12(2): e0171203. https://doi.org/10.1371/journal.pone.0171203

Son PT, Quang NN, Viet NL, Khai PG, Wall S, Weinehall L, Bonita R, Byass P (2012) Prevalence, awareness, treatment and control of hypertension in Vietnam-results from a national survey. J Hum Hypertens 26(4): 268–280. https://doi.org/10.1038/jhh.2011.18

Stone JK, Shafer LA, Graff LA, Lix L, Witges K, Targownik LE, Haviva C, Sexton K, Bernstein CN (2021) Utility of the MARS-5 in assessing medication adherence in IBD. Inflamm Bowel Dis 27(3): 317–324. https://doi.org/10.1093/ibd/izaa056

Świątoniowska-Lonc N, Polański J, Mazur G, Jankowska-Polańska B (2021) Impact of beliefs about medicines on the level of intentional non-adherence to the recommendations of elderly patients with hypertension. Int J Environ Res Public Health 18(6): 2825. https://doi.org/10.3390/ijerph18062825

Thomson P, Rushworth GF, Andreis F, Angus NJ, Mohan AR, Leslie SJ (2020) Longitudinal study of the relationship between patients’ medication adherence and quality of life outcomes and illness perceptions and beliefs about cardiac rehabilitation. BMC Cardiovasc Disord 20(1): 71. https://doi.org/10.1186/s12872-020-01378-4

Van Minh H, Van Huy T, Long DPP, Tien HA (2022) Highlights of the 2022 Vietnamese Society of Hypertension guidelines for the diagnosis and treatment of arterial hypertension: The collaboration of the Vietnamese Society of Hypertension (VSH) task force with the contribution of the Vietnam National Heart Association (VNHA). J Clin Hypertens (Greenwich) 24(9): 1121–1138. https://doi.org/10.1111/jch.14580

Vietnam Ministry of Health (2023) Annual Health Statistics 2022. Medical Publishing House. Hanoi. Vietnam.

World Health Organization (‎2013)‎ A global brief on hypertension: Silent killer, global public health crisis: World Health Day 2013. World Health Organization. https://iris.who.int/handle/10665/79059

World Health Organization (‎2014) Noncommunicable diseases country profiles 2014. World Health Organization. https://iris.who.int/handle/10665/128038

World Health Organization (‎2005) Noncommunicable Diseases and Mental Health Cluster. WHO STEPS surveillance manual: The WHO STEPwise approach to chronic disease risk factor surveillance/Noncommunicable Diseases and Mental Health, World Health Organization. World Health Organization. https://iris.who.int/handle/10665/43376

World Health Organization (‎2000)‎ Regional Office for the Western Pacific. The Asia-Pacific perspective: Redefining obesity and its treatment. Sydney: Health Communications Australia. https://iris.who.int/handle/10665/206936

Zinat Motlagh SF, Chaman R, Ghafari SR, Parisay Z, Golabi MR, Eslami AA, Babouei A (2015) Knowledge, Treatment, control, and risk factors for hypertension among adults in southern Iran. Int J Hypertens 2015: 897070. https://doi.org/10.1155/2015/897070

© 2024 Journal of Pharmacy & Pharmacognosy Research

Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 929-942, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1936_12.5.929

Original Article

Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid contained in Peperomia pellucida (L.) Kunth against various diabetes mellitus receptors

[Estudios de acoplamiento y dinámica molecular del ácido 8,9-dimetoxielágico contenido en Peperomia pellucida (L.) Kunth frente a varios receptores de diabetes mellitus]

Yasmiwar Susilawati1,2, Raden Bayu Indradi2, Aiyi Asnawi3, Ellin Febrina4*

1Herbal Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, 45363, Indonesia.

2Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia.

3Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Bhakti Kencana, Jl. Soekarno-Hatta No. 754, Bandung 40617, Indonesia.

4Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor 45363, Indonesia.

*E-mail: ellin.febrina@unpad.ac.id

Abstract

Context: The search for antidiabetic drugs that target the receptors involved in diabetes has received significant attention in recent years. Peperomia pellucida (L.) Kunth’s ethanol extract and ethyl acetate fraction have antihyperglycemic activity. 8,9-dimethoxy ellagic acid (DEA) has shown significant diabetes mellitus activity in mice, but its interaction with diabetes receptors remains unknown.

Aims: To perform molecular docking and molecular dynamics simulations to explore the binding interactions and stability of DEA within the binding sites of enzymes involved in diabetes.

Methods: At the outset, the utilization of molecular docking was limited to forecasting the DEA’s binding orientations and affinities within the active sites of the enzymes implicated in diabetes. Following this, molecular dynamics simulation was employed to investigate the interactions, stability, and dynamic behavior of these complexes over a period of 100 nanoseconds.

Results: Molecular docking results revealed that DEA interacts with all selected receptors involved in diabetes and interacts more strongly with the aldose reductase receptor (PDB ID 3S3G) than the native ligand, with a binding energy of -10.3 kcal/mol. However, further molecular dynamics simulations confirmed the stability of the receptor complex with DEA over 100 ns, which is less potent than that of the native ligand. This is probably due to the rigidity of the DEA molecular structure.

Conclusions: This study highlights the potential of DEA derived from P. pellucida as an inhibitor of various receptors involved in diabetes.

Keywords: 8,9-dimethoxy ellagic acid; antidiabetic; in silico; Peperomia pellucida.

PDF Download

Resumen

Contexto: La búsqueda de fármacos antidiabéticos que se dirijan a los receptores implicados en la diabetes ha recibido mucha atención en los últimos años. El extracto etanólico de Peperomia pellucida (L.) Kunth y la fracción de acetato de etilo tienen actividad antihiperglucemiante. El ácido 8,9-dimetoxielágico (DEA) ha mostrado una actividad significativa en la diabetes mellitus en ratones, pero su interacción con los receptores de la diabetes sigue siendo desconocida.

Objetivos: Realizar simulaciones de dinámica molecular y acoplamiento molecular para explorar las interacciones de unión y la estabilidad de la DEA dentro de los sitios de unión de las enzimas involucradas en la diabetes.

Métodos: Al principio, la utilización del acoplamiento molecular se limitaba a pronosticar las orientaciones y afinidades de unión de la DEA dentro de los sitios activos de las enzimas implicadas en la diabetes. A continuación, se empleó simulación de dinámica molecular para investigar las interacciones, la estabilidad y el comportamiento dinámico de estos complejos durante un período de 100 nanosegundos.

Resultados: Los resultados del acoplamiento molecular revelaron que la DEA interactúa con todos los receptores seleccionados implicados en la diabetes e interactúa más fuertemente con el receptor de aldosa reductasa (PDB ID 3S3G) que el ligando nativo, con una energía de unión de -10,3 kcal/mol. Sin embargo, otras simulaciones de dinámica molecular confirmaron la estabilidad del complejo del receptor con DEA durante 100 ns, que es menos potente que el del ligando nativo. Probablemente esto se deba a la rigidez de la estructura molecular de la DEA.

Conclusiones: Este estudio destaca el potencial de la DEA derivada de P. pellucida como inhibidor de diversos receptores implicados en la diabetes.

Palabras Clave: ácido 8,9-dimetoxi elágico; antidiabético; in silico; Peperomia pelucida.

PDF Download

 

 
 
Citation Format: Susilawati Y, Indradi RB, Asnawi A, Febrina E (2024) Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid contained in Peperomia pellucida (L.) Kunth against various diabetes mellitus receptors. J Pharm Pharmacogn Res 12(5): 929–942. https://doi.org/10.56499/jppres23.1936_12.5.929
References

Alves NSF, Setzer WN, da Silva JKR (2019) The chemistry and biological activities of Peperomia pellucida (Piperaceae): A critical review. J Ethnopharmacol 232: 90–102. https://doi.org/10.1016/j.jep.2018.12.021

American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 37: S81–S90. https://doi.org/10.2337/dc14-S081

Aryaeian N, Sedehi SK, Arablou T (2017) Polyphenols and their effects on diabetes management: A review. Med J Islam Repub Iran 31: 134. https://doi.org/10.14196/mjiri.31.134

Asnawi A, Aman LO, Nursamsiar, Yuliantini A, Febrina E (2022) Molecular docking and molecular dynamic studies: Screening phytochemicals of Acalypha indica against Braf kinase receptors for potential use in melanocytic tumours. Rasayan J Chem 15: 1352–1361. https://doi.org/10.31788/RJC.2022.1526769

Asnawi A, Nedja M, Febrina E, Purwaniati P (2023) Prediction of a stable complex of compounds in the ethanol extract of celery leaves (Apium graveolens L.) function as a VKORC1 antagonist. Trop J Nat Prod Res 7: 2362–2370. http://www.doi.org/10.26538/tjnpr/v7i2.10

Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383: 69–82. https://doi.org/10.1016/S0140-6736(13)60591-7

Behl T, Gupta A, Albratty M, Najmi A, Meraya AM, Alhazmi HA, Anwer MK, Bhatia S, Bungau SG (2022) Alkaloidal phytoconstituents for diabetes management: Exploring the unrevealed potential. Molecules 27: 5851. https://doi.org/10.3390/molecules27185851

Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R (2017) Insulin receptor isoforms in physiology and disease: An updated view. Endocrine Rev 38: 379–431. https://doi.org/10.1210/er.2017-00073

Borhani DW, Harter TM, Petrash JM (1992) The crystal structure of the aldose reductase.NADPH binary complex. J Biol Chem 267: 24841–24847. https://doi.org/10.2210/pdb1abn/pdb

Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Yu AI, Mahboob T, Tangpoong J, Nissapatorn V (2018) Recommended medicinal plants as source of natural products: A review. Digit Chin Med 1: 131–142. https://doi.org/10.1016/S2589-3777(19)30018-7

Clemen-Pascual LM, Macahig RAS, Rojas NRL (2022) Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicol Rep 9: 22–35. https://doi.org/10.1016/j.toxrep.2021.12.002

Ćorković I, Gašo-Sokač D, Pichler A, Šimunović J, Kopjar M (2022) Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life (Basel) 12: 1692. https://doi.org/10.3390/life12111692

Cragg GM, Newman DJ (2013) Natural products: A continuing source of novel drug leads. Biochim Biophys Acta 1830: 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

de Fátima Arrigoni-Blank M, Dmitrieva EG, Franzotti EM, Antoniolli AR, Andrade MR, Marchioro M (2004) Anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (Piperaceae). J Ethnopharmacol 91: 215–218. https://doi.org/10.1016/j.jep.2003.12.030

De Meyts P (2016) The insulin receptor and its signal transduction network. Endotext [Internet]. Feingold KR, Anawalt B, Blackman MR, et al., editors. South Dartmouth (MA): MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK378978/

DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1: 15019. https://doi.org/10.1038/nrdp.2015.19

Dirir AM, Daou M, Yousef AF, Yousef LF (2022) A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev 21: 1049–1079. https://doi.org/10.1007/s11101-021-09773-1

Elam E, Feng J, Lv Y-M, Ni Z-J, Sun P, Thakur K, Zhang J-G, Ma Y-L, Wei Z-J (2021) Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. J Funct Foods 86: 104674. https://doi.org/10.1016/j.jff.2021.104674

Escribano O, Beneit N, Rubio-Longás C, López-Pastor AR, Gómez-Hernández A (2017) The role of insulin receptor isoforms in diabetes and its metabolic and vascular complications. J Diabetes Res 2017: 1403206. https://doi.org/10.1155/2017/1403206

Febrina E, Alamhari RK, Asnawi A, Abdulah R, Lestari K, Levita J, Supratman U (2021) Molecular docking and molecular dynamics studies of Acalypha indica L. phytochemical constituents with caspase-3. Int J App Pharm 13: 210–215. https://doi.org/10.22159/ijap.2021.v13s4.43861

Febrina E, Asnawi A, Abdulah R, Lestari K, Supratman U (2022) Identification of flavonoids from Acalypha indica L. (Euphorbiaceae) as caspase-3 activators using molecular docking and molecular dynamics. International J App Pharm 14: 162–166. https://doi.org/10.22159/ijap.2022.v14s5.34

Guasch L, Sala E, Ojeda MJ, Sala E, Cereto-Massagué A, Mulero M, Valls C, Pinent M, Ardévol A, Garcia-Vallvé S, Pujadas G (2012) Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (Part II): In silico prediction in antidiabetic extracts. PLoS ONE 7(9): e44971. https://doi.org/10.1371/journal.pone.0044971

Hall C, Yu H, Choi E (2020) Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med 52: 911–920. https://doi.org/10.1038/s12276-020-0456-3

Ischak NI, Aman LO, Hasan H, Kilo AL, Asnawi A (2023) In silico screening of Andrographis paniculata secondary metabolites as anti-diabetes mellitus through PDE9 inhibition. Res Pharm Sci 18: 100–111. https://doi.org/10.4103/1735-5362.363616

Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A (2012) Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: Systematic review and meta-analysis. BMJ 344: e1369. https://doi.org/10.1136/bmj.e1369

Kusuma SAF, Wardhani P, Febrina E (2017) Stool form scale as an indicator of klutuk banana (Musa balbisiana Colla) fruit extracts inhibition effect against Shigella dysenteriae Atcc 13313 in vivo. Asian J Pharm Clin Res 10: 266–268. https://doi.org/10.22159/ajpcr.2017.v10i12.21592

Li Q, Wong YL, Kang C (2014) Solution structure of the transmembrane domain of the insulin receptor in detergent micelles. Bioch Biophys Acta 1838: 1313–1321. https://doi.org/10.1016/j.bbamem.2014.01.005

Magaji U, Sacan O, Yanardag R (2020) Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. S Afr J Bot 128: 225–230. https://doi.org/10.1016/j.sajb.2019.11.024

Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7: 146–157. https://doi.org/10.2174/157340911795677602

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30: 2785–2791. https://doi.org/10.1002/jcc.21256

Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL-DR, Sacre JW, Karuranga S, Sun H, Boyko EJ, Magliano DJ (2022) IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract 183: 109118. https://doi.org/10.1016/j.diabres.2021.109118

Rahman H, Bintang MI, Asnawi A, Febrina E (2023) Exploring the molecular interactions between volatile compounds in coconut shell liquid smoke and human bitter taste TAS2R46 based on the molecular docking and molecular dynamics. Trop J Nat Prod Res 7: 5587–5594 http://www.doi.org/10.26538/tjnpr/v7i12.31

Singh A-K, Yadav D, Sharma N, Jin J-O (2021) Dipeptidyl peptidase (DPP)-IV inhibitors with antioxidant potential isolated from natural sources: A novel approach for the management of diabetes. Pharmaceuticals 14: 586. https://doi.org/10.3390/ph14060586

Siregar M, Awaluddin A, Nurnahari N, Nur S, Febrina E, Asnawi A (2020) Molecular docking and molecular dynamic simulation of the aglycone of curculigoside a and its derivatives as alpha glucosidase inhibitors. Rasayan J Chem 13: 690–698. http://dx.doi.org/10.31788/RJC.2020.1315577

Srishti K, Rohit R, Rashmi K (2022) Microbial production of amylase using lignocellulosic biomass: Recent developments and prospects. Res J Biotechnol 17: 192–199. http://dx.doi.org/10.25303/1705rjbt192199

Stanzione F, Giangreco I, Cole JC (2021) Use of molecular docking computational tools in drug discovery. Prog Med Chem 60: 273–343. https://doi.org/10.1016/bs.pmch.2021.01.004

Susilawati Y, Megantara S, Levita J (2022) Antidiabetic activity of novel chromene compound isolated from Peperomia pellucida L. Kunth and in silico study against DPP-IV, alpha-glucosidase, alpha-amylase, and aldose reductase for blood glucose homeostasis. Int J App Pharm 14: 110–116. https://doi.org/10.22159/ijap.2022.v14s5.22

Susilawati Y, Nugraha R, Krishnan J, Muhtadi A, Sutardjo S, Supratman U (2017) A new antidiabetic compound 8, 9-dimethoxy ellagic acid from sasaladaan (Peperomia pellucida L. Kunth). Res J Pharm Biol Chem Sci 8: 269–274.

Susilawati Y, Nugraha R, Muhtadi A, Soetardjo S, Supratman U (2015) (S)-2-Methyl-2-(4-methylpent-3-enyl)-6-(propan-2-ylidene)-3,4,6,7-tetrahydropyrano[4,3-g]chromen-9(2H)-one. Molbank 2015: M855. https://doi.org/10.3390/M855

Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP (2019) Key topics in molecular docking for drug design. Int J Mol Sci 20: 4574. https://doi.org/10.3390/ijms20184574

Wei LS, Wee W, Siong JYF, Syamsumir DF (2011) Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med Iran 49: 670–674. https://pubmed.ncbi.nlm.nih.gov/22071643/

Yan L-S, Cheng BC-Y, Zhang S-F, Luo G, Zhang C, Wang Q-G, Fu X-Q, Wang Y-W, Zhang Y (2021) Tibetan medicine for diabetes mellitus: Overview of pharmacological perspectives. Front Pharmacol 12: 748500. https://doi.org/10.3389/fphar.2021.748500

Yang S, Qin X, Luo T, Hao X, Zhu C (2015) Novel Nitro Derivatives of Benzothiadiazine 1, 1-Dioxide as Aldose Reductase Inhibitors. Proceedings of the 2015 International Conference on Industrial Technology and Management Science. Atlantis Press, pp. 1077–1080. https://doi.org/10.2991/itms-15.2015.260

Yayla M, Binnetoğlu D (2022) Experimental approaches to diabetes mellitus. Eurasian J Med 54: 145–153. https://doi.org/10.5152/eurasianjmed.2022.22304

Yuliantini A, Ocktavyanie S, Febrina E, Asnawi A (2024) Virtual screening using a ligand-based pharmacophore model from ashitaba (Angelica keiskei K.) isolates and molecular docking to obtained new candidates as -glucosidase inhibitors. Trop J Nat Prod Res 8: 5811–5819. http://www.doi.org/10.26538/tjnpr/v8i1.15

Zhang X, Xu L, Chen H, Zhang X, Lei Y, Liu W, Xu H, Ma B, Zhu C (2022) Novel hydroxychalcone-based dual inhibitors of aldose reductase and α-glucosidase as potential therapeutic agents against diabetes mellitus and its complications. J Med Chem 65: 9174–9192. https://doi.org/10.1021/acs.jmedchem.2c00380

Zheng X, Zhang L, Zhai J, Chen Y, Luo H, Hu X (2012) The molecular basis for inhibition of sulindac and its metabolites towards human aldose reductase. FEBS Lett 586: 55–59. https://doi.org/10.1016/j.febslet.2011.11.023

Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414: 782–787. https://doi.org/10.1038/414782a

© 2024 Journal of Pharmacy & Pharmacognosy Research

Biofilms related to periodontal disease

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 911-928, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1877_12.5.911

Review

Research trends in the study of biofilms related to periodontal disease: A bibliometric analysis

[Tendencias de investigación en el estudio de las biopelículas relacionadas con la enfermedad periodontal: Un análisis bibliométrico]

Julio C. Romero-Gamboa1, Melissa Pinella-Vega1, Pablo A. Millones-Gómez1, John E. Gallego-Ramírez2, Alejandro Valencia-Arias3*

1Escuela de Estomatología, Universidad Señor de Sipán, Chiclayo 14001, Perú.

2Facultad de Odontología, Universidad Cooperativa de Colombia, Colombia.

3Escuela de Ingeniería Industrial, Universidad Señor de Sipán, Chiclayo 14001, Perú.

*E-mail: valenciajho@uss.edu.pe

Abstract

Context: The study of biofilms in the context of periodontal diseases is of paramount importance due to their central role in the pathogenesis of these oral diseases. Research has focused on understanding the formation, structure, and dynamics of biofilms, as well as developing therapeutic approaches for their eradication. However, there are still conceptual gaps in the scientific literature due to a lack of review studies.

Aims: To examine research trends in the study of biofilms related to periodontal diseases.

Methods: This study used a bibliometric analysis methodology of scientific literature based on the PRISMA-2020 statement.

Results: The results showed a remarkable increase in research activity in recent years. Prominent authors, influential journals, and emerging keywords such as “multispecies biofilm”, “biofilm formation” or “periodontal therapy” were identified, reflecting the areas of greatest interest.

Conclusions: The need to balance the exploration of new areas with the consolidation of other key concepts is highlighted, as well as gaps in research that require more precise therapeutic approaches, longitudinal studies, and greater attention to underserved communities in developing countries.

Keywords: antimicrobial therapies; biofilm; oral microbiota; pathogenesis; periodontal disease; PRISMA-2020.

PDF Download

Resumen

Contexto: El estudio de las biopelículas en el contexto de las enfermedades periodontales es de suma importancia debido a su papel central en la patogénesis de estas enfermedades orales. La investigación se ha centrado en la comprensión de la formación, estructura y dinámica de las biopelículas, así como en el desarrollo de enfoques terapéuticos para su erradicación. Sin embargo, todavía existen lagunas conceptuales en la literatura científica debido a la falta de estudios de revisión.

Objetivos: Examinar las tendencias de investigación en el estudio de las biopelículas relacionadas con las enfermedades periodontales.

Métodos: Este estudio utilizó una metodología de análisis bibliométrico de la literatura científica basada en la declaración PRISMA-2020.

Resultados: Los resultados mostraron un notable incremento de la actividad investigadora en los últimos años. Se identificaron autores destacados, revistas influyentes y palabras clave emergentes como “biofilm multiespecie”, “formación de biofilm” o “terapia periodontal”, que reflejan las áreas de mayor interés.

Conclusiones: Se destaca la necesidad de equilibrar la exploración de nuevas áreas con la consolidación de otros conceptos clave, así como lagunas en la investigación que requieren enfoques terapéuticos más precisos, estudios longitudinales y una mayor atención a las comunidades desatendidas de los países en desarrollo.

Palabras Clave: biopelícula; enfermedad periodontal; microbiota oral; patogénesis; PRISMA-2020; terapias antimicrobianas.

PDF Download
 
Citation Format: Romero Gamboa JC, Pinella-Vega M, Millones-Gómez PA, Gallego-Ramírez JE, Valencia-Arias A (2024) Research trends in the study of biofilms related to periodontal disease: A bibliometric analysis. J Pharm Pharmacogn Res 12(5): 911–928. https://doi.org/10.56499/jppres23.1877_12.5.911
References

AlRyalat SAS, Malkawi LW, Momani SM (2019) Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. J Vis Exp (152): e58494. https://dx.doi.org/10.3791/58494

Carli E, Pasini M, Lardani L, Giuca G, Miceli M (2021) Impact of self-ligating orthodontic brackets on dental biofilm and periodontal pathogens in adolescents. J Biol Regul Homeost Agents 35(3 Suppl. 1): 107-115. https://doi.org/10.23812/21-3supp1-13

Colombo APV, Tanner ACR (2019) The role of bacterial biofilms in dental caries and periodontal and peri-implant diseases: a historical perspective. J Dent Res 98(4): 373-385. https://doi.org/10.1177/0022034519830686

Cunha E, Rebelo S, Carneiro C, Tavares L, Carreira L, Oliveira M (2020) A polymicrobial biofilm model for testing the antimicrobial potential of a nisin-biogel for canine periodontal disease control. BMC Vet Res 16: 469. https://doi.org/10.1186/s12917-020-02646-3

Durieux V, Gevenois P (2010) Bibliometric indicators: quality measurements of scientific publication. Radiology 255(2): 342-351. https://doi.org/10.1148/radiol.09090626

Esfahanizadeh N, Nourani M, Bahador A, Akhondi N, Montazeri M (2018) The anti-biofilm activity of nanometric zinc doped bioactive glass against putative periodontal pathogens: An in vitro study. Biomed Glasses 4(1): 95-107. https://doi.org/10.1515/bglass-2018-0009

Herrera D, Bermejo P, Sánchez MDC, Figuero E, Sanz M (2020) Biofilms around dental implants. In: Bone Augmentation by Anatomical Region: Techniques and Decision‐Making- Artzi Z (ed.), John Wiley & Sons Ltd. pp. 487-504. https://doi.org/10.1002/9781119427926.ch24

Herrero E, Fernandes S, Verspecht T, Ugarte-Berzal E, Boon N, Proost P, Bernaerts K, Quirynen M, Teughels W (2018) Dysbiotic biofilms deregulate the periodontal inflammatory response. J Dent Res 97(5): 547-555. https://doi.org/10.1177/0022034517752675

Jungbauer G, Favaro L, Müller S, Sculean A, Eick S (2022) The in-vitro activity of a cold atmospheric plasma device utilizing ambient air against bacteria and biofilms associated with periodontal or peri-implant Diseases. Antibiotics 11(6): 752. https://doi.org/10.3390/antibiotics11060752

Muras A, Mayer C, Otero-Casal P, Exterkate R, Brandt B, Crielaard W, Otero A, Krom B (2020) Short-chain N-acylhomoserine lactone quorum-sensing molecules promote periodontal pathogens in in vitro oral biofilms. Appl Environ Microbiol 86(3): e01941-19. https://doi.org/10.1128/AEM.01941-19

Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, Shamseer L, Tetzlaff J, Akl E, Brennan S, Chou R, Glanville J, Grimshaw J, Hrobjartsson A, Lalu M, Li T, Loder E, Mayo-Wilson E, McDonald S, McGuinness L, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88: 105906. https://doi.org/10.1016/j.ijsu.2021.105906

Parga A, Muras A, Otero-Casal P, Arredondo A, Soler-Ollé A, Àlvarez G, Alcaraz L, Mira A, Blanc V, Otero A (2023) The quorum quenching enzyme Aii20J modifies in vitro periodontal biofilm formation. Front Cell Infect Microbiol 13: 1118630. https://doi.org/10.3389/fcimb.2023.1118630

Qi M, Ren X, Li W, Sun Y, Sun X, Li C, Yu S, Xu L, Zhou Y, Song S, Dong B, Wang L (2022) NIR responsive nitric oxide nanogenerator for enhanced biofilm eradication and inflammation immunotherapy against periodontal diseases. Nano Today 43: 101447. https://doi.org/10.1016/j.nantod.2022.101447

Sanz M, Beighton D, Curtis MA, Cury JA, Dige I, Dommisch H, Ellwood R, Giacaman RA, Herrera D, Herzberg MC, Könönen E, Marsh PD, Meyle J, Mira A, Molina A, Mombelli A, Quirynen M, Reynolds EC, Shapira L, Zaura E (2017) Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J Clin Periodontol 44 (Suppl 18): S5-S11. https://doi.org/10.1111/jcpe.12682

Soares GM, Mendes JA, Silva MP, Faveri M, Teles R, Socransky SS, Wang X, Figueiredo LC, Feres M (2014) Metronidazole alone or with amoxicillin as adjuncts to non-surgical treatment of chronic periodontitis: A secondary analysis of microbiological results from a randomized clinical trial. J Clin Periodontol 41(4): 366-376. https://doi.org/10.1111/jcpe.12217

Souza JGS, Bertolini M, Costa RC, Cordeiro JM, Nagay BE, de Almeida AB, Retamal-Valdes B, Nociti FH, Feres M, Rangel EC, Barão VAR (2020) Targeting pathogenic biofilms: Newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface. ACS Appl Mater Interfaces. 12(9): 10118-10129. https://doi.org/10.1021/acsami.9b22741

Tonon C, Ashraf S, de Souza Rastelli A, Ghosh G, Hasan T, Xu Q, Greer A, Lyons A (2022) Evaluation of photosensitizer-containing superhydrophobic surfaces for the antibacterial treatment of periodontal biofilms. J Photochem Photobiol B Biol 233: 112458. https://doi.org/10.1016/j.jphotobiol.2022.112458

Uribe-García A, Paniagua-Contreras G, Monroy-Pérez E, Bustos-Martínez J, Hamdan-Partida A, Garzón J, Alanís J, Quezada R, Vaca-Paniagua F, Vaca S (2021) Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions. J Microbiol Immunol Infect 54(2): 267-275. https://doi.org/10.1016/j.jmii.2019.05.010

Van Eck N, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2): 523-538. https://doi.org/10.1007/s11192-009-0146-3

Vieira Colombo AP, Magalhães CB, Hartenbach FA, Martins do Souto R, Maciel da Silva-Boghossian C (2016) Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb Pathog 94: 27-34. https://doi.org/10.1016/j.micpath.2015.09.009

Wecke J, Kersten T, Madela K, Moter A, Göbel UB, Friedmann A, Bernimoulin J (2000) A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett 191(1): 95-101. https://doi.org/10.1111/j.1574-6968.2000.tb09324.x

Widyarman AS, Theodorea CF (2022) Novel indigenous probiotic Lactobacillus reuteri strain produces anti-biofilm reuterin against pathogenic periodontal bacteria. Eur J Dent 16(1): 96-101. https://doi.org/10.1055/s-0041-1731591

Zhang T, Ying D, Qi M, Li X, Fu L, Sun X, Wang L, Zhou Y (2019) Anti-biofilm property of bioactive upconversion nanocomposites containing chlorin e6 against periodontal pathogens. Molecules 24(15): 2692. https://doi.org/10.3390/molecules24152692

© 2024 Journal of Pharmacy & Pharmacognosy Research

Piceatannol-rich extract from Passiflora edulis and hyperpigmentation

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 900-910, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1717_12.5.900

Original Article

Piceatannol-rich extract from Passiflora edulis Sims seeds attenuates morphological differentiation through the reduction of MITF mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells

[El extracto rico en piceatannol de las semillas de Passiflora edulis Sims atenúa la diferenciación morfológica mediante la reducción de la expresión de ARNm de MITF y la polimerización de F-actina en células B16F10 hiperpigmentadas inducidas por UVB]

Paween Kunsorn1, Witchuda Payuhakrit1,2, Nasapon Povichit3, Prasit Suwannalert1,2*

1Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand.

2Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand.

3Detox (Thailand) Co., Ltd., Chiangmai, Thailand.

*E-mail: prasit.suw@mahidol.ac.th

Abstract

Context: Ultraviolet B (UVB) light irradiation causes skin problems by increasing cellular oxidants, melanogenesis, and morphological changes of melanocytes. The use of active compounds derived from plants to mitigate these problems has been studied. Piceatannol (PCT), a phytochemical in the phenolic group contained in Passiflora edulis fruit seed (PFS), has gained interest for its anti-melanogenesis effects. However, the inhibitory effect on morphological differentiation related to melanin production of PFS extract is absent.

Aims: To investigate the effect of PFS extract on the inhibition of morphological differentiation associated with microphthalmia-associated transcription factor (MITF) mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells.

Methods: Three fractions of PFS extract were analyzed for their total phenolics, PCT proportion, and antioxidant capacity. The fraction with the highest PCT proportion and antioxidant activity was investigated for its reductive effects on cellular oxidants, number of melanin-containing cells, melanin content, MITF mRNA expression, and tyrosinase activity in UVB-induced B16F10 cells. Morphological differentiation, as well as F-actin polymerization and arrangement, were analyzed.

Results: The PFS-F3 extract showed the highest antioxidant effect related to the proportion of PCT and phenolic contents. It attenuated cellular oxidants, the number of melanin-containing cells, melanin content, MITF mRNA expression, and tyrosinase activity. Differentiation, polymerization, and the arrangement of F-actin of most UVB-irradiated cells were repressed after treatment with the extract.

Conclusions: The PFS extract rich in PCT attenuated morphological differentiation by suppressing the functions of MITF mRNA and F-actin polymerization through the reduction of cellular oxidants, resulting in a decrease in melanin production.

Keywords: F-actin polymerization; hyperpigmentation; oxidative stress; passion fruit seed; piceatannol.

PDF Download

Resumen

Contexto: La irradiación con luz ultravioleta B (UVB) causa problemas cutáneos al aumentar los oxidantes celulares, la melanogénesis y los cambios morfológicos de los melanocitos. Se ha estudiado el uso de compuestos activos derivados de plantas para mitigar estos problemas. El piceatannol (PCT), un fitoquímico del grupo fenólico contenido en la semilla de la fruta de Passiflora edulis (PFS), ha cobrado interés por sus efectos antimelanogénicos. Sin embargo, el efecto inhibidor sobre la diferenciación morfológica relacionada con la producción de melanina del extracto de PFS está ausente.

Objetivos: Investigar el efecto del extracto de PFS en la inhibición de la diferenciación morfológica asociada a la expresión de ARNm del factor de transcripción asociado a la microftalmia (MITF) y la polimerización de F-actina en células B16F10 hiperpigmentadas inducidas por UVB.

Métodos: Se analizaron tres fracciones de extracto de SFP para determinar sus fenólicos totales, la proporción de PCT y su capacidad antioxidante. La fracción con la mayor proporción de PCT y actividad antioxidante se investigó por sus efectos reductores sobre los oxidantes celulares, el número de células con melanina, el contenido de melanina, la expresión de ARNm de MITF y la actividad tirosinasa en células B16F10 inducidas por UVB. Se analizó la diferenciación morfológica, así como la polimerización y disposición de la F-actina.

Resultados: El extracto PFS-F3 mostró el mayor efecto antioxidante relacionado con la proporción de PCT y el contenido fenólico. Atenuó los oxidantes celulares, el número de células con melanina, el contenido de melanina, la expresión de ARNm de MITF y la actividad tirosinasa. La diferenciación, la polimerización y la disposición de la F-actina de la mayoría de las células irradiadas con UVB se reprimieron tras el tratamiento con el extracto.

Conclusiones: El extracto de PFS rico en PCT atenuó la diferenciación morfológica mediante la supresión de las funciones del ARNm de MITF y la polimerización de F-actina a través de la reducción de los oxidantes celulares, resultando en la disminución de la producción de melanina.

Palabras Clave: estrés oxidativo; hiperpigmentación; piceatannol; polimerización de F-actina; semilla de maracuyá.

PDF Download

 

 
 
Citation Format: Kunsorn P, Payuhakrit W, Povichit N, Suwannalert P (2024) Piceatannol-rich extract from Passiflora edulis Sims seeds attenuates morphological differentiation through the reduction of MITF mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells. J Pharm Pharmacogn Res 12(5): 900–910. https://doi.org/10.56499/jppres23.1717_12.5.900
References

Alam MB, Ahmed A, Motin MA, Kim SW, Lee SH (2018) Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/ MAPKs/MITF and proteasomal degradation of tyrosinase. Sci Rep 8: 13928. https://doi.org/10.1038/s41598-018-32303-7

Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, Goding CR (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20(24): 3426–3439. https://doi.org/10.1101/gad.406406

Chalortham N, Povichit N, Kreawsa S, Moonsawat K, Yasamoot D, Jaisit N, Saefong C, Leepatanakun L, Pongtakam C, Na Lamphun J, Suwannalert P, Ezure Y (2019) Comparison of piceatannol content in seed coat and embryo of passion fruit. Thai Bull Pharm Sci 14(1): 35–48. https://doi.org/10.14456/tbps.2019.4

D’Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17(7): 1144. https://doi.org/10.3390/ijms17071144

D’Orazio J, Jarrett S, Ortiz AA, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14(6): 12222–12248. https://doi.org/10.3390/ijms140612222

Díaz-Camino C, Conde R, Ovsenek N, Villanueva MA (2005) Actin expression is induced and three isoforms are differentially expressed during germination in Zea mays. J Exp Bot 56(412): 557–565. https://doi.org/10.1093/jxb/eri034

González-Gutiérrez AG, Verdín J, Rodríguez-Garay B (2020) Simple whole-mount staining protocol of F-actin for studies of the female gametophyte in Agavoideae and other Crassinucellate ovules. Front Plant Sci 11: 384. https://doi.org/10.3389/fpls.2020.00384

Hobanthad T, Maneetong S (2019) Simple extraction for the scanning of antioxidant activity of vegetables and fruits in Buriram, Thailand by DPPH, ABTS and FRAP assays. SNRU J Sci Tech 11(3): 114–121.

Ishimoto T, Mori H (2022) Control of actin polymerization via reactive oxygen species generation using light or radiation. Front Cell Dev Biol 10: 1014008. https://doi.org/10.3389/fcell.2022.1014008

Kamiński K, Kazimierczak U, Kolenda T (2022) Oxidative stress in melanogenesis and melanoma development. Contemp Oncol 26(1): 1–7. https://doi.org/10.5114/wo.2021.112447

Katoh K, Kano Y, Noda Y (2011) Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. J R Soc Interface 8: 305–311. https://doi.org/10.1098/rsif.2010.0419

Kawakami A, Fisher DE (2017) The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest 97(60): 649–656. https://doi.org/10.1038/labinvest.2017.9

Kim HR, Lee SH, Noh EM, Oh BJ, Kim SY, Park MH (2023) Anti‑melanogenic effect of Moju through inhibition of tyrosinase activity. Mol Cell Toxicol. https://doi.org/10.1007/s13273-022-00329-8

Knapp SK, Iden S (2020) Melanocyte differentiation and epidermal pigmentation is regulated by polarity proteins. bioRxiv 2020.04.20.051722. https://doi.org/10.1101/2020.04.20.051722

Lawag IL, Nolden ES, Schaper AAM, Lim LY, Locher C (2023) A modified Folin-Ciocalteu assay for the determination of total phenolics content in honey. Appl Sci 13(4): 2135. https://doi.org/10.3390/app13042135

Li M, Knapp SK, Iden S (2020) Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr Opin Cell Biol 67: 99–108. https://doi.org/10.1016/j.ceb.2020.09.001

Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T (2010) Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis, J Agric Food Chem 58(20): 11112–11118. https://doi.org/10.1021/jf102650d

Medrano-Padial C, Prieto AI, Puerto M, Pichardo S (2021) Toxicological evaluation of piceatannol, pterostilbene, and ε-viniferin for their potential use in the food industry: A review. Foods. 10(3): 592. https://doi.org/10.3390/foods10030592

Nguyen NT, Fisher DE (2019) MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res 32(2): 224–236. https://doi.org/10.1111/pcmr.12726

Pintor AVB, Queiroz LD, Barcelos R, Primo LSG, Maia LC, Alves GG (2020) MTT versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: A systematic review. Int Endod J 53(10): 1348–1373. https://doi.org/10.1111/iej.13353

Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1-3): 88–102. https://doi.org/10.1016/s1011-1344(01)00206-8

Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp (50): 2597. https://doi.org/10.3791/2597

Rodboon T, Okada S, Suwannalert P (2020) Germinated riceberry rice enhanced protocatechuic acid and vanillic acid to suppress melanogenesis through cellular oxidant-related tyrosinase activity in B16 cells. Antioxidants. 9(3): 247. https://doi.org/10.3390/antiox9030247

Rossi M, Caruso F, Opazo C, Salciccioli J (2008) Crystal and molecular structure of piceatannol; scavenging features of resveratrol and piceatannol on hydroxyl and peroxyl radicals and docking with transthyretin. J Agric Food Chem 56(22): 10557–10566. https://doi.org/10.1021/jf801923j

Wu QY, Fung AHY, Xu ML, Kaman P, Etta YLL, Xiang PK, Yao P, Xiong QP, Dong TTX, Tsim KWK (2018) Microphthalmia-associated transcription factor up-regulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J Biol Chem 293(37): 14417–14428. https://doi.org/10.1074/jbc.RA118.003729

Wu QY, Wong ZCF, Wang C, Fung AHY, Womg EOY, Chan GKL, Dong TTX, Chen Y, Tsim KWK (2019) Isoorientin derived from Gentiana veitchiorum Hemsl. flowers inhibits melanogenesis by down-regulating MITF-induced tyrosinase expression. Phytomedicine 57: 129–136. https://doi.org/10.1016/j.phymed.2018.12.006

Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Munoz-Munoz J, Saboury AA (2023) Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises. Biochem Pharmacol 212: 115574. https://doi.org/10.1016/j.bcp.2023.115574

© 2024 Journal of Pharmacy & Pharmacognosy Research

Immunostimulatory effect of a nature-derived capsule

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 892-899, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1751_12.5.892

Original Article

Potential effects of Linh Loc Son hard capsule – a Vietnamese herbal combination in immunodeficiency induced by cyclophosphamide on mice

[Efectos potenciales de la cápsula dura Linh Loc Son, una combinación de hierbas vietnamitas en la inmunodeficiencia inducida por ciclofosfamida en ratones]

Binh Quoc Pham1, Ngan Kim Thi Nguyen1, Su Quoc Pham1, Cuong Duy Nguyen2, Lam Vu Trinh1, Hang Thu Thi Dinh3, Quang Vinh Trinh3, Van Anh Thi Pham3*

1Vietnam University of  Traditional Medicine, Hanoi, Vietnam.

2Department of Health, Vietnam Ministry of Public Security, Hanoi, Vietnam.

3Hanoi Medical University, Hanoi, Vietnam.

*E-mail: phamvananh@hmu.edu.vn

Abstract

Context: Traditional medicine and herbal extracts have long been recognized for their immunomodulatory effects, enhancing patient immune responses. The use of traditional medicine to target specific pathogens and support the immune system is increasingly studied. Linh Loc Son (LLS) hard capsule, a product derived from nature, consists of the main four natural ingredients: Curculigo orchioides Gaertn., Dioscorea persimilis Prain et Burk., Morinda officinalis F.C.How. and Fallopia multiflora (Thunb.) Haraldson.

Aims: To evaluate the potential effects of LLS hard capsules in complementary treatment of immunodeficiency state in mice.

Methods: An experiment was conducted to assess the impact of LLS hard capsules on an immunosuppressed model of cyclophosphamide-induced Swiss mice of either sex. Two doses of LLS hard capsules (0.69 and 1.38 g/kg body weight) and levamisole (100 mg/kg body weight), serving as a positive control, were administered orally for seven consecutive days; cyclophosphamide (200 mg/kg i.p.) was administered on the fourth day.

Results: Both doses of LLS hard capsule did insignificantly ameliorate the immunosuppressive effects of cyclophosphamide on the delayed-type hypersensitivity response but maintained leukocyte counts, relative organ weight, and cytokines as compared to the levamisole group and showed a significant improvement in micro-histological images.

Conclusions: This study has demonstrated in vivo the immunostimulatory effect of LLS hard capsules, highlighting their potential to boost and regulate the immune response in mice models of immunodeficiency.

Keywords: experimental; herbal medicine; immunologic; immunosuppression

PDF Download

Resumen

Contexto: La medicina tradicional y los extractos de hierbas son reconocidos desde hace mucho tiempo por sus efectos inmunomoduladores, que mejoran las respuestas inmunitarias de los pacientes. Se estudia cada vez más el uso de la medicina tradicional para atacar patógenos específicos y apoyar el sistema inmunológico. La cápsula dura Linh Loc Son (LLS), un producto derivado de la naturaleza, consta de los cuatro ingredientes naturales principales: Curculigo orchioides Gaertn., Dioscorea persimilis Prain et Burk., Morinda officinalis F.C.How. y Fallopia multiflora (Thunb.) Haraldson.

Objetivos: Evaluar los efectos potenciales de la cápsula dura de LLS en el tratamiento complementario del estado de inmunodeficiencia en ratones.

Métodos: Se llevó a cabo un experimento para evaluar el impacto de las cápsulas duras de LLS en un modelo inmunosuprimido de ratones suizos de ambos sexos inducidos por ciclofosfamida. Se administraron por vía oral dos dosis de cápsulas duras de LLS (0,69 y 1,38 g/kg de peso corporal) y levamisol (100 mg/kg de peso corporal), que sirvieron como control positivo, por vía oral durante siete días consecutivos; Se administró ciclofosfamida (200 mg/kg i.p.) el cuarto día.

Resultados: Ambas dosis de la cápsula dura de LLS mejoraron de manera insignificante los efectos inmunosupresores de la ciclofosfamida en la respuesta de hipersensibilidad de tipo retardado, pero mantuvieron los recuentos de leucocitos, el peso relativo de los órganos y las citocinas en comparación con el grupo de levamisol y mostraron una mejora significativa en las imágenes microhistológicas.

Conclusiones: Este estudio ha demostrado in vivo el efecto inmunoestimulador de la cápsula dura de LLS, destacando su potencial para estimular y regular la respuesta inmune en un modelo de inmunodeficiencia en ratones.

Palabras Clave: experimental; medicina herbaria; inmunológico; inmunosupresión.

PDF Download
 
Citation Format: Binh QP, Ngan NTK, Su QP, Cuong ND, Lam TV, Hang DTT, Quang TV, Van Anh PT (2024) Potential effects of Linh Loc Son hard capsule – a Vietnamese herbal combination in immunodeficiency induced by cyclophosphamide on mice. J Pharm Pharmacogn Res 12(5): 892–899. https://doi.org/10.56499/jppres23.1751_12.5.892
References

Adomėnienė A, Venskutonis PR (2022) Dioscorea spp.: Comprehensive review of antioxidant properties and their relation to phytochemicals and health benefits. Molecules 27(8): 2530. https://doi.org/10.3390/molecules27082530

Bafna AR, Mishra SH (2006) Immunostimulatory effect of methanol extract of Curculigo orchioides on immunosuppressed mice. J Ethnopharmacol 104 (1–2): 1–4. https://doi.org/10.1016/j.jep.2005.06.048

Burns, J. J., Lijun Zhao, Ethan Will Taylor, and Kevin Spelman (2010) The Influence of Traditional Herbal Formulas on Cytokine Activity. Toxicology 278(1): 140–59. https://doi.org/10.1016/j.tox.2009.09.020

Byeon S, Oh J, Lim JS, Lee JS, Kim JS (2018) Protective effects of Dioscorea batatas flesh and peel extracts against ethanol-induced gastric ulcer in mice. Nutrients 10(11): 1680. https://doi.org/10.3390/nu10111680

Chu L (2023) Research on acute toxicity, sub-chronic toxicity and physical performance enhancing effect of Linh Loc Son hard capsule in experimental models. MSc. Thesis, Vietnam University of Traditional Medicine, Hanoi, Vietnam.

Dropulic LK, Cohen JI (2011) Severe viral infections and primary immunodeficiencies. Clin Infect Dis 53(9): 897–909. https://doi.org/10.1093/cid/cir610

Guibo S (2006) The Effect of anthraquinone glycoside from Polygonum multiflorum Thunb on cellular immunological function in mice. Pharmacol Clin Chinese Materia Medica 22(6): 30–32.

Jacques FH, Apedaile E (2020) Immunopathogenesis of COVID-19: Summary and possible interventions. Front Immunol 11: 564925. https://doi.org/10.3389/fimmu.2020.564925

Jacysyn JF, Abrahamsohn IA, Macedo MS (2001) Modulation of delayed-type hypersensitivity during the time course of immune response to a protein antigen. Immunology 102(3): 373–379. https://doi.org/10.1046/j.1365-2567.2001.01181.x

Jantan I, Ahmad W, Bukhari SN (2015) Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front Plant Sci 6: 655. https://doi.org/10.3389/fpls.2015.00655

Jingying C, Baocai L, Ying C, Wujun Z, Yunqing Z, Yingzhen H, Tew WY, Ong PS, Yan CS, Loh HW, Yam MF (2023) Discrimination of Dioscorea species (Chinese yam) using FT-IR integrated with chemometric approach. Spectrochim Acta A Mol Biomol Spectrosc 303: 123229. https://doi.org/10.1016/j.saa.2023.123229

Lakshmi V, Pandey K, Puri A, Saxena RP, Saxena KC (2003) Immunostimulant principles from Curculigo orchioides. J Ethnopharmacol 89(2–3): 181–84. https://doi.org/10.1016/s0378-8741(03)00160-0

Lin L, Ni B, Lin H, Zhang M, Li X, Yin X, Qu C, Ni J (2015) Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J Ethnopharmacol 159: 158–183. https://doi.org/10.1016/j.jep.2014.11.009

Liu Q, Zhou YH, Yang ZQ (2016) The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 13(1): 3–10. https://doi.org/10.1038/cmi.2015.74

Liu Y, Wang Q, Yang J, Guo X, Liu W, Ma S, Li S (2018) Polygonum multiflorum Thunb.: A review on chemical analysis, processing mechanism, quality evaluation, and hepatotoxicity. Front Pharmacol 9: 364. https://doi.org/10.3389/fphar.2018.00364

Nie Y, Dong X, He Y, Yuan T, Han T, Rahman K, Qin L, Zhang Q (2013) Medicinal plants of genus Curculigo: Traditional uses and a phytochemical and ethnopharmacological review. J Ethnopharmacol 147(3): 547–63. https://doi.org/10.1016/j.jep.2013.03.066

Noor R, Maniha SM (2020) A brief outline of respiratory viral disease outbreaks: 1889-till date on the public health perspectives. VirusDisease 31(4): 441–449. https://doi.org/10.1007/s13337-020-00628-5

Oh PS, Lim KT (2008) ntioxidant activity of Dioscorea batatas Decne glycoprotein. Eur Food Res Technol 226(3): 507–515. https://doi.org/10.1007/s00217-007-0563-6

Ross SH, Cantrell DA (2018) Signaling and function of interleukin-2 in T lymphocytes. Annu Rev Immunol 36: 411–433. https://doi.org/10.1146/annurev-immunol-042617-053352

Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL (2018) Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front Immunol 9: 444. https://doi.org/10.3389/fimmu.2018.00444

Vietnamese Ministry of Health (2017) Vietnamese Pharmacopeia. Fifth edition. Ha Noi: Medical Publishing House Co., Ltd.

Yan H, Lu J, Wang J, Chen L, Wang Y, Li L, Miao L, Zhang H (2021) Prevention of cyclophosphamide-induced immunosuppression in mice with traditional Chinese medicine Xuanfei Baidu decoction. Front Pharmacol 12: 730567. https://doi.org/10.3389/fphar.2021.730567

Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, Chen Y, Zhang Y (2020) COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther 5(1): 128. https://doi.org/10.1038/s41392-020-00243-2

Zhang JH, Xin HL, Xu YM, Shen Y, He YQ, Hsien-Yeh, Lin B, Song HT, Juan-Liu, Yang HY, Qin LP, Zhang QY, Du J (2017) Morinda officinalis How. – A comprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 213: 230–255. https://doi.org/10.1016/j.jep.2017.10.028

Zhang, Qian, Guorong Wu, Shumin Shen, and Chong Li (2023) Dioscoreae persimilis polysaccharide ameliorates DSS-induced ulcerative colitis in mice through modulation of microbiota composition. J Holistic Integrat Pharm 4(2):157–165. https://doi.org/10.1016/j.jhip.2023.09.004

© 2024 Journal of Pharmacy & Pharmacognosy Research

Epidermal growth factor receptor mutant inhibitors as NSCLC drugs

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 881-891, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1740_12.5.881

Original Article

Epidermal growth factor receptor mutant T790M-L858R-V948R inhibitor from Calophyllum inophyllum L. leaf as potential non-small cell lung cancer drugs

[Inhibidor del receptor del factor de crecimiento epidérmico mutante T790M-L858R-V948R de la hoja de Calophyllum inophyllum L. como posible fármaco contra el cáncer de pulmón de células no pequeñas]

Precella Silvia, Jeremi Ongko, Yulanda Antonius*

Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya 60293, Indonesia.

*E-mail: yulandaantonius@staff.ubaya.ac.id

Abstract

Context: Non-Small Cell Lung Cancer (NSCLC) is the most common lung cancer type, with 80-85% prevalence. Usually, NSCLC is treated by chemotherapy and radiotherapy in collaboration with gefitinib or other anticancer drugs. Those treatments have many adverse effects, such as shortness of breath, bleeding, fever, hair loss, and radiation pneumonitis. Lack of treatment options and numerous mutations greatly contribute to lung cancer’s shocking death toll. Therefore, potential EGFR mutant inhibitors need to be analyzed.

Aims: To identify potential inhibitors of an epidermal growth factor receptor (EGFR) mutant derived from Calophyllum inophyllum L. leaf using an in silico approach.

Methods: In silico analysis and literature study were carried out. Secondary metabolite compounds from C. inophyllum were obtained through the PubChem database, and their biological activity and ADMET were analyzed. Molecular docking with EGFR wild-type (5FED) and mutant (5HG7) was carried out using PyRx. Furthermore, amino acid residues were analyzed using Discovery Studio.

Results: Based on overall screening and molecular docking, a non-toxic compound with a low binding affinity with EGFR mutant protein is 4-[2-(4-nitrophenyl)ethylcarbamoyl]benzenesulfonyl. Moreover, interactions and hydrogen bonds at Ala743, Gly796, Leu718, Phe856, Leu844, and Val726 are known to play a crucial role in ATP binding inhibition toward the tyrosine kinase domain, resulting in EGFR mutant inhibition.

Conclusions: 4-[2-(4-nitrophenyl)ethylcarbamoyl]benzenesulfonyl is one of the potential candidates as an EGFR mutant protein by ATP binding inhibition. However, in vitro and in vivo research needs to be performed to confirm these results.

Keywords: anticancer drug; lung cancer; NSCLC; secondary metabolites; virtual screening.

PDF Download

Resumen

Contexto: El cáncer de pulmón no microcítico (CPNM) es el tipo de cáncer de pulmón más frecuente, con una prevalencia del 80-85%. Por lo general, el CPNM se trata mediante quimioterapia y radioterapia en colaboración con gefitinib u otros medicamentos contra el cáncer. Esos tratamientos tienen muchos efectos adversos, como dificultad para respirar, hemorragias, fiebre, caída del cabello y neumonitis por radiación. La falta de opciones de tratamiento y las numerosas mutaciones contribuyen en gran medida a que el cáncer de pulmón se cobre un número de víctimas alarmante. Por lo tanto, es necesario analizar los posibles inhibidores mutantes del EGFR.

Objetivos: Identificar inhibidores potenciales del receptor del factor de crecimiento epidérmico (EGFR) mutante derivado de la hoja de Calophyllum inophyllum L. mediante un enfoque in silico.

Métodos: Se llevó a cabo un análisis in silico y un estudio bibliográfico. Los compuestos de metabolitos secundarios de C. inophyllum se obtuvieron a través de la base de datos PubChem, y se analizó su actividad biológica y ADMET. El acoplamiento molecular con el EGFR de tipo salvaje (5FED) y mutante (5HG7) se llevó a cabo utilizando PyRx. Además, se analizaron los residuos de aminoácidos con Discovery Studio.

Resultados: Basándose en el cribado general y el acoplamiento molecular, un compuesto no tóxico con una baja afinidad de unión con la proteína mutante EGFR es 4-[2-(4-nitrofenil)etilcarbamoil]bencenosulfonil. Además, se sabe que las interacciones y los enlaces de hidrógeno en Ala743, Gly796, Leu718, Phe856, Leu844 y Val726 desempeñan un papel crucial en la inhibición de la unión del ATP hacia el dominio tirosina cinasa, lo que resulta en la inhibición del mutante EGFR.

Conclusiones: El 4-[2-(4-nitrofenil)etilcarbamoil]bencenosulfonil es uno de los candidatos potenciales como proteína mutante del EGFR por inhibición de la unión al ATP. Sin embargo, es necesario realizar investigaciones in vitro e in vivo para confirmar estos resultados.

Palabras Clave: cáncer de pulmón; CPNM; cribado virtual; fármaco anticanceroso; metabolitos secundarios.

PDF Download
 
Citation Format: Silvia P, Ongko J, Antonius Y (2024) Epidermal growth factor receptor mutant T790M-L858R-V948R inhibitor from Calophyllum inophyllum L. leaf as potential non-small cell lung cancer drugs. J Pharm Pharmacogn Res 12(5): 881–891. https://doi.org/10.56499/jppres23.1740_12.5.881
References

Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM (2021) Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules 26(21): 6677. https://doi.org/10.3390/molecules26216677

Aini NS, Ansori ANM, Kharisma VD, Murtadlo AAA, Tamam MB, Sucipto TH, Jakhmola V, Rebezov M, Saklani T, & Zainul R (2023) An in silico study: Phytochemical compounds screening of Garcinia atroviridis Griff. ex T. Anders as anti-DENV. J Pure Appl Microbiol 17: 2467–2478. https://doi.org/10.22207/JPAM.17.4.45

Al-Sahlawi F, Al-Ani I, El-Tanani M, Farooq HA (2024) Preparation and evaluation of biological activity of ZSM-5 nanoparticles loaded with gefitinib for the treatment of non-small cell lung carcinoma. Pharmacia 71: 1–12. https://doi.org/10.3897/pharmacia.71.e112449

Amelia T, Kartasasmita RE, Ohwada T, Tjahjono DH (2022) Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules 27: 819. https://doi.org/10.3390/molecules27030819

Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: A Webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(1): 257–263. https://doi.org/10.1093/nar/gky318

Bareschino MA, Schettino C, Rossi A, Maione P, Sacco PC, Zeppa R, Gridelli C (2011) Treatment of advanced non small cell lung cancer. J Thorac Dis 3(2): 122–133. https://doi.org/10.3978/j.issn.2072-1439.2010.12.08

Cersosimo RJ (2006) Gefitinib: An adverse effects profile. Expert Opin Drug Saf 5(3): 469–479. https://doi.org/10.1517/14740338.5.3.469

Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC (2016) Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev 96(3): 1025–1069. https://doi.org/10.1152/physrev.00030.2015

Cheng H, Nair SK, Murray BW, Almaden C, Bailey S, Baxi S, Behenna D, Schultz SC, Dalvie D, Dinh DM, Edwards MP, Feng JL, Ferre RA, Gajiwala KS, Hemkens MD, Fisher AJ, Jalaie M, Johnson TO, Kania RS, Kephart S, Lafontaine J, Lunney B, Liu KKC, Liu Z, Matthews J, Nagata A, Niessen S, Ornelas MA, Orr  STM, Pairish M, Planken S, Ren S, Richter D, Ryan K, Sach N, Shen H, Smeal, Solowiej J, Sutton S, Tran K, Tseng E, Vernier W, Walls M, Wang S, Weinrich SL, Xin S, Xu H, Yin MJ, Zientek M, Zhou R, Kath JC (2016) Discovery of1‐{(3R,4R)‐3-[({5-Chloro-2-[(1-methyl‐1H‐pyrazol-4-yl)amino]‐7H‐pyrrolo[2,3‐d]pyrimidin-4-yl}oxy)methyl]-4-methoxypyrrolidin-1-yl}prop-2-en-1-one (PF-06459988), a potent, WT sparing, irreversible inhibitor of T790M-containing EGFR mutants. J Med Chem 59: 2005–2024. https://doi.org/10.1021/acs.jmedchem.5b01633

Choy YB, Prausnitz M R (2011) The Rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm Res 28: 943–948. https://doi.org/10.1007/s11095-010-0292-6

Daina A, Michielin O, and Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friencliness of small molecules. Sci Rep 7: 42717. https://doi.org/10.1038/srep42717

Dallakyan S, Olson AJ (2015) Small-Molecule Library Screening by Docking with PyRx. In: Hempel J, Williams C, Hong C (eds). Chemical Biology. Methods in Molecular Biology, vol 1263. New York, NY: Humana Press. https://doi.org/10.1007/978-1-4939-2269-7_19

Deshmukh MM, Gadre SR (2009) Estimation of N-H⋯O=C intramolecular hydrogen bond energy in polypeptides. J Phys Chem 113(27): 7927–7932. https://doi.org/10.1021/jp9031207

Emilda (2019) Nyamplung (Calophyllum inophyllum Linn) and its bioactivities. SIMBIOSA 8(2): 136–147. https://doi.org/10.33373/sim-bio.v8i2.2000

Fadhillah MA, Irianti R, Mahrudin (2023) Etnobotani nyamplung (Calophyllum inophyllum) di desa pagatan besar kabupaten tanah laut. BIOMA 5(1): 89–104. https://doi.org/10.31605/bioma.v5i1.2512

Giménez BG, Santos MS, Ferrarini M, Fernandes JPS (2010) Evaluation of blockbuster drugs under the Rule-of- five. Pharmazie 65(2): 148-152. https://doi.org/10.1691/ph.2010.9733

Haryati H, Mayasari AP (2020) Immune-checkpoint inhibitor treatment of non-small cell lung cancer patients. J Resp 6(1): 21–26. https://doi.org/10.20473/jr.v6-I.1.2020.21-26

Hor YZ, Salvamani S, Gunasekaran B, Yian KR (2023) CRNDE: A pivotal oncogenic long non-coding RNA in cancers. Yale J Biol Med 96(4): 511–526. https://doi.org/10.59249/VHYE2306

Hsieh C, Lin YW, Chen CH, Ku W, Ma F, Yu H, Chu C (2018) Yellow and green pigment from Calophyllum inophyllum L. seed oil induce cell death in colon and lung cancer cells. Oncol Lett 15(4): 5915–5923. https://doi.org/10.3892/ol.2018.8052

Jacek K, Hanna P, Anna M, Beata D, Bernard MK (2012) The log P parameter as a molecular descriptor in the computer-aided drug design – An overview. CMST 18(2): 81–88. https://doi.org/10.12921/cmst.2012.18.02.81-88

Jagannathan R (2019) Characterization of drug-like chemical space for cytotoxic marine metabolites using multivariate methods. ACS Omega 4: 5402–5411. https://doi.org/10.1021/acsomega.8b01764

Joanna B, Remko M, Breza M, Madura I, Kaczmarek K, Zabroki J, Wolf W (2020) A supramolecular approach to structure-based design with a focus on synthons hierarchy in ornithine-derived ligands: Review, synthesis, experimental and in silico studies. Molecules 25(5): 1135. https://doi.org/10.3390/molecules25051135

Kharisma VD, Agatha A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Kharisma VD, Ansori ANM, Antonius Y, Rosadi I, Murtadlo AAA, Jakhmola V, Rebezov M, Maksimiuk N, Kolesnik E, Burkov P, Derkho M, Scherbakov P, Ullah ME, Sucipto TH, Purnobasuki H (2023) Garcinoxanthones from Garcinia mangostana L. against SARS-CoV-2 infection and cytokine storm pathway inhibition: A viroinformatics study. J Pharm Pharmacogn Res 11(5): 743–756. https://doi.org/10.56499/jppres23.1650_11.5.743

Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: Prediction of activity spectra for biologically active substances. Bioinform 16: 747–748. https://doi.org/10.1093/bioinformatics/16.8.747

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3): 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

Lipinski CA (2004) Lead-and-drug-like compounds: the rule-of-five revolution. Drug Discov Today 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Luthfiana D, Soleha M, Prasetiyo A, Kusuma WA, Fatriani R, Nurfadhila L, Yunitasari N, Ahkam AH, Wargasetia TL, Irfandi R, Ansori ANM, Kharisma VD, Naw SW, Ullah E, Jakhmola V, Zainul R (2023) Network pharmacology and molecular docking study to reveal the potential anticancer activity of oscillatoxin D, E, and F marine cytotoxins. Food Syst 6(3): 365–389. https://doi.org/10.21323/2618-9771-2023-6-3-365-389

Matsson P, Kihlberg J (2017) How big is too big for cell permeability? J Med Chem 60: 1662–1664. https://doi.org/10.1021/acs.jmedchem.7b00237

Metro G, Crino L (2012) Advances on EGFR mutation for lung cancer. Transl Lung Cancer Res 1(1): 5–13. https://doi.org/10.3978/j.issn.2218-6751.2011.12.01

Nand M, Maiti P, Chandra S, Pande V (2016) In silico identification of novel EGFR tyrosine kinase inhibitors associated with non-small cell lung cancer from phytochemical library. Int Res J Pharm 7(3): 22–25. https://doi.org/10.7897/2230-8407.07323

Nusantoro YR, Fadlan A (2020) Analysis of drug-like properties, ADMET prediction, and molecular bonding of isatinyl-2-aminobenzoylhydrazone and transition metal complexes Co(II), Ni(II), Cu(II), Zn(II) against BCL2-XL (Analisis sifat mirip obat, prediksi ADMET, dan penambatan molekular isatinil-2-aminobenzoilhidrazon dan kompleks logam transisi Co(II), Ni(II), Cu(II), Zn(II) terhadap BCL2-XL). Indones Chim Acta 5: 114. https://doi.org/10.12962/j25493736.v5i2.7881

Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3): 73. https://doi.org/10.1371/journal.pmed.0020073

Periyasamy S, Jaikumar K, Mohamed SN, Wyson J, Deventhiran M, Babu A, Anand D (2017) In silico docking analysis of bioactive compounds from C. inophyllum L. ethanol leaf extract against EGFR protein. Asian J Pharm Clin Res 10(8): 214. https://doi.org/10.22159/ajpcr.2017.v10i8.18972

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – A visualization system for exploratory research and analysis. J. Comput. Chem 25(13): 1605–1612. https://doi.org/10.1002/jcc.20084

Pratama MRF (2015) In silico study of secondary metabolites from Brucea javanica as EGFR mutant T790M-L858R-V948R inhibitor (Studi in silico metabolit sekunder Brucea javanica sebagai inhibitor EGFR mutan T790M-L858R-V948R). Prosiding Seminar Nasional Kefarmasian (Hotel Aria Barito, Banjarmasin, Indonesia, 8 October).

Saputri KE, Fakhmi N, Kusumaningtyas E, Priyatama D, Santoso B (2016) Molecular docking potential of antidiabetic type 2 from zerumbon derivatives as aldose redictase inhibitor with Autodock-Vina (Docking molekular potensi anti diabetes melitus tipe 2 turunan zerumbon sebagai inhibitor aldosa reduktase dengan Autodock-Vina). Chim Nat Acta 4(1): 16–20.

Sembiring YE, Effendi WI, Dillon JJ, Soebroto H, Winarno DJS, Puruhito P, Putra IGAMA, Sebayang ANO, Negoro SPWB (2023) Lung cancer: A literature review. J Resp 9(3): 246–251. https://doi.org/10.20473/jr.v9-I.3.2023.246-251

Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC (2023) Precision medicine in nasopharyngeal carcinoma: Comprehensive review of past, present, and future prospect. J Transl Med 21(1): 786. https://doi.org/10.1186/s12967-023-04673-8

Suhargo L, Winarni D, Fatimah, Kharisma VD, Ansori ANM (2023) Antidiabetic activity of daun wungu (Graptophyllum pictum L. Griff) extract via inhibition mechanism of TNF-α, IL-6, and IL-8: Molecular docking and dynamic study. Res J Pharm Technol 16(5): 2291–2296. https://doi.org/10.52711/0974-360X.2023.00376

Tungary E, Ongko J, Sukweenadhi J, Antonius Y (2022) Molecular docking of active compounds from traditional medicinal plants as ACE-2 protein (1R4L) inhibitor in searching for COVID-19 drug. Res J Pharm Technol 15(9): 4235-0. https://doi.org/10.52711/0974-360X.2022.00712

Wang J, Wu Y, Dong M, H, He X, Wang Z, Li J, Wang Y (2021) Observation of hepatotoxicity during long-term gefitinib administration in patients with non-small cell lung cancer. Anticancer Drugs 27(3): 245–250. https://doi.org/10.1097/CAD.0000000000000323

WHO (2022) World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer [Consulted July 11, 2023].

Widyananda MH, Kurniasari CA, Alam FM, Rizky WC, Dings TGA, Ansori ANM, Antonius Y (2023b) Exploration of potentially bioactive compounds from fingerroot (Boesenbergia rotunda L.) as inhibitor of atherosclerosis-related proteins (CETP, ACAT1, OSC, sPLA2): An in silico study. Jordan J Pharm Sci 16(3): 550–564.  https://doi.org/10.35516/jjps.v16i3.1609

Widyananda MH, Pratama SK, Ansori ANM, Antonius Y, Kharisma VD, Murtadlo AAA, Jakhmola V, Rebezov M, Khayrullin M, Derkho M, Ullah ME, Susilo RJK, Hayaza S, Nugraha AP, Proboningrat A, Fadholly A, Sibero MT, Zainul R (2023a) Quercetin as an anticancer candidate for glioblastoma multiforme by targeting AKT1, MMP9, ABCB1, and VEGFA: An in silico study. Karbala Int J Mod Sci 9(3): 450–459. https://doi.org/10.33640/2405-609X.3312

Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Antonius Y (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res 9(4): 484–496. https://doi.org/10.56499/jppres21.1047_9.4.484

Zubair T, Bandyopadhyay D (2023) Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities. Int J Mol Sci 24(3): 2651. https://doi.org/10.3390/ijms24032651

© 2024 Journal of Pharmacy & Pharmacognosy Research

Cisplatin-Vernonia amygdalina combination on pancreatic cancer

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 870-880, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1748_12.5.870

Original Article

Combination of cisplatin and ethyl acetate extract of Vernonia amygdalina Delile induces cell cycle arrest and apoptosis on PANC-1 cells via PI3K/mTOR

[Combinación de cisplatino y extracto de acetato de etilo de Vernonia amygdalina Delile induce la detención del ciclo celular y la apoptosis en células PANC-1 vía PI3K/mTOR]

Poppy Anjelisa Zaitun Hasibuan1*, Jane Melita Keliat2, Muhammad Fauzan Lubis3

1Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia.

2Department of Pharmaceutical and Food Analysis, Faculty of Vocational, Universitas Sumatera Utara, Medan, 20155, Indonesia.

3Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia.

*E-mail: poppyanjelisa@usu.ac.id

Abstract

Context: Vernonia amygdalina Delile (VAD) is known as a potential plant with a wide variety of medicinal properties, including anticancer.

Aims: To evaluate the combination effect of VAD extract with cisplatin (CIS) against PANC-1 cells, focusing on cell cycle arrest and apoptosis activities.

Methods: This study is an experimental study using PANC-1 cells as objects. The phytochemical compounds were analyzed with LC-MS/MS. The cytotoxic activity of extracts and their combinations was determined using the MTT assay method in the PANC-1 cell line. Apoptosis, cell cycle arrest, and PI3K/mTOR profiles were analyzed with flow cytometry. Immunocytochemistry was used to determine Bcl-2, Cyclin D1, and p53 expression.

Results: The phytochemicals found were five compounds with retention times of 8.96, 9.85, 10.52, 12.59, and 10.36. The results of the MTT assay showed that the IC50 values of extract and CIS were 21.83 ± 0.46 µg/mL and 3.02 ± 0.44 µg/mL, respectively. The combination index (CI) value of extract and CIS had a synergistic effect. Combination extract and CIS induced early and late apoptosis, inhibited cell cycle progression on the G1 phase, inhibited Bcl-2 and cyclin D1 expression, induced p53 expression, and inhibited PI3K and mTOR expression.

Conclusions: The combination of extract and CIS showed anticancer activity against PANC-1 cells through induction of apoptosis and cell cycle arrest via inhibition of PI3K and mTOR expressions.

Keywords: apoptosis; cell cycle arrest; cisplatin; herbal medicine; pancreatic cancer.

PDF Download

Resumen

Contexto: Vernonia amygdalina Delile (VAD) es conocida como una planta potencial con una amplia variedad de propiedades medicinales, incluyendo anticancerígenas.

Objetivos: Evaluar el efecto combinado del extracto de VAD con cisplatino (CIS) contra las células PANC-1, centrándose en las actividades de detención del ciclo celular y apoptosis.

Métodos: Este estudio es un estudio experimental utilizando células PANC-1 como objetos. El análisis de los compuestos fitoquímicos se llevó a cabo con LC-MS/MS. La actividad citotóxica del extracto y sus combinaciones se determinó mediante el método de ensayo MTT en la línea celular PANC-1. La apoptosis, la detención del ciclo celular y los perfiles PI3K/mTOR se analizaron con citometría de flujo. Se utilizó inmunocitoquímica para determinar la expresión de Bcl-2, ciclina D1 y p53.

Resultados: Los fitoquímicos hallados fueron cinco compuestos con tiempos de retención de 8,96, 9,85, 10,52, 12,59 y 10,36. Los resultados del ensayo MTT mostraron que los valores de IC50 del extracto y del CIS fueron 21,83 ± 0,46 µg/mL y 3,02 ± 0,44 µg/mL, respectivamente. El valor del índice de combinación (IC) del extracto y el CIS tuvo un efecto sinérgico. La combinación de extracto y CIS indujo la apoptosis temprana y tardía, inhibió la progresión del ciclo celular en la fase G1, inhibió la expresión de Bcl-2 y ciclina D1, indujo la expresión de p53 e inhibió la expresión de PI3K y mTOR.

Conclusiones: La combinación de extracto y CIS mostró actividad anticancerígena contra células PANC-1 a través de la inducción de apoptosis y detención del ciclo celular vía inhibición de las expresiones PI3K y mTOR.

Palabras Clave: apoptosis; detención del ciclo celular; cisplatino; fitoterapia; cáncer de páncreas.

PDF Download

 

 
 
Citation Format: Hasibuan PAZ, Keliat JM, Lubis MF (2024) Combination of cisplatin and ethyl acetate extract of Vernonia amygdalina Delile induces cell cycle arrest and apoptosis on PANC-1 cells via PI3K/mTOR. J Pharm Pharmacogn Res 12(5): 870–880. https://doi.org/10.56499/jppres23.1748_12.5.870
References

Aamazadeh F, Ostadrahimi A, Rahbar Saadat Y, Barar J (2020) Bitter apricot ethanolic extract induces apoptosis through increasing expression of Bax/Bcl-2 ratio and caspase-3 in PANC-1 pancreatic cancer cells. Mol Biol Rep 47: 1895–1904. https://doi.org/10.1007/s11033-020-05286-w

Akinleye A, Avvaru P, Furqan M, Song Y, Liu D (2013) Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hermatol Oncol 6: 88. https://doi.org/10.1186/1756-8722-6-88

Aldossary SA (2019) Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J 12: 7–15. https://doi.org/10.13005/bpj/1608

Barabas K, Milner R, Lurie D, Adin C (2008) Cisplatin: a review of toxicities and therapeutic applications Vet Comp Oncol 6: 1–18. https://doi.org/10.1111/j.1476-5829.2007.00142.x

Chao Y, Wu CY, Wang JP, Lee RC, Lee WP, Li CP (2013) A randomized controlled trial of gemcitabine plus cisplatin versus gemcitabine alone in the treatment of metastatic pancreatic cancer. Cancer Chemother Pharmacol 72: 637–642. https://doi.org/10.1007/s00280-013-2239-1

Chen XL, Cheng QY, She MR, Wang Q, Huang XH, Cao LQ, Fu XH, Chen JS (2010) Expression of sonic hedgehog signaling components in hepatocellular carcinoma and cyclopamine-induced apoptosis through Bcl-2 downregulation in vitro. Arch Med Res 41: 315–323. https://doi.org/10.1016/j.arcmed.2010.06.003

Dalimunthe A, Hasibuan PAZ, Satria D (2017) Cell cycle arrest activity of Litsea cubeba Lour: Heartwood and fruit extracts against T47D breast cancer cells. Asian J Pharm Clin Res 10: 404–406. https://doi.org/10.22159/ajpcr.2017.v10i11.20204

Dong Q, Ling B, Gao B, Maley J, Sammynaiken R, Yang J (2014) Hedyotis diffusa water extract diminished the cytotoxic effects of chemotherapy drugs against human breast cancer MCF7 cells. Nat Prod Commun 9: 699–700. https://doi.org/10.1177/1934578×1400900529

Eldhose B, Gunawan M, Rahman M, Latha MS, Notario V (2014) Plumbagin reduces human colon cancer cell survival by inducing cell cycle arrest and mitochondria-mediated apoptosis. Int J Oncol 45: 1913–1920. https://doi.org/10.3892/ijo.2014.2592

Ergun Y, Ozdemir NY, Guner EK, Esin E, Sendur MA, Koksoy EB, Demirci NS, Eren T, Dede I, Sezer A, Engin H, Oksuzoglu B, Yalcin B, Utkan G, Zengin N, Urun Y (2018) Comparison of gemcitabine monotherapy with gemcitabine and cisplatin combination in metastatic pancreatic cancer: a retrospective analysis. J BUON 23: 116–121. https://pubmed.ncbi.nlm.nih.gov/30722120/

Fachrunisa D, Hasibuan PAZ, Harahap U (2019) Cell cycle inhibition and apoptotic induction of Vernonia amygdalina Del. leaves extract on MCF-7 cell line. Open Access Maced J Med Sci 7: 3807–3810. https://doi.org/10.3889/oamjms.2019.509

Febriansah R, Putri DD, Sarmoko, Nurulita NA, Meiyanto E, Nugroho AE (2014) Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin. Asian Pac J Trop Biomed 4: 228–233. https://doi.org/10.1016/S2221-1691(14)60236-7

Haryanti S, Pramono S, Murwanti R, Meiyanto E (2016) The synergistic effect of doxorubicin and ethanolic extracts of Caesalpinia sappan L. wood and Ficus septica Burm. f. leaves on viability, cell cycle progression, and apoptosis induction of MCF­7 cells. Indones J Biotech 21: 29–37. https://doi.org/10.22146/ijbiotech.26105

Hasibuan PAZ, Chrestella J, Satria D (2015) Combination effect of ethylacetate extracts of Plectranthus amboinicus (Lour.) Spreng. with doxorubicin againts T47D breast cancer cells. Int J Pharm Pharm Sci 7: 156–159.

Hasibuan PAZ, Harahap U, Sitorus P, Lubis MF, Satria D (2021) In-silico analysis of vernonioside D and vernonioside E from Vernonia amygdalina Delile. leaves as inhibitor of epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR). Rasayan J Chem 14: 1539–1543. https://doi.org/10.31788/RJC.2021.1436092

Hasibuan PAZ, Harahap U, Sitorus P, Satria D (2020b) The anticancer activities of Vernonia amygdalina Delile. leaves on 4T1 breast cancer cells through phosphoinositide 3-kinase (PI3K) pathway. Heliyon 6: e04449. https://doi.org/10.1016/j.heliyon.2020.e04449

Hasibuan PAZ, Keliat JM, Lubis MF, Nasution A (2024) The ethyl acetate extract of Vernonia amygdalina leaf ameliorates gemcitabine effect against migration and invasion of PANC-1 cells via down-regulation the VEGF, COX2, and RAS/MEK pathways. Saudi Pharm J 32: 101872. https://doi.org/10.1016/j.jsps.2023.101872

Hasibuan PAZ, Lubis MF, Keliat JM, Azizah N (2023) Cytotoxic test combination of ethyl acetate extract africant leaves (Vernonia amygdalina Delile) and gemcitabine on PANC-1 cells. AIP Conference Proceedings 2626: 030004. https://doi.org/10.1063/5.0149754

Hasibuan PAZ, Munir D, Pertiwi D, Satria D, Lubis MF (2020a) Flavonoids constituent analysis and cell cycle inhibition activity of ethylacetate extract of Vernonia amygdalina Delile. leaves on lung cancer cell line. Rasayan J Chem 13: 2577–2581. https://doi.org/10.31788/RJC.2020.1345625

Hasibuan PAZ, Sumaiyah S (2019) The anti-proliferative and pro-apoptotic properties of ethanol Plectranthus amboinicus (Lour.) Spreng. leaves ethanolic extract nanoparticles on T47D cell lines. Asian Pac J Cancer Prev 20: 897–901. https://doi.org/10.31557/APJCP.2019.20.3.897

Heinemann V, Wilke H, Mergenthaler HG, Clemens M, König H, Illiger HJ, Arning M, Schalhorn A, Possinger K, Fink U (2000) Gemcitabine and cisplatin in the treatment of advanced or metastatic pancreatic cancer. Ann Oncol 11: 1399–1403. https://doi.org/10.1023/a:1026595525977

Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: An overview. Cancers (Basel) 6: 1769–1792. https://doi.org/10.3390/cancers6031769

Illian DN, Hasibuan PAZ, Sumardi S, Nuryawan A, Wati R, Basyuni M (2019) Anticancer activity of polyisoprenoids from Avicennia alba Blume. in WiDr cells. Iran J Pharm Res 18: 1477–1487. https://doi.org/10.22037/ijpr.2019.1100719

Istiqomah, Meighina A, Hasibuan PAZ, Sumaiyah S, Yusraini E, Oku H, Basyuni M (2020) Anticancer effects of polyisoprenoid from Nypa fruticans leaves by controlling expression of P53, EGFR, PI3K, AKT1, and MTOR genes in colon cancer (WiDr) cells. Nat Prod Commun 15: 1–8. https://doi.org/10.1177/1934578X20918412

Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Iriti M, Wojtyczka RD, Buszman E, Stojko J (2018) Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 – a comparative study. Cell Mol Biol (Noisy-le-grand) 64: 1–10. https://pubmed.ncbi.nlm.nih.gov/29981677/

Kapadia GJ, Rao GS, Ramachandran C, Iida A, Suzuki N, Tokuda H (2013) Synergistic cytotoxicity of red beetroot (Beta vulgaris L.) extract with doxorubicin in human pancreatic, breast and prostate cancer cell lines. J Complement Integr Med 10: 113–122. https://doi.org/10.1515/jcim-2013-0007

Karanikas M, Esempidis A, Chasan ZT, Deftereou T, Antonopoulou M, Bozali F, Amarantidis K, Man YG (2016) Pancreatic cancer from molecular pathways to treatment opinion. J Cancer 7: 1328–1339. https://doi.org/10.7150/jca.15419

Kim M, Kim YS, Kim KM, Ko HC, Kim SJ, Kim JH, Kim Y (2014) Combination of Sasa quelpaertensis Nakai leaf extract and cisplatin suppresses the cancer stemness and invasion of human lung cancer cells. Integr Cancer Ther 13: 529–540. https://doi.org/10.1177/1534735414534462

Kong F, Liu X, Zhou Y, Hou X, He J, Li Q, Miao X, Yang L (2020) Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol 122: 105731. https://doi.org/10.1016/j.biocel.2020.105731

Kotawong K, Chaijaroenkul W, Muhamad P, Na-Bangchang K (2018) Cytotoxic activities and effects of atractylodin and β-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line. J Pharmacol Sci 136: 51–56. https://doi.org/10.1016/j.jphs.2017.09.033

Li Y, Wang T, Sun Y, Huang T, Li C, Fu Y, Li Y, Li C (2019) p53-Mediated PI3K/AKT/mTOR Pathway Played a Role in PtoxDpt-Induced EMT Inhibition in Liver Cancer Cell Lines. Oxid Med Cell Longev 2019: 2531493. https://doi.org/10.1155/2019/2531493

Lubis MF, Hasibuan PAZ, Harahap U (2019) Phytochemicals screening and cell cycle arrest activity of n-Hexane extract of Vernonia amygdalina Delile leaves against pancreatic cancer cell line. Asian J Pharm Res Dev 7: 12–16. https://doi.org/10.22270/ajprd.v7i4.533

Lubis MF, Hasibuan PAZ, Harahap U, Satria D, Syahputra H, Muhammad M, Astyka R (2022) The molecular approach of natural products as pancreatic cancer treatment: a review. Rasayan J Chem 15: 1362–1377. https://doi.org/10.31788/RJC.2022.1526765

Mao Y, Xi L, Li Q, Cai Z, Lai Y, Zhang X, Yu C (2016) Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via Polo-like kinase 1. Oncol Rep 36: 49–56. https://doi.org/10.3892/or.2016.4820

Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E (2018) The challenge of drug resistance in cancer treatment: A current overview. Clin Exp Metastasis 35: 309–318. https://doi.org/10.1007/s10585-018-9903-0

Ohno I, Eibl G, Odinokova I, Edderkaoui M, Damoiseaux RD, Yazbec M, Abrol R, Goddard WA 3rd, Yokosuka O, Pandol SJ, Gukovskaya AS (2010) Rottlerin stimulates apoptosis in pancreatic cancer cells through interactions with proteins of the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol 298: G63–G73. https://doi.org/10.1152/ajpgi.00257.2009

Ruzzolini J, Peppicelli S, Andreucci E, Bianchini F, Scardigli A, Romani A, la Marca G, Nediani C, Calorini L (2018) Oleuropein, the main polyphenol of Olea europaea leaf extract, has an anti-cancer effect on human braf melanoma cells and potentiates the cytotoxicity of current chemotherapies. Nutrients 10: 1950. https://doi.org/10.3390/nu10121950

Satria D, Silalahi J, Haro G, Ilyas S, Hasibuan PAZ (2019) Chemical analysis and cytotoxic activity of n-hexane fraction of Zanthoxylum acanthopodium DC. fruits. Rasayan J Chem 12: 803–808. https://doi.org/10.31788/RJC.2019.1225180

Sutejo IK, Putri H, Handayani S, Jenie RI, Meiyanto E (2019) In vitro study of the combination of doxorubicin, Curcuma xanthorrhiza, Brucea javanica, and Ficus septica as a potential novel therapy for metastatic breast cancer. Indones J Pharm 30: 15–24. https://doi.org/10.14499/indonesianjpharm30iss1pp15

Syari DM, Rosidah R, Hasibuan PAZ, Haro G, Satria D (2019) Evaluation of cytotoxic activity alkaloid fractions of Zanthoxylum acanthopodium DC. fruits. Open Access Maced J Med Sci 7: 3745–3747. https://doi.org/10.3889/oamjms.2019.495

Szliszka E, Czuba ZP, Domino M, Mazur B, Zydowicz G, Krol W (2009) Ethanolic extract of propolis (EEP) enhances the apoptosis- inducing potential of TRAIL in cancer cells. Molecules 14: 738–754. https://doi.org/10.3390/molecules14020738

Teodoro AJ, Oliveira FL, Martins NB, Maia Gde A, Martucci RB, Borojevic R (2012) Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines. Cancer Cell Int 12: 36. https://doi.org/10.1186/1475-2867-12-36

Tine Y, Yang Y, Renucci F, Costa J, Wélé A, Paolini J (2017) LC-MS/MS analysis of flavonoid compounds from Zanthoxylum zanthoxyloides extracts and their antioxidant activities. Nat Prod Commun 12: 1865–1868. https://doi.org/10.1177/1934578×1701201213

Topçu G, Ayral MN, Aydin A, Gören AC, Chai HB, Pezzuto JM (2001) Triterpenoids of the roots of Lavandula stoechas ssp. stoechas. Pharmazie 56: 892–895. https://pubmed.ncbi.nlm.nih.gov/11817178/

Tseng CY, Lin CH, Wu LY, Wang JS, Chung MC, Chang JF, Chao MW (2016) Potential combinational anti-cancer therapy in non-small cell lung cancer with traditional Chinese medicine Sun-Bai-Pi extract and cisplatin. PLoS One 11: e0155469. https://doi.org/10.1371/journal.pone.0155469

Tuasha N, Escobar Z, Seifu D, Gadisa E, Petros B, Sterner O, Oredsson S (2022) Cytotoxic and other bioactivities of a novel and known sesquiterpene lactones isolated from Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke in breast cancer cell lines. Toxicol Rep 9: 382–392. https://doi.org/10.1016/j.toxrep.2022.02.011

Uroz M, Wistorf S, Serra-Picamal X, Conte V, Sales-Pardo M, Roca-Cusachs P, Guimerà R, Trepat X (2018) Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nat Cell Biol 20: 646–654. https://doi.org/10.1038/s41556-018-0107-2

Wang X, Wang X, Xu Y, Yan M, Li W, Chen J, Chen T (2020) Effect of nicastrin on hepatocellular carcinoma proliferation and apoptosis through PI3K/AKT signalling pathway modulation. Cancer Cell Int 20: 91. https://doi.org/10.1186/s12935-020-01172-4

Werner J, Combs SE, Springfeld C, Hartwig W, Hackert T, Büchler MW (2013) Advanced-stage pancreatic cancer: therapy options. Nat Rev Clin Oncol 10: 323–333. https://doi.org/10.1038/nrclinonc.2013.66

Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226: 352–364. https://doi.org/10.1002/path.3022

Xiao Z, Jiang Y, Wang CQ, Hu SS, Huang XR, Chen XF, Huang J, Shan LJ, Tang YH, Wang YH, Gong QH, Feng JH, Xiao X, Li XF (2020) Clinical efficacy and safety of aidi injection combination with vinorelbine and cisplatin for advanced non-small-cell lung carcinoma: A systematic review and meta-analysis of 54 randomized controlled trials. Pharmacol Res 153: 104637. https://doi.org/10.1016/j.phrs.2020.104637

Zhang X, Ren J, Cheng X, Jin H, Zhang W (2015) One new unusual sesterterpenoid and four new sesquiterpene dimers from Inula britannica. RSC Advances 5: 1979–1982. https://doi.org/10.1039/C4RA11171K

© 2024 Journal of Pharmacy & Pharmacognosy Research

Assessing pharmaceutical patents with the index of internal effort

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 852-869, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1859_12.5.852

Review

Bridging the gap in patent assessment: The Index of Internal Effort framework for pharma innovations

[Bridging the gap in patent assessment: The Index of Internal Effort framework for pharma innovations]

Alisson A. de Oliveira1*, Celso B. dos Santos2, Luiz A. Pilatti3

1Federal Institute of Education of Paraná (IFPR), Curitiba, Paraná, Brazil.

2State University of Ponta Grossa (UEPG), and Federal University of Technology – Paraná (UTFPR), Ponta Grossa, Brazil.

3Postgraduate Program in Production Engineering (PPGEP), Federal University of Technology – Paraná (UTFPR), Ponta Grossa, Brazil.

*E-mail: alisson.oliveira@ifpr.edu.br, alissonantonio@yahoo.com.br

Abstract

Context: The process of assessing patents is complex, and there is a gap in the literature on patent assessment at the time of filing.

Aims: To assess patent complexity and the human effort involved in research, we test the effectiveness of the Index of Internal Effort (IIE) framework using pharmaceutical patents developed within the Brazilian public sector as a proof of concept.

Methods: Internal data were collected from innovation projects that included the filing of patents as a project outcome. The Spearman correlation test was applied to determine which internal patent variables could be used as metrics in IIE. Then, IIE was used to measure the complexity of the patents and the individual effort of inventors. Results were then compared with other metrics identified in the literature.

Results: The IIE showed a positive and significant correlation with resources invested at the design stage, as well as commercial and social outcomes of the patents.

Conclusions: The results indicate that the generic IIE framework is a new form of metrification that can be applied to pharmaceutical patents that have not been previously discussed in the literature.

Keywords: data science; Fiocruz; intellectual effort; patent; pharmacology; public service.

PDF Download

Resumen

Contexto: El proceso de evaluación de patentes es complejo, y existe un vacío en la literatura sobre la evaluación de patentes en el momento de su presentación.

Objetivos: Evaluar la complejidad de las patentes y el esfuerzo humano implicado en la investigación, la eficacia del marco del Índice de Esfuerzo Interno (IIE), utilizando patentes farmacéuticas desarrolladas dentro del sector público brasileño como prueba de concepto.

Métodos: Se recogieron datos internos de proyectos de innovación que incluían la presentación de patentes como resultado del proyecto. Se aplicó la prueba de correlación de Spearman para determinar qué variables internas de las patentes podían utilizarse como métricas en la IIE. A continuación, se utilizó la IIE para medir la complejidad de las patentes y el esfuerzo individual de los inventores. A continuación, se compararon los resultados con otras métricas identificadas en la bibliografía.

Resultados: La IIE mostró una correlación positiva y significativa con los recursos invertidos en la fase de diseño, así como con los resultados comerciales y sociales de las patentes.

Conclusiones: Los resultados indican que el marco genérico IIE es una nueva forma de metrificación que se puede aplicar a las patentes farmacéuticas que no se han discutido previamente en la literatura.

Palabras Clave: ciencia de datos; esfuerzo intelectual; farmacología; Fiocruz; patente; servicio público.

PDF Download
 
Citation Format: de Oliveira AA, Santos CB, Pilatti LA (2024) Bridging the gap in patent assessment: The index of internal effort framework for pharma innovations. J Pharm Pharmacogn Res 12(5): 852–869. https://doi.org/10.56499/jppres23.1859_12.5.852
References

Arias Gonzáles JL (2022) Guía para elaborar la operacionalización de variables. Espacio I+D Innov Desarro 10: 28. https://doi.org/10.31644/IMASD.28.2021.a02

Bessen J (2008) The value of U.S. patents by owner and patent characteristics. Res Policy 37(5): 932–945. https://doi.org/10.1016/j.respol.2008.02.005

Brasil (2022) Fala.BR. Retrieved from: https://falabr.cgu.gov.br/publico/Manifestacao/SelecionarTipoManifestacao.aspx?ReturnUrl=%2f

Cativelli AS (2020) Metric indicators of patent value: construction of a Value Index using Brazilian green patents. [Original in Portuguese: Indicadores métricos de valor de patentes: construção de um Índice de Valor utilizando as patentes verdes brasileiras]. Programa de Pós-Graduação em Ciência da Informação da Universidade Federal de Santa Catarina (UFSC). [Ph. D Thesis]. 284 p. Retrieved from: https://repositorio.ufsc.br/bitstream/handle/123456789/219292/PCIN0244-T.pdf?sequence=-1&isAllowed=y

Chen YS, Chang KC (2009) Using neural network to analyze the influence of the patent performance upon the market value of the US pharmaceutical companies. Scientometrics 80: 637–655. https://doi.org/10.1007/s11192-009-2095-2

Chen YS, Chang KC (2010) The relationship between a firm’s patent quality and its market value – The case of US pharmaceutical industry. Technol Forecast Soc Change 77(1): 20–33. https://doi.org/10.1016/j.techfore.2009.06.003

Chiu YJ, Chen YW (2007) Using AHP in patent valuation. Math Comput Model 46(7-8): 1054–1062. https://doi.org/10.1016/j.mcm.2007.03.009

Dorf RC, Bishop RH (2011) Modern control systems. 12th ed. Prentice Hall, pp. 1104.

Fischer T, Leidinger J (2014) Testing patent value indicators on directly observed patent value – An empirical analysis of Ocean Tomo patent auctions. Res Policy 43(3): 519–529. http://dx.doi.org/10.1016/j.respol.2013.07.013

Fischer U (2011) Tabellenbuch metall. [Portuguese: Manual de tecnologia metal mecânica]. 2° ed. Blucher.

Gambardella A, Harhoff D, Verspagen B (2008) The value of European patents. Eur Manag Rev 5(2): 69–84. https://doi.org/10.1057/emr.2008.10

Higham K, Rassenfosse G, Jaffe AB (2021) Patent quality: Towards a systematic framework for analysis and measurement. Res Policy 50(4): 104215. https://doi.org/10.1016/j.respol.2021.104215

Kalip NG, Erzurumlu YÖE, Gün NA (2022) Qualitative and quantitative patent valuation methods: A systematic literature review. World Pat Inf 69: 102111. https://doi.org/10.1016/j.wpi.2022.102111

Liu L, Cao C, Song M (2014) China’s agricultural patents: How has their value changed amid recent patent boom? Technol Forecast Soc Change 88: 106–121. https://doi.org/10.1016/j.techfore.2014.06.018

Meneghini R, Gamba EC (2011) Assessment of the scientific-technological production in molecular biology in Brazil (1996-2007): The contribution of genomics programs. An Acad Bras Ciênc 83(2): 745–760. https://doi.org/10.1590/S0001-37652011005000004

Mensures (2016) Software developed to measure intellectual activities based on the Index of Internal Effort methodology. [Original in Portuguese: Software desenvolvido para mensurar atividades intelectuais baseado na metodologia do Índice Interno de Esforço]. [Patent]. INPI. BR 51 2016 001521-7. RPI 2405. 2016.

NASA (2018) Technology Readiness Level – TRL. NASA. Retrieved from: https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372: n71 https://doi.org/10.1136/bmj.n71

Pinheiro-Machado R, Oliveira PL (2011) The Brazilian investment in science and technology. Braz J Med Biol Res 34(12): 1521–1530. https://doi.org/10.1590/S0100-879X2001001200003

Reitzig M (2004) Improving patent valuations for management purposes—validating new indicators by analyzing application rationales. Res Policy 33(6-7): 939–957. https://doi.org/10.1016/j.respol.2004.02.004

Repperger DW, Roberts RG, Koepke CG (2012) Quantitative measurements of system complexity. Google Patents, ago. 8, 2012. US Patent 8,244,503 B1. https://patents.google.com/patent/US8244503

Royston JP (1982) An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples. Appl Statist 31(2): 115. https://doi.org/10.2307/2347973

Serger MR, Evangelista TCS, Dantas RF, Santana MVS, Gonçalves LCS, Souza-Neto LR, Ferreira SB, Silva-Junior FP (2020) COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Mem Inst Oswaldo Cruz 115. https://doi.org/10.1590/0074-02760200254

Sheard SA, Mostashari A (2010) A complexity typology for systems engineering. INCOSE Int Symp 20(1): 933–945. https://doi.org/10.1002/j.2334-5837.2010.tb01115.x

Song H, Hou J, Zhang Y (2023) The measurements and determinants of patent technological value: Lifetime, strength, breadth, and dispersion from the technology diffusion perspective. J Informetr 17(1): 101370. https://doi.org/10.1016/j.joi.2022.101370

Squicciarini M, Dermis H, Criscuolo C (2013) Measuring Patent Quality: Indicators of Technological and Economic Value, OECD Science, Technology and Industry Working Papers. No. 2013/03, OECD Publishing, Paris. https://doi.org/10.1787/5k4522wkw1r8-en

Su HN, Lin YS (2018) How do patent-based measures inform product commercialization? —The case of the United States pharmaceutical industry. J Eng Technol Manag 50: 24-38. https://doi.org/10.1016/j.jengtecman.2018.08.002

Suzuki J (2011) Structural modeling of the value of patent. Res Policy 40(7): 986–1000. https://doi.org/10.1016/j.respol.2011.05.006

Trappey AJC, Trappey CV, Wu CY, Lin CW (2012) A patent quality analysis for innovative technology and product development. Adv Eng Informatics 26(1): 26–34. https://doi.org/10.1016/j.aei.2011.06.005

Van Burg E, Du J, Kers JG (2021) When do academics patent outside their university? An in-depth case study. Technovation 107: 102287. https://doi.org/10.1016/j.technovation.2021.102287

Wang X, García F, Guijarro F, Moya I (2011) Evaluating patent portfolios by means of multicriteria analysis. Rev Contab 14(1): 9–27. https://doi.org/10.1016/S1138-4891(11)70020-6

Yao L, Ni H (2023) Prediction of patent grant and interpreting the key determinants: an application of interpretable machine learning approach. Scientometrics 128: 4933–4969. https://doi.org/10.1007/s11192-023-04736-z

Zeebroeck NV (2011) The puzzle of patent value indicators. Econ Innov New Technol 20(1): 33–62. https://doi.org/10.1080/10438590903038256

© 2024 Journal of Pharmacy & Pharmacognosy Research