All posts by jppres

About jppres

The Journal of Pharmacy & Pharmacognosy Research (JPPRes) is an international, specialized and peer-reviewed open access journal, which publishes studies in the pharmaceutical and herbal fields concerned with the physical, botanical, chemical, biological, toxicological properties and clinical applications of molecular entities, active pharmaceutical ingredients, devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture, evaluation and marketing. This journal publishes research papers, reviews, commentaries and letters to the editor as well as special issues and review of pre-and post-graduate thesis from pharmacists or professionals involved in Pharmaceutical Sciences or Pharmacognosy.

Role of ACE and IL-6 levels on CKD prognosis

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 55-62, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1518_11.1.55

Original Article

The role of plasma angiotensin-converting enzyme and interleukin-6 levels on the prognosis of non-dialysis chronic kidney disease patients

[Papel de los niveles plasmáticos de la enzima convertidora de angiotensina e interleucina-6 en el pronóstico de los pacientes con enfermedad renal crónica no sometidos a diálisis]

Hendri Susilo1,2**, Mochammad Thaha3,4, Budi Susetyo Pikir1,2, Mochamad Yusuf Alsagaff1,2, Satriyo Dwi Suryantoro3,4, Ifan Ali Wafa5, Nando Reza Pratama5, David Setyo Budi5, Bayu Satria Wiratama6, Citrawati Dyah Kencono Wungu7,8*

1Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia.

2Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

4Department of Internal Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia.

5Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

6Departement of Biostatistics and Epidemiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia.

7Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

8Institute of Tropical Disease, Universitas Airlangga, Surabaya.

E-mail: *citrawati.dyah@fk.unair.ac.id; **hendrisusilo@staf.unair.ac.id

Abstract

Context: Inflammatory factors and oxidative stress were discovered to play significant roles in the progression of chronic kidney disease (CKD). There is, however, no research on the direct impact of high plasma angiotensin converting enzyme (ACE) and interleukin (IL)-6 levels on CKD prognosis, particularly in non-hemodialysis patients.

Aims: To investigate the potential role of plasma ACE and IL-6 levels in CKD prognosis.

Methods: A total of 75 non-dialysis CKD patients participated in this cross-sectional study. The estimated glomerular filtration rate (e-GFR) and albuminuria were used to determine the prognosis of CKD. The plasma ACE and IL-6 levels were measured using an enzyme-linked immunoassay (ELISA). Spearman’s rank correlational analysis was used to examine the relationship between ACE and IL-6 plasma levels with the prognosis of CKD.

Results: The result showed a statistically significant correlation between age and plasma ACE (p = 0.038, r = 0.241), serum creatinine, and urine albumin-creatinine ratio with CKD prognosis (p<0.0001). A negative significant correlation was found between the e-GFR and CKD prognosis (p<0.0001). Additionally, there were also significant correlations between plasma ACE and IL-6 with CKD prognosis (p = 0.021, r = 0.266 and p = 0.04, r = 0.238, respectively). A significant positive correlation was also found between plasma ACE and IL-6 (p = 0.024, r = 0.260).

Conclusions: There was a significant correlation between plasma ACE and IL-6 levels with CKD prognosis. Further investigation revealed a statistically significant positive relationship between plasma ACE and IL-6 levels.

Keywords: angiotensin converting enzyme; chronic kidney disease; interleukin-6; non-hemodialysis; prognosis.

Resumen

Contexto: Se ha descubierto que los factores inflamatorios y el estrés oxidativo desempeñan un papel importante en la progresión de la enfermedad renal crónica (ERC). Sin embargo, no existen investigaciones sobre la repercusión directa de los niveles elevados de la enzima convertidora de angiotensina (ECA) e interleucina (IL)-6 en plasma sobre el pronóstico de la ERC, en particular en los pacientes que no están en hemodiálisis.

Objetivos: Investigar el papel potencial de los niveles plasmáticos de ECA e IL-6 en el pronóstico de la ERC.

Métodos: Un total de 75 pacientes con ERC no en diálisis participaron en este estudio transversal. Se utilizaron la tasa de filtración glomerular estimada (TFGe) y la albuminuria para determinar el pronóstico de la ERC. Los niveles plasmáticos de ECA e IL-6 se midieron mediante un inmunoensayo enzimático (ELISA). Se utilizó el análisis correlacional por rangos de Spearman para examinar la relación entre los niveles plasmáticos de ECA e IL-6 y el pronóstico de la ERC.

Resultados: El resultado mostró una correlación estadísticamente significativa entre la edad y la ECA plasmática (p = 0,038, r = 0,241), la creatinina sérica y el cociente albúmina-creatinina en orina con el pronóstico de la ERC (p<0,0001). Se encontró una correlación negativa significativa entre el e-GFR y el pronóstico de la ERC (p<0,0001). Además, también hubo correlaciones significativas entre la ECA y la IL-6 plasmáticas con el pronóstico de la ERC (p = 0,021, r = 0,266 y p = 0,04, r = 0,238, respectivamente). También se halló una correlación positiva significativa entre la ECA plasmática y la IL-6 (p = 0,024, r = 0,260).

Conclusiones: Existe una correlación significativa entre los niveles plasmáticos de ECA e IL-6 con el pronóstico de la ERC. Investigaciones posteriores revelaron una relación positiva estadísticamente significativa entre los niveles plasmáticos de ECA e IL-6.

Palabras Clave: enfermedad renal crónica; enzima convertidora de angiotensina; interleucina-6; no hemodiálisis; pronóstico.

Citation Format: Susilo H, Thaha M, Pikir BS, Alsagaff MY, Suryantoro SD, Wafa IA, Pratama NR, Budi DS, Wiratama BS, Wungu CDK (2023) The role of plasma angiotensin-converting enzyme and interleukin-6 levels on the prognosis of non-dialysis chronic kidney disease patients. J Pharm Pharmacogn Res 11(1): 55–62. https://doi.org/10.56499/jppres22.1518_11.1.55
References

Amador-Martínez I, Pérez-Villalva R, Uribe N, Cortés-González C, Bobadilla NA, Barrera-Chimal J (2019) Reduced endothelial nitric oxide synthase activation contributes to cardiovascular injury during chronic kidney disease progression. Am J Physiol Renal Physiol 317: F275–F285. https://doi.org/10.1152/AJPRENAL.00020.2019

Anguiano L, Riera M, Pascual J, Valdivielso JM, Barrios C, Betriu A, Mojal S, Fernández E, Soler MJ, Faura A, Castro E, María V, Molí T, Soria M, Aladrén RMJ, Almirall J, Ponz E, Arteaga CJ, Bajo RMA, Belart RM, Bielsa-García S, Bover SJ, Bronsoms AJ, Cabezuelo RJB, Muray CS, Calviño VJ, Caro AP, Carreras BJ, Cases AA, Massó JE, Castilla PJ, Cigarrán GS, López PS, Comas ML, Comerma I, Compte JMT, Cuberes IM, De ÁF, Hevia OC, De ADLFG, Del PPMD, Diaz-Tejeiro IR, Dotori M, Duarte V, Estupiñan TS, Fernández RMJ, Fernández RML, Fernández G, Galán SA, García CC, García HAL, García MM, Gil SL, Aguilar M, Górriz JL, Huarte LE, Lerma JL, Liebana CA, Marín ÁJP, Martín AN, Martín GJ, Martínez CA, Martínez VM, Martínez I, Moina EI, Moreno LHS, Mouzo MR, Munar VA, Muñoz DAB, Navarro GJF, Nieto J, Carreño A, Novoa FE, Ortiz A, Fernandez B, Paraíso V, Pérez FM, Peris DA, Piñera HC, Prados GMD, Prieto VM, Puig MC, Rivera GM, Rubio E, Ruiz P, Salgueira LM, Martínez PAI, Sánchez TJA, Sánchez JE, Sans LR, Saracho R, Sarrias M, Prat O, Sousa F, Toran D, Tornero MF, Usón CJJ, Valera CI, Vilaprinyo DPMM, Virto RRC (2015) Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease. Nephrol Dial Transplant 30: 1176–1185. https://doi.org/10.1093/NDT/GFV025

Bikbov B, Purcell C, Levey A, Smith M, Abdoli A, Abebe M, Adebayo O, Afarideh M, Agarwal S (2020) Global, regional, and national burden of chronic kidney disease, 1990 – 2017 : A systematic analysis for the Global Burden of Disease Study 2017. Lancet 395: 709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

Carrero JJ, Stenvinkel P (2010) Inflammation in end-stage renal disease–what have we learned in 10 years? Semin Dial 23: 498–509. https://doi.org/10.1111/J.1525-139X.2010.00784.X

Chang HL, Wu CC, Lee SP, Chen YK, Su W, Su SL (2019) A predictive model for progression of CKD. Medicine (Baltimore) 98: e16186. https://doi.org/10.1097/MD.0000000000016186

Chen TK, Knicely DH, Grams ME (2019) Chronic kidney disease diagnosis and management. JAMA 322: 1294. https://doi.org/10.1001/jama.2019.14745

Christofides EA, Desai N (2021) Optimal early diagnosis and monitoring of diabetic kidney disease in type 2 diabetes mellitus: Addressing the barriers to albuminuria testing. J Prim Care Community Health 12. https://doi.org/10.1177/21501327211003683

Dai S, Ding M, Liang N, Li Z, Li D, Guan L, Liu H (2019) Associations of ACE I/D polymorphism with the levels of ACE, kallikrein, angiotensin II and interleukin-6 in STEMI patients. Sci Rep 9: 19719. https://doi.org/10.1038/s41598-019-56263-8

Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E (2019) Oxidative stress in the pathogenesis and evolution of chronic kidney disease: Untangling Ariadne’s thread. Int J Mol Sci 20: 3711. https://doi.org/10.3390/IJMS20153711

Imig JD, Ryan MJ (2013) Immune and inflammatory role in renal disease. Compr Physiol 3: 957–976. https://doi.org/10.1002/CPHY.C120028

International Society of Nephrology (2013) Summary of recommendation statements. Kidney Int Suppl 3: P5–14. https://doi.org/10.1038/kisup.2012.77

Kagami S (2012) Involvement of glomerular renin-angiotensin system (RAS) activation in the development and progression of glomerular injury. Clin Exp Nephrol 16: 214–220. https://doi.org/10.1007/S10157-011-0568-0

Kamińska J, Stopiński M, Mucha K, Jędrzejczak A, Gołębiowski M, Niewczas MA, Pączek L, Foroncewicz B (2019) IL 6 but not TNF is linked to coronary artery calcification in patients with chronic kidney disease. Cytokine 120: 9–14. https://doi.org/10.1016/J.CYTO.2019.04.002

Khosla N, Kalaitzidis R, Bakris GL (2009) The kidney, hypertension, and remaining challenges. Med Clin North Am 93: 697–715. https://doi.org/10.1016/J.MCNA.2009.02.001

Krata N, Zagożdżon R, Foroncewicz B, Mucha K (2018) Oxidative stress in kidney diseases: The cause or the consequence? Arch Immunol Ther Exp (Warsz). 66: 211–220. https://doi.org/10.1007/S00005-017-0496-0

Lambers HHJ, Gansevoort RT, Brenner BM, Cooper ME, Parving HH, Shahinfar S, De ZD (2010) Comparison of different measures of urinary protein excretion for prediction of renal events. J Am Soc Nephrol 21: 1355–1360. https://doi.org/10.1681/ASN.2010010063

Lee DE, Qamar M, Wilke RA (2021) Relative contribution of genetic and environmental factors in CKD. S D Med 74: 306–309.

Lee DL, Sturgis LC, Labazi H, Osborne JB, Fleming C, Pollock JS, Manhiani M, Imig JD, Brands MW (2006) Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am J Physiol Heart Circ Physiol 290: H935–H940. https://doi.org/10.1152/AJPHEART.00708.2005

Levin A, Stevens PE, Bilous RW, Coresh J, De FALM, De JPE, Griffith KE, Hemmelgarn BR, Iseki K, Lamb, EJ, Levey AS, Riella MC, Shlipak MG, Wang H, White CT, Winearls CG (2013) Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3: P1–150. https://doi.org/10.1038/kisup.2012.73

Luther JM, Gainer JV, Murphey LJ, Yu C, Vaughan DE, Morrow JD, Brown NJ (2006) Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension 48: 1050–1057. https://doi.org/10.1161/01.HYP.0000248135.97380.76

Magno AL, Herat LY, Carnagarin R, Schlaich MP, Matthews VB (2019) Current knowledge of IL-6 cytokine family members in acute and chronic kidney disease. Biomedicines 7: 19. https://doi.org/10.3390/BIOMEDICINES7010019

Miller WG, Bruns DE, Hortin GL, Sandberg S, Aakre KM, McQueen MJ, Itoh Y, Lieske JC, Seccombe DW, Jones G, Bunk DM, Curhan GC, Narva AS (2009) Current issues in measurement and reporting of urinary albumin excretion. Clin Chem 55: 24–38. https://doi.org/10.1373/CLINCHEM.2008.106567

Miura H, Nakayama M, Sato T (1984) Serum angiotensin converting enzyme (S-ACE) activity in patients with chronic renal failure on regular hemodialysis. Jpn Heart J 25: 87–92. https://doi.org/10.1536/IHJ.25.87

Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65: 1009–1016. https://doi.org/10.1111/J.1523-1755.2004.00465.X

Perna A, Ruggenenti P, Testa A, Spoto B, Benini R, Misefari V, Remuzzi G, Zoccali C (2000) ACE genotype and ACE inhibitors induced renoprotection in chronic proteinuric nephropathies1. Kidney Int 57: 274–281. https://doi.org/10.1046/J.1523-1755.2000.00818.X

Rodríguez-Ortiz ME, Pontillo C, Rodríguez M, Zürbig P, Mischak H, Ortiz A (2018) Novel urinary biomarkers for improved prediction of progressive EGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep 8: 15940. https://doi.org/10.1038/S41598-018-34386-8

Roy N, Rosas SE (2021) IL-6 is associated with progression of coronary artery calcification and mortality in incident dialysis patients. Am J Nephrol 52: 745–752. https://doi.org/10.1159/000518652

Shi C, Lu K, Xia H, Zhang P, Zhang B (2020) Alteration and association between serum ACE2/ angiotensin(1-7)/Mas axis and oxidative stress in chronic kidney disease: A pilot study. Medicine (Baltimore). 99: E21492. https://doi.org/10.1097/MD.0000000000021492

Soler MJ, Riera M, Crespo M, Mir M, Márquez E, Pascual MJ, Puig JM, Pascual J (2012) Circulating angiotensin-converting enzyme 2 activity in kidney transplantation: a longitudinal pilot study. Nephron Clin Pract 121: c144–c150. https://doi.org/10.1159/000345508

Su H, Lei CT, Zhang C (2017) Interleukin-6 signaling pathway and its role in kidney disease: An update. Front Immunol 8: 405. https://doi.org/10.3389/fimmu.2017.00405

Susilo H, Pikir BS, Thaha M, Alsagaff MY, Suryantoro SD, Wungu CDK, Wafa IA, Pakpahan C, Oceandy D (2022) The effect of angiotensin converting enzyme (ACE) I/D polymorphism on atherosclerotic cardiovascular disease and cardiovascular mortality risk in non-hemodialyzed chronic kidney disease: The mediating role of plasma ace level. Genes (Basel) 13: 1121. https://doi.org/10.3390/genes13071121

Tang WH, Hung WC, Wang CP, Wu CC, Hsuan CF, Yu TH, Hsu CC, Cheng YA, Chung FM, Lee YJ, Lu YC (2022) The lower limit of reference of urinary albumin/creatinine ratio and the risk of chronic kidney disease progression in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 13: 858267. https://doi.org/10.3389/FENDO.2022.858267

Vaidya SR, Aeddula NR (2022) Chronic Renal Failure. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

Yan MT, Chao CT, Lin SH (2021) Chronic Kidney Disease: Strategies to Retard Progression. Int J Mol Sci 22. https://doi.org/10.3390/IJMS221810084

Yang CW, Lu LC, Chang CC, Cho CC, Hsieh WY, Tsai CH, Lin YC, Lin CS (2017) Imbalanced plasma ACE and ACE2 level in the uremic patients with cardiovascular diseases and its change during a single hemodialysis session. Ren Fail 39: 719–728. https://doi.org/10.1080/0886022X.2017.1398665

Zhang W, Wang W, Yu H, Zhang Y, Dai Y, Ning C, Tao L, Sun H, Kellems RE, Blackburn MR, Xia Y (2012) Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension 59: 136–144. https://doi.org/10.1161/HYPERTENSIONAHA.111.173328

Zhong J, Yang HC, Fogo AB (2017) A perspective on chronic kidney disease progression. Am J Physiol Renal Physiol 312: F375–F384. https://doi.org/10.1152/AJPRENAL.00266.2016

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Effect of rhamnetin on HMG-CoA reductase and LDLR expression

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 47-54, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1507_11.1.47

Original Article

Rhamnetin decreases the expression of HMG-CoA reductase gene and increases LDL receptor in HepG2 cells

[Ramnetina disminuye la expresión del gen de la HMG-CoA reductasa y aumenta los receptores de LDL en las células HepG2]

Raghad R. Al-Yousef1, Manal M. Abbas1,2, Razan Obeidat2, Manal A. Abbas1,2*

1Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.

2Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan.

*E-mail: m.abbas@ammanu.edu.jo

Abstract

Context: Rhamnetin is a naturally occurring methylated derivative of quercetin. This flavonoid is abundant in Syzygium aromaticum, Coriandrum sativum Prunus cerasus, and Rhamnus spp.

Aims: To evaluate the effects of rhamnetin on HMG-CoA reductase and low-density lipoprotein receptor (LDLR) gene and protein expressions in the HepG2 hepatoma cell line.

Methods: The expression of HMG-CoA reductase and LDLR genes and proteins were studied in HepG2 liver cancer cell line by PCR, Western blot, and indirect ELISA, as well as their antioxidant activity.

Results: Rhamnetin was non-toxic up to 200 μM on HepG2 at 24, 48, and 72 h. Rhamnetin (25 µM) upregulated LDLR gene expression by 1.66 folds compared to 3.12 folds exerted by the well-known hypocholesterolemic drug simvastatin. Rhamnetin (100 µM) increased the expression of LDLR protein at the cell membrane, while the other concentrations produced no significant change from the control (vehicle-treated). In HepG2 cell lysate, LDLR was increased by 50 µM of rhamnetin. Also, rhamnetin increased SOD activity significantly by 100.98, 86.28, and 100.98% by the concentrations 25, 50, and 100 µM, respectively. Using the same concentrations, rhamnetin reduced H2O2 levels by 50, 67, and 76.34%, respectively.

Conclusions: This study demonstrated for the first time that rhamnetin reduced HMG-CoA reductase gene expression and increased LDLR in HepG2 cells.

Keywords: HepG2; hydroxymethylglutaryl CoA reductase; LDL; rhamnetin; receptors.

Resumen

Contexto: La ramnetina es un derivado metilado natural de la quercetina. Este flavonoide abunda en las especies Syzygium aromaticum, Coriandrum sativum, Prunus cerasus y Rhamnus spp.

Objetivos: Evaluar los efectos de la ramnetina en las expresiones génicas y proteicas de la HMG-CoA reductasa y el receptor de la lipoproteína de baja densidad (LDLR) en la línea celular de hepatoma HepG2.

Métodos: Se estudió la expresión de los genes y proteínas de la HMG-CoA reductasa y del LDLR en la línea celular de hepatoma HepG2 mediante PCR, Western blot y ELISA indirecto, así como su actividad antioxidante.

Resultados: La ramnetina fue no tóxica hasta 200 μM en HepG2 a las 24, 48 y 72 h. La ramnetina (25 µM) aumentó la expresión del gen LDLR en 1,66 veces en comparación con 3,12 veces ejercida por el conocido fármaco hipocolesterolemiante simvastatina. La ramnetina (100 µM) aumentó la expresión de la proteína LDLR en la membrana celular, mientras que las demás concentraciones no produjeron cambios significativos con respecto al control (tratado con vehículo). En el lisado de células HepG2, el LDLR aumentó con 50 µM de ramnetina. Asimismo, la ramnetina aumentó significativamente la actividad de la SOD en 100,98; 86,28 y 100,98% mediante las concentraciones de 25, 50 y 100 µM, respectivamente. Utilizando las mismas concentraciones, la ramnetina redujo los niveles de H2O2 en 50, 67 y 76,34%, respectivamente.

Conclusiones: Este estudio demostró por primera vez que la ramnetina redujo la expresión del gen de la HMG-CoA reductasa y aumentó el LDLR en células HepG2.

Palabras Clave: HepG2; hidroximetilglutaril CoA reductasa; LDL; ramnetina; receptores.

Citation Format: Al-Yousef RR, Abbas MM, Obeidat R, Abbas MA (2023) Rhamnetin decreases the expression of HMG-CoA reductase gene and increases LDL receptors in HepG2 cells. J Pharm Pharmacogn Res 11(1): 47–54. https://doi.org/10.56499/jppres22.1507_11.1.47
References

Abbas MM, Kandil Yİ, Abbas MA (2020) R-(-)-carvone attenuated doxorubicin induced cardiotoxicity in vivo and potentiated its anticancer toxicity in vitro. Balkan Med J 37: 98–103. https://doi.org/10.4274/balkanmedj.galenos.2019.2019.7.117

Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47. https://doi.org/10.1126/science.3513311

Chaudhry N, Tariq P (2006) Bactericidal activity of black pepper, bay leaf, aniseed and coriander against oral isolates. Pak J Pharm Sci 19: 214-218.

Cuoco G, Mathe C, Vieillescazes C (2014) Liquid chromatographic analysis of flavonol compounds in green fruits of three Rhamnus species used in Stil de grain. Microchem J 115: 130-137. https://doi.org/10.1016/j.microc.2014.03.006

Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343: 425-430. https://doi.org/10.1038/343425a0

Grundy SM (2005) The issue of statin safety: where do we stand? Circulation 111: 3016-3019. https://doi.org/10.1161/CIRCULATIONAHA.105.557652

Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21: 1876-1890. https://doi.org/10.1161/hq1201.100220

Igarashi K, Ohmuma M (1995) Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci Biotechnol Biochem 59: 595-601. https://doi.org/10.1271/bbb.59.595

Jiang H, Zhan W, Liu X,  Jiang S (2008) Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge. Nat Prod Res 22: 1650-1656. https://doi.org/10.1080/14786410701875686

Jnawali HN, Lee E, Jeong K-W, Shin A, Heo Y-S, Kim Y (2014) Anti-inflammatory activity of rhamnetin and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. J Natl Prod 77: 258-263. https://doi.org/10.1021/np400803n

Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, Alblooshi FM, Almatrooshi ME, Alzaabi ME, Al Darmaki RS, Lootah SN (2020) Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus 12(7): e9349. https://doi.org/10.7759/cureus.9349

Kotseva K, Stagmo M, De Bacquer D, De Backer G, Wood D, Group EIS (2008) Treatment potential for cholesterol management in patients with coronary heart disease in 15 European countries: findings from the EUROASPIRE II survey. Atherosclerosis 197: P710-717. https://doi.org/10.1016/j.atherosclerosis.2007.07.004

Lee H, Kim HJ, Chae H, Yoon NE, Jung BH (2021) Aster glehni F. Schmidt extract modulates the activities of HMG-CoA reductase and fatty acid synthase. Plants 10: 2287. https://doi.org/10.3390/plants10112287

Lee KP, Kim J-E, Park W-H (2015) Cytoprotective effect of rhamnetin on miconazole-induced H9c2 cell damage. Nutr Res Pract 9: 586-591. https://doi.org/10.4162/nrp.2015.9.6.586

Mahdavi A, Bagherniya M, Fakheran O, Reiner Ž, Xu S, Sahebkar A (2020) Medicinal plants and bioactive natural compounds as inhibitors of HMG‐CoA reductase: A literature review. BioFactors 46: 906-926. https://doi.org/10.1002/biof.1684

Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, LaHaye SA, Mbikay M, Ooi TC, Chrétien M (2008) Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids in health and disease 7(1): 22. https://doi.org/10.1186/1476-511X-7-22

Mattarei A, Biasutto L, Rastrelli F, Garbisa S, Marotta E, Zoratti M, Paradisi C (2010) Regioselective O-derivatization of quercetin via ester intermediates. An improved synthesis of rhamnetin and development of a new mitochondriotropic derivative. Molecules 15: 4722-4736. https://doi.org/10.3390/molecules15074722

Morikawa S, Umetani M, Nakagawa S, Yamazaki H, Suganami H, Inoue K, Kitahara M, Hamakubo T, Kodama T, Saito Y (2000) Relative induction of mRNA for HMG CoA reductase and LDL receptor by five different HMG-CoA reductase inhibitors in cultured human cells. J Atheroscler Thromb 7(3): 138-144. https://doi.org/10.5551/jat1994.7.138

Nawrocki JW, Weiss SR, Davidson MH, Sprecher DL, Schwartz SL, Lupien P-J, Jones PH, Haber HE, Black DM (1995) Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol 15: 678-682. https://doi.org/10.1161/01.atv.15.5.678

Nimkuntod P, Tongdee P (2015) Plasma low-density lipoprotein cholesterol/high-density lipoprotein cholesterol concentration ratio and early marker of carotid artery atherosclerosis. J Med Assoc Thai 98: S58-63.

Novo Belchor M, Hessel Gaeta H, Fabri Bittencourt Rodrigues C, Ramos da Cruz Costa C, de Oliveira Toyama D, Domingues Passero LF, Dalastra Laurenti M, Hikari Toyama M (2017) Evaluation of rhamnetin as an inhibitor of the pharmacological effect of secretory phospholipase A2. Molecules 22: 1441. https://doi.org/10.3390/molecules22091441

Park E-S, Kang JC, Jang YC, Park JS, Jang SY, Kim D-E, Kim B, Shin HS (2014) Cardioprotective effects of rhamnetin in H9c2 cardiomyoblast cells under H2O2-induced apoptosis. J Ethnopharmacol 153: 552-560. https://doi.org/10.1016/j.jep.2014.02.019

Reiner Ž (2010) Combined therapy in the treatment of dyslipidemia. Fundam Clin Pharmacol 24: 19-28. https://doi.org/10.1111/j.1472-8206.2009.00764.x

Reiner Ž, De Bacquer D, Kotseva K, Prugger C, De Backer G, Wood D, EUROASPIRE III study group (2013) Treatment potential for dyslipidaemia management in patients with coronary heart disease across Europe: findings from the EUROASPIRE III survey. Atherosclerosis 231: P300-307. https://doi.org/10.1016/j.atherosclerosis.2013.09.020

Szabo ME, Gallyas E, Bak I, Rakotovao A, Boucher F, de Leiris J, Nagy N, Varga E, Tosaki A (2004) Heme oxygenase-1–related carbon monoxide and flavonoids in ischemic/reperfused rat retina. Invest Ophthalmol Vis Sci 45: 3727-3732. https://doi.org/10.1167/iovs.03-1324

Tacherfiout M, Petrov PD, Mattonai M, Ribechini E, Ribot J, Bonet ML, Khettal B (2018) Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in Triton-induced hyperlipidemic rats and human HepG2 cells. Biomed Pharmacother 101: 501-509. https://doi.org/10.1016/j.biopha.2018.02.106

Vogel RA (2012) PCSK9 inhibition: the next statin? Am Coll Cardiol 59: 2354-2355. https://doi.org/10.1016/j.jacc.2012.03.011

Vosgen B,  Herrmann K (1980) Flavonol glycosides of pepper (Piper nigrum), clove (Syzygium aromaticum) and allspice (Pimenta dioica). 3. Phenolics of spices. Z Lebensm Unters Forch 170: 204-207. https://doi.org/10.1007/BF01042541

Yang H-X, Zhang M, Long S-Y, Tuo Q-H, Tian Y, Chen J-X, Zhang CP, Liao DF (2020) Cholesterol in LDL receptor recycling and degradation. Clin Chim Acta 500: 81-86. https://doi.org/10.1016/j.cca.2019.09.022

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Photoprotective compounds from Baccharis papillosa

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 33-46, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1477_11.1.33

Original Article

Quantification and in vitro photo-protective studies of phenolic compounds from Baccharis papillosa Rusby

[Cuantificación y estudios de fotoprotección in vitro de compuestos fenólicos de Baccharis papillosa Rusby]

Alberto Calle1#, Cecilia K. Curi-Borda1#, Cervando Gutiérrez1,2, Lily Salcedo1, Yonny Flores1, Giovanna R. Almanza1*

1Laboratorio de Bioorgánica, Instituto de Investigaciones Químicas (IIQ), Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, Calle Andrés Bello y Calle 27 Cota Cota, Edificio FCPN, 4º Piso, La Paz- Bolivia.

2Instituto de Investigaciones Fármaco Bioquímicas (IIFB), Facultad de Ciencias Farmaceúticas y Bioquímicas, Universidad Mayor de San Andrés, Av. Saavedra 222, Miraflores, La Paz-Bolivia.

#Authors contributed equally to the present study.

*E-mail: galmanza@fcpn.edu.bo

Abstract

Context: The ethanolic extract of the leaves from Baccharis papillosa, a plant used in Bolivian folk medicine, presents high UVB/UVA absorption spectrum, and therefore, it could have photo-protective potential.

Aims: To isolate, identify and quantify the compounds of an enriched extract in phenolic compounds obtained from the ethanolic extract of Baccharis papillosa in different seasons and geographical altitudes, and evaluate its photo-protective potential.

Methods: The enriched extract in phenolic compounds was submitted to phytochemical analysis for compound isolation. The enriched extract and isolated compounds were identified by NMR, and monitored by HPLC and spectroscopic methods. The enriched extract with photo-protective potential was analyzed to determine its Spectroscopic Sun Protection Factor (SSPF), its Broad Spectrum Index (BSI) and its photo-protective activity on Escherichia coli bacteria.

Results: Six flavonoids and two cinnamic acid derivatives were isolated and identified. Four of them are reported in B. papillosa for the first time in this study. The highest concentration of total flavonoids was observed in spring and at the highest altitude. The major compound, drupanin, was the main responsible of the high UVB (290-320 nm) absorption spectrum. The high presence of flavonoids in the extract explains the absorption spectrum in the UVA (320-400 nm) region.

Conclusions: The phenolic compounds enriched extract has photo-protective properties comparable to standard commercial synthetic sunscreens and presents an attractive BSI.

Keywords: Broad Spectrum Index (BSI); cinnamic acid derivative; flavonoids; photo-protective activity; Spectroscopic Sun Protection Factor (SSPF).

Resumen

Contexto: El extracto etanólico de las hojas de Baccharis papillosa, planta utilizada en la medicina popular boliviana, presenta un alto espectro de absorción UVB/UVA por lo que podría presentar potencial fotoprotector.

Objetivos: Aislar, identificar y cuantificar los compuestos de un extracto enriquecido en compuestos fenólicos obtenido a partir del extracto etanólico de Baccharis papillosa en diferentes épocas del año y altitudes geográficas y evaluar su potencial fotoprotector.

Métodos: El extracto enriquecido en compuestos fenólicos fue sometido a análisis fitoquímicos para aislamiento de compuestos. El extracto enriquecido y los compuestos aislados fueron identificados por RMN, y monitoreados por HPLC y métodos espectroscópicos. El potencial fotoprotector del extracto enriquecido se analizó mediante la determinación de su Factor de Protección Solar Espectroscópico (SSPF), su Índice de Amplio Espectro (BSR) y su actividad fotoprotectora sobre bacterias Escherichia coli.

Resultados: Se aislaron e identificaron seis flavonoides y dos derivados del ácido cinámico, de los cuales, cuatro de ellos se reportan en este estudio por primera vez en esta especie. La mayor concentración de flavonoides totales se observó en primavera y a mayor altura. El compuesto mayoritario, drupanina, fue el principal responsable del alto espectro de absorción UVB (290-320 nm) del extracto enriquecido. La alta presencia de flavonoides en el extracto explica el espectro de absorción en la región UVA (320-400 nm).

Conclusiones: El extracto enriquecido en compuestos fenólicos tiene propiedades fotoprotectoras comparables a filtros solares sintéticos comerciales estándar y presenta un amplio espectro de protección solar.

Palabras Clave: derivado del ácido cinámico; factor de protección solar espectroscópico; flavonoides; fotoprotección; índice de amplio espectro.

Citation Format: Calle A, Curi-Borda CK, Gutierrez C, Salcedo L, Flores Y, Almanza GR (2023) Quantification and in vitro photo-protective studies of phenolic compounds from Baccharis papillosa Rusby. J Pharm Pharmacogn Res 11(1): 33–46. https://doi.org/10.56499/jppres22.1477_11.1.33
References

Almanza G, Arduz C, Balderrama L, Ocaña L, Flores E (2000) Estudio fitoquímico de Baccharis leptophylla, biodirigido contra Neurospora crassa. Rev Bol Quim 17: 1-8.

Almeida WA, d. S. Sousa LRD, dos Santos A, de Azevedo AS, do Nascimento AM, Amparo TR, Bianco de Souza GH, Henrique dos Santos OD, Leão Andrade  Â, Cazati T, de Abreu Vieira PM, Pires Bueno PC, Rebello dos Santos VM (2020) Green propolis: In vitro photoprotective and photostability studies of single and incorporated extracts in a sunscreen formulation. Rev Bras Farmacogn 30: 436-443. https://doi.org/10.1007/s43450-020-00071-z

Andersen OM, Markham KR (2005) Flavonoids: Chemistry, biochemistry and applications: CRC Press, pp. 1256.

Calderón H (2001) Fotoprotección, bases y aplicación. Rev Chil Reumatol 17: 54-58.

Calle A, San Martín Á, Melgarejo M, Flores Y, Almanza G (2017) Evaluation of flavonoid contents and antibacterial activity of five Bolivian Baccharis species. Rev Bol Quím 34: 112-122.

Calle A, Yupanqui J, Flores Y, Almanza GR (2012) Flavonoides de Baccharis boliviensis. Rev Bol Quím 29: 158-163.

Camacho F (2001) Antiguos y nuevos aspectos de la fotoprotección. Rev Int Dermatol Dermocosmét Clín 4: 441-448.

CAS Common Chemistry (2021) CAS, a division of the American Chemical Society, n.d. Quercetin 3,4′-dimethyl ether. Retrieved from https://commonchemistry.cas.org/detail?cas_rn=33429-83-3 [Consulted July, 2022]

Catalogue No. TM50-TM60 (2002) McFarland Standard, for in vitro use only. Dalynn, Biologicals. http://www.dalynn.com/dyn/ck_assets/files/tech/TM53.pdf [Consulted July, 2022]

ChemSpider CSID:600426 (2021) trans-caffeic acid. Retrieved from http://www.chemspider.com/Chemical-Structure.600426.html [Consulted July, 2022]

Cornard J-P, Lapouge C (2006) Absorption spectra of caffeic acid, caffeate and their 1: 1 complex with Al (III): density functional theory and time-dependent density functional theory investigations. J Phys Chem 110: 7159-7166. https://doi.org/10.1021/jp060147y

da Silva Fernandes A, Alencar AS, Evangelista H, Mazzei JL, Felzenszwalb I (2015) Photoprotective and toxicological activities of extracts from the Antarctic moss Sanionia uncinata. Pharmacogn Mag 11: 38-43. https://doi.org/10.4103/0973-1296.149701

da Silva VV, Ropke CD, de Almeida RL, Miranda DV, Kera CZ, Rivelli DP, Sawada TCH, Barros SBM (2005) Chemical stability and SPF determination of Pothomorphe umbellata extract gel and photostability of 4-nerolidylcathecol. Int J Pharm 303: 125-131. https://doi.org/10.1016/j.ijpharm.2005.07.006

Diffey BL (1994) A method for broad spectrum classification of sunscreens. Int J Cosmet Sci 16: 47-52. https://doi.org/10.1111/j.1467-2494.1994.tb00082.x

Enríquez S, Quispe RE, Amurrio P, Peñaranda JC, Calle A, Orsag V, Almanza GR (2018) Flavonoid contents in leaves of Baccharis latifolia, according to the type of leaf, and its dependence on the physicochemical properties of soils. Rev Bol Quím 35: 146-154.

Escobar Z, Flores Y, Tejeda L, Alvarado JA, Sterner O, Almanza GR (2009) Phenolic compounds from Baccharis papillosa subsp. papillosa. Rev Bol Quím 26: 111-117.

Fleming DP (2008) Quantification of the environmental solar ultraviolet radiation field at the human eye and the investigation of peripherally focused rays. (Ph.D. thesis) Technological University Dublin, Dublin, Ireland. https://doi.org/10.21427/D7XG6P

Gajardo S, Aguilar M, Stowhas T, Salas F, Lopez J, Quispe C, Buc-Calderon P, Benites J (2016) Determination of sun protection factor and antioxidant properties of six Chilean Altiplano plants. Bol Latinoam Caribe Plant Med Aromat15: 352-363.

Garcia Forero A, Villamizar Mantilla DA, Núñez LA, Ocazionez RE, Stashenko EE, Fuentes JL (2019) Photoprotective and antigenotoxic effects of the flavonoids apigenin, naringenin and pinocembrin. Photochem Photobiol 95: 1010-1018. https://doi.org/10.1111/php.13085

Gene RM, Cartañá C, Adzet T, Marin E, Parella T, Canigueral S (1996) Anti-inflammatory and analgesic activity of Baccharis trimera: Identification of its active constituents. Planta Med 62: 232-235. https://doi.org/10.1055/s-2006-957866

Grotewold E (2006) The science of flavonoids. Columbus, Ohio: Springer. https://doi.org/10.1007/978-0-387-28822-2

Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22: 569-574. https://doi.org/10.1016/j.tree.2007.09.006

Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109: 1159-1166. https://doi.org/10.1104/pp.109.4.1159

Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18: 53-58. https://doi.org/10.1093/treephys/18.1.53

Li J, Ou-Lee T-M, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171-179. https://doi.org/10.1105/tpc.5.2.171

Lim H, Draelos Z (2009) Clinical guide to sunscreens and photoprotection. New York: Informa Healthcare USA, pp. 320.

Loza Almanza R, Neri Guarachi L, López Gavincha Y, Mamani Mamani M, Arias Miranda JL, Almanza Vega G, Gonzales Dávalos E, Bermejo Benito P (2011) Evaluación de la toxicidad de los extractos etanólicos de Baccharis latifolia y Baccharis papillosa en animales de experimentación. Biofarbo 19: 22-27.

Mansur J, Rodrigues M, D’ascenção M, Azulay R (1986a) Correlação entre a determinação do fator de proteção solar em seres humanos e por espectrofotometria. An Bras Dermatol 61(4): 167-172.

Mansur J, Rodrigues M, D’ascenção M, Azulay R (1986b) Determinação do fator de proteção solar por espectrofotometria. An Bras Dermatol 61(3): 121-124.

Mazza CA, Zavala J, Scopel, AL, Ballaré CL (1999) Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc Natl Acad Sci USA 96: 980-985. https://doi.org/10.1073/pnas.96.3.980

Monschein M, Jaindl K, Buzimkić S, Bucar F (2015) Content of phenolic compounds in wild populations of Epilobium angustifolium growing at different altitudes. Pharm Biol 53: 1576-1582. https://doi.org/10.3109/13880209.2014.993039

Moreno MI, Moreno LH (2010) Fotoprotección. Rev Asoc Colomb Dermatol 18: 31-39.

Muela A, Garcia-Bringas J, Arana I, Barcina I (2000) The effect of simulated solar radiation on Escherichia coli: the relative roles of UV-B, UV-A, and photosynthetically active radiation. Microb Ecol 39: 65-71. https://doi.org/10.1007/s002489900181

Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302: 71-83. https://doi.org/10.1007/s00403-009-1001-3

Nole G, Johnson AW (2004) An analysis of cumulative lifetime solar ultraviolet radiation exposure and the benefits of daily sun protection. Dermatol Ther 17: 57-62. https://doi.org/10.1111/j.1396-0296.2004.04S1007.x

Peñaranda JC, Rodrigo G, Ticona-Bustillos A, Valenzuela E, Ramos S, San Martin A, Ghezzi F, Almanza GR (2020) Variation in concentration of flavonoids and chlorophyll, and changes on morphology and foliar anatomy, due to visible (PAR) or ultraviolet (UVA, UVB) radiation in Baccharis latifolia. Rev Bol Quim 37: 210-222. http://doi.org/10.34098/2078-3949.37.5.1

Pérez MT (2012) Fotoprotección: 15 consejos para un broceado seguro. Farm Prof 26: 46-50.

Rengifo-Penadillos R (2013) Cuantificación de flavonoides en el extracto etanólico de propóleos. Pharmaciencia 1: 51-56.

Ribeiro RP (2004) Desenvolvimento e validação da metodologia de análise do teor de filtros solares e determinação do FPS in vitro em formulações fotoprotetoras comerciais. PhD Thesis, UFRJ, Rio de Janeiro, Brasil.

Rigel DS, Berson DS, Ceilley RI, Cole CA, Draelos ZD (2006) Photoprotection: Recent advances in sunscreen stability. Skin and Allergy News (suppl.): 4-11.

Rodrigo GC, Almanza GR, Akesson B, Duan R-D (2010) Antiproliferative activity of extracts of some Bolivian medicinal plants. J Med Plant Res 4: 2204-2210.

Salcedo Ortiz L, Flores Y, Sterner O, Almanza Vega GR (2013) ent-kaurane diterpenoids from Baccharis leptophylla Rev Bol de Quím 30: 60-65.

Sánchez-Saldaña L, Lanchipa P, Pancorbo J, Regis A, Sánchez E (2002) Fotoprotectores tópicos. Dermatol Peru 12(2): 156-163.

Silva-Carvalho R, Baltazar F, Almeida-Aguiar C (2015) Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med 2015: 206439. https://doi.org/10.1155/2015/206439

Sotillo WS, Tarqui S, Huang X, Almanza G, Oredsson S (2021) Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement Med Ther 21: 188. https://doi.org/10.1186/s12906-021-03349-4

Talhaoui N, Gómez-Caravaca AM, León L, De la Rosa R, Segura-Carretero A, Fernández-Gutiérrez A (2014) Determination of phenolic compounds of ‘Sikitita’olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’and ‘Picual’olive leaves. LWT- Food Sci Technol 58: 28-34. https://doi.org/10.1016/j.lwt.2014.03.014

Tarqui  S, Flores Y, Almanza  GR (2012) Polyoxygenated flavonoids from Baccharis pentlandii. Rev Bol Quím 29: 10-14.

Villagómez JR, Mollinedo P, Almanza GR (2006) (E)-3-prenil-4-hidroxicinamato de metilo de Baccharis santelices Rev Bol Quím 23: 13-18.

Zaratti F, Forno R, Cuarita L, Saavedra P (2003) Seis años de medidas de ozono y radiación ultravioleta en La Paz, Bolivia. Rev Bol Fis 9: 48-51.

Zdero C, Bohlmann F, Solomon J, King R, Robinson H (1989) Ent-clerodanes and other constituents from bolivian Baccharis species. Phytochemistry 28: 531-542. https://doi.org/10.1016/0031-9422(89)80047-0

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Ethnobotanical investigation in Soran district, Iraq

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 1-32, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1484_11.1.1

Original Article

Medicinal plants used in Soran district Kurdistan region of Iraq, an ethnobotanicals study

[Plantas medicinales utilizadas en el distrito de Soran, región del Kurdistán de Irak, un estudio etnobotánico]

Samiaa J. Abdulwahid-Kurdi1*, Muhsin J. Abdulwahid2, Usman Magaji3, Zeiad A. Aghwan3, Rodziah Atan4,Kasrin A. Hamadamin1

1Department of General Sciences, Faculty of Education, Soran University, Kawa street, 44008 Soran, Erbil, Kurdistan Region, Iraq.

2Salahaddin University Research Center (SURC), Erbil, Kurdistan Region of Iraq.

3Department of Agronomy, Federal University of Kashere, Gombe, Gombe State, Nigeria.

4Department of Halalan Thayyiban Research Centre, University of Islam Sultan Sharif Ali, Brunei Darussalam.

*E-mail: samiaa.abdulwahid@soran.edu.iq, samiaa.abdulwahid@gmail.com

Abstract

Context: The current study, the first of its type, focuses on the ethnobotanical uses of 97 medicinal plant species by the inhabitants in the Soran area, Kurdistan region of Iraq.

Aims: To evaluate local knowledge of medicinal plants and provision of preliminary data on the user-benefit of the accessible plant species in the area.

Methods: Between October 2021 and May 2022, key informant interviews were conducted as part of an ethnobotanical survey. Information about a particular study through face-to-face interviews with 171 participants (98 males and 73 females) was collected. For the therapeutic plants considered in the study, quantitative indices such as use value (UV), family use value (FUV), the relative frequency of citation (RFC), fidelity level (FL), and informant consensus factor (ICF) were applied in addition to detailed notes on each plant species.

Results: The survey discovered 97 plant species and 41 plant families. Leaves were the plant portion that was used the most (44%), while seeds were the least (12%). The most popular three methods of preparation were decoction (52%), row (36%), and crushed (6%). The Olea europaea species had the highest use values (0.82), while Vitex agnus-castus had (0.005). Amaryllidaceae had the highest family use value (1.218), while Asteraceae had (0.005). According to the consensus index, Ficus carica and Datura stramonium had (140.84%) and (1.011%). The digestive tract disease category was shown to have the highest informant consensus factor value out of all disease categories (0.57), while the lowest value ICF was (0.0) for tooth pain.

Conclusions: As a result of the development of natural medicines, this study gives information on the indigenous medicinal plants utilized in the Soran district to treat common illnesses that are ready for additional pharmacological and phytochemical examination. For better use of natural resources, the traditional use of plants requires conservation methods and additional research.

Keywords: ethnobotany; food; medicinal plants; Soran district; traditional medicine.

Resumen

Contexto: El presente estudio se centra en los usos etnobotánicos de 97 especies de plantas medicinales por parte de los habitantes de la zona de Soran, en la región del Kurdistán iraquí.

Objetivos: Evaluar el conocimiento local de las plantas medicinales y aportar datos preliminares sobre el uso-beneficio de las especies vegetales accesibles en la zona.

Métodos: Entre octubre de 2021 y mayo de 2022, se realizaron entrevistas a informantes clave como parte de un estudio etnobotánico. Se recogió información sobre un estudio particular a través de entrevistas cara a cara con 171 participantes (98 hombres y 73 mujeres). Para las plantas terapéuticas consideradas en el estudio, se aplicaron índices cuantitativos como el valor de uso (UV), el valor de uso familiar (FUV), la frecuencia relativa de citación (RFC), el nivel de fidelidad (FL) y el factor de consenso del informante (ICF), además de notas detalladas sobre cada especie vegetal.

Resultados: La encuesta descubrió 97 especies de plantas y 41 familias de plantas. Las hojas fueron la parte de la planta que más se utilizó (44%) mientras que las semillas fueron las menos (12%). Los tres métodos de preparación más populares fueron la decocción (52%), crudo (36%) y el triturado (6%). La especie Olea europaea tuvo los valores de uso más altos (0,82), mientras que Vitex agnus-castus tuvo (0,005). La Amaryllidaceae tuvo el mayor valor de uso de la familia (1,218), mientras que la Asteraceae tuvo (0,005). Según el índice de consenso, Ficus carica y Datura stramonium tuvieron (140,84%) y (1,011%). La categoría de enfermedad del tracto digestivo mostró tener el valor más alto del factor de consenso del informante de todas las categorías de enfermedad (0,57), mientras que el valor más bajo del ICF fue (0,0) para el dolor de muelas.

Conclusiones: Como resultado del desarrollo de las medicinas naturales, este estudio ofrece información sobre las plantas medicinales indígenas utilizadas en el distrito de Soran para tratar enfermedades comunes que están listas para un examen farmacológico y fitoquímico adicional. Para un mejor uso de los recursos naturales, el uso tradicional de las plantas requiere métodos de conservación e investigación adicional.

Palabras Clave: alimentación; distrito de Soran; etnobotánica; medicina tradicional; plantas medicinales.

Citation Format: Abdulwahid-Kurdi SJ, Abdulwahid MJ, Magaji U, Aghwan ZA, Atan R, Hamadamin KA (2023) Medicinal plants used in Soran district Kurdistan region of Iraq, an ethnobotanicals study. J Pharm Pharmacogn Res 11(1): 1–32. https://doi.org/10.56499/jppres22.1484_11.1.1
References

Abbas S, Saeed J (2021) Vascular plants of Bani Harir mountain (Harir intramural bound). Zanco J Pure Appl Sci 33(5): 57–68. https://doi.org/10.21271/ZJPAS.33.5.7

Abdulwahid SJ (2013) Water quality index of Delizhiyan springs and Shawrawa river within Soran district, Erbil, Kurdistan region of Iraq.J Appl Environ Sci 3(1): 40–48.

Abe R, Ohtani K (2013) An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines. J Ethnopharmacol 145(2): 554–565. https://doi.org/10.1016/j.jep.2012.11.029

Abuyassin B, Laher I (2016) Diabetes epidemic sweeping the Arab world. World J Diabetes 7(8): 165–174. https://doi.org/10.4239/wjd.v7.i8.165

Acar CA (2021) Green synthesis of zinc oxide nanoparticles using aqueous extract of Achiella millefolium: In vitro anti-cancer potential on lung and colon cancer cells. Turk J Health Sci Life 4(1): 40–45.

Agelet A, Vallès J (2001) Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part I. General results and new or very rare medicinal plants. J Ethnopharmacol 77(1): 57–70. https://doi.org/10.1016/s0378-8741(01)00262-8

Ahmed HM (2016) Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J Ethnobiol and Ethnomedicine 12(1): 8. https://doi.org/10.1186/s13002-016-0081-3

Alam MA, Jahan R, Rahman S, Das AK, Rahmatullah M (2011) Antinociceptive and anti-hyperglycemic activity of methanol leaf extract of Cyperus scariosus. Pak J Pharm Sci 24(1): 53–56.

Albuquerque UP, Lucena RF, Monteiro JM, Florentino AT, Cecília de Fátima CBR (2006) Evaluating two quantitative ethnobotanical techniques. Ethnobot Res Appl 4: 51–60.

Al–Douri NA (2014) Some important medicinal plants in Iraq.Int J Adv Herb Alter 2: 10–20.

Alsamri H, Athamneh K, Pintus G, Eid AH, Iratni R (2021) Pharmacological and antioxidant activities of Rhus coriaria L. (Sumac). Antioxidants 10(1): 73. https://doi.org/10.3390/antiox10010073

Anushiravani M, Azad FJ, Taghipour A, Mirsadraee M, Afshari JT, Salari R, Farshchi MK (2020) The effect of Plantago major seed and almond gum on refractory asthma: A proof-of-concept study. J Herb Med 19: 100297. https://doi.org/10.1016/j.hermed.2019.100297

Awan AF, Akhtar MS, Anjum I, Mushtaq MN, Fatima A, Mannan A, Ali I (2020) Anti-oxidant and hepatoprotective effects of Lactuca serriola and its phytochemical screening by HPLC and FTIR analysis. Pak J Pharm Sci 33(9): 2823–2830.

Aziz N, Mehmood MH, Siddiqi HS, Mandukhail SUR, Sadiq F, Maan W, Gilani AH (2009) Antihypertensive, antidyslipidemic and endothelial modulating activities of Orchis mascula. Hypertens Res 32(11): 997–1003. https://doi.org/10.1038/hr.2009.148

Bahmani M, Zargaran A, Rafieian-Kopaei M (2014) Identification of medicinal plants of Urmia for treatment of gastrointestinal disorders. Rev Bras Farmacogn24(4): 468–480. https://doi.org/10.1016/j.bjp.2014.08.001

Bazylko A, Stolarczyk M, Derwińska M, Kiss AK (2012) Determination of the antioxidant activity of extracts and fractions obtained from Galinsoga parviflora and Galinsoga quadriradiata, and a qualitative study of the most active fractions using TLC and HPLC methods. Nat Prod Res 26(17): 1584–1593. https://doi.org/10.1080/14786419.2011.582469

Benninger J, Schneider HT, Schuppan D, Kirchner T, Hahn EG (1999) Acute hepatitis induced by greater celandinee (Chelidonium majus). Gastroenterology 117(5): 1234–1237. https://doi.org/10.1016/s0016-5085(99)70410-5

Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, Gallicchio M (2018) Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of Sinapis nigra L. and Sinapis alba L. extracts. Molecules 23(11): 3004. https://doi.org/10.3390/molecules23113004

Bradusty M (2017) Soran Health Directorate is Concerned about Erbil’s Health. News Wishe. https://www.wishe.net/details.aspx?=hewal&jmare=8589&Jor=9 [23 June 2017].

Bussmann RY, Paniagua Zambrana S, Sikharulidze Z, Kikvidze D, Kikodze D, Tchelidze M, Khutsishvili K, Batsatsashvili RE (2016) A comparative ethnobotany of Khevsureti, Samtskhe-Javakheti, Tusheti, Svaneti, and Racha-Lechkhumi, Republic of Georgia (Sakartvelo), Caucasus. J Ethnobiol Ethnomed 12: 43. https://doi.org/10.1186/s13002-016-0110-2

Capistrano I R, Wouters A, Lardon F, Gravekamp C, Apers S, Pieters L (2015) In vitro and in vivo investigations on the antitumour activity of Chelidonium majus. Phytomedicine 22(14): 1279–1287. https://doi.org/10.1016/j.phymed.2015.10.013

Çolak F, Savaroğlu F, İlhan S (2009) Antibacterial and antifungal activities of Arum maculatum L. leaves extracts. J Appl Biol Sci 3(3): 13–16.

Czinner E, Hagymasi K, Blazovics A, Kery A, Szőke É, Lemberkovics E (2000) In vitro antioxidant properties of Helichrysum arenarium (L.) Moench. J Ethnopharmacol 73(3): 437–443. https://doi.org/10.1016/s0378-8741(00)00304-4

Dashtban M, Sarir H, Omidi A (2016) The effect of Prosopis farcta beans extract on blood biochemical parameters in streptozotocin-induced diabetic male rats. Adv Biomed Res 5: 116. https://doi.org/10.4103/2277-9175.185575

El-Mallah MH, El-Shami SM, Hassanein MM (2003) Detailed studies on some lipids of Silybum marianum (L.) seed oil. Grasas y Aceites 54(4): 397-402. https://doi.org/10.3989/gya.2003.v54.i4.227

Erbil Governorate (2014) Soran District. Erbil Governorate Main Report. https://web.archive.org/web/20140717073706/http://hawlergov.org/ku/region.php?id=1330758837 [17 July 2104].

Friedman J, Yaniv Z, Dafni A, Palewitch D (1986) A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J Ethnopharmacol 16(2-3): 275–287. https://doi.org/10.1016/0378-8741(86)90094-2

Gañán NA, Dias AM, Bombaldi F, Zygadlo JA, Brignole EA, de Sousa HC, Braga ME (2016) Alkaloids from Chelidonium majus L.: Fractionated supercritical CO2 extraction with co-solvents.Sep Purif Technol 165: 199–207. https://doi.org/10.1016/j.seppur.2016.04.006

Gordon A, Hobbs DA, Bowden DS, Bailey MJ, Mitchell J, Francis AJ, Roberts SK (2006) Effects of Silybum marianum on serum hepatitis C virus RNA, alanine aminotransferase levels and well‐being in patients with chronic hepatitis C. J Gastroenterol Hepatol 21(1 Pt 2): 275–280. https://doi.org/10.1111/j.1440-1746.2006.04138.x

Gunes C (2019) The Kurdish conflict in Iraq: towards a sustainable solution. In: The Kurds in a New Middle East: Palgrave Macmillan, Cham, pp. 21–39. https://doi.org/10.1007/978-3-030-00539-9_2

Gunjan M, Naing TW, Saini RS, Ahmad A, Naidu JR, Kumar I (2015) Marketing trends & future prospects of herbal medicine in the treatment of various diseases. World J Pharm Res 4(9): 132–155.

Hamad R (2020) A remote sensing and GIS-based analysis of urban sprawl in Soran District, Iraqi Kurdistan. S N Appl Sci 2: 24. https://doi.org/10.1007/s42452-019-1806-4

Harris DR (1989) An evolutionary continuum of people-plant interaction. In: Foraging and farming, eds. D. R. Harris and G. C. Hillman. London: Routledge. https://doi.org/10.4324/9781315746425

Heinrich M, Ankli A, Frei B, Weimann C (1998) Medicinal plants in Mexico: Healers consensus and cultural importance. Soc Sci Med 47(11): 1859–1871. https://doi.org/10.1016/s0277-9536(98)00181-6

Hosseini SH, Sadeghi Z, Hosseini SV, Bussmann RW (2022) Ethnopharmacological study of medicinal plants in Sarvabad, Kurdistan province, Iran. J Ethnopharmacol 288: 114985. https://doi.org/10.1016/j.jep.2022.114985

Huerta-Franco MR, Vargas-Luna M, Tienda P, Delgadillo-Holtfort I, Balleza-Ordaz M, Flores-Hernandez C (2013) Effects of occupational stress on the gastrointestinal tract. World J Gastrointest Pathophysiol 4(4): 108. https://doi.org/10.4291/wjgp.v4.i4.108

Huo CH, Li Y, Zhang ML, Wang YF, Zhang Q, Qin F, Kiyota H (2013) Cytotoxic flavonoids from the flowers of Achillea millefolium. Chem Nat Compd 48(6): 958–962. https://doi.org/10.1007/s10600-013-0438-y

Ismail Y (2021) The Roots of Coexistence and Religious Tolerance in Kurdistan. Kurdistan 24 News https://www.kurdistan24.net/en/story/24908-The-roots-of-coexistence-and-religious-tolerance-in-Kurdistan [02 July 2021].

Jadid N, Kurniawan E, Himayani S, Prasetyowati I, Purwani I, Muslihatin W, Tjahjaningrum D (2020) An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. PloS One 15(7): e0235886. https://doi.org/10.1371/journal.pone.0235886

Jalalpure SS, Mandavkar YD, Khalure PR, Shinde GS, Shelar PA, Shah AS (2011) Antiarthritic activity of various extracts of Mesua ferrea Linn. seed. J Ethnopharmacol 138(3): 700–704. https://doi.org/10.1016/j.jep.2011.09.042

Janbaz KH, Latif MF, Saqib F, Imran I, Zia-Ul-Haq M, De Feo V (2013) Pharmacological effects of Lactuca serriola L. in experimental model of gastrointestinal, respiratory, and vascular ailments. Evid Based Complement Alternat Med2013: 304394. https://doi.org/10.1155/2013/304394

Karimi E, Oskoueian E, Karimi A, Noura R, Ebrahimi M (2018) Borago officinalis L. flower: a comprehensive study on bioactive compounds and its health-promoting properties. J Food Meas Charact 12(2): 826–838. https://doi.org/10.1007/s11694-017-9697-9

Karwan M, Abdullah O, Amin A, Hasan B, Mohamed Z, Sulaiman L, Shekha M, Najmuldeen H, Barzingi B, Salih A, Mahmood D, Othman H, Rahman F, Mohammad D, Salih F, Ali SK, Housein Z, Mohamad T, Mahmood K, Othman G, Aali M, Qader G, Hussen B, Awla F, Qadir F, Taher D, Salihi A (2021) Cancer Statistics in Kurdistan Region of Iraq: A Tale of Two Cities. Res Squre, Preprint: 1–18. https://doi.org/10.21203/rs.3.rs-142129/v1

Kavak C, Baştürk A (2020) Antioxidant activity, volatile compounds and fatty acid compositions of Cephalaria syriaca seeds obtained from different regions in Turkey. Grasas y Aceites 71(4): e379. https://doi.org/10.3989/gya.0913192

Khan I, AbdElsalam NM, Fouad H, Tariq A, Ullah R, Adnan M (2014) Application of ethnobotanical indices on the use of traditional medicines against common diseases. Evid Based Complementary Altern Med 2014: 635371. https://doi.org/10.1155/2014/635371

Khmil M, Khmil S, Marushchak M (2020) Hormone imbalance in women with infertility caused by polycystic ovary syndrome: Is there a connection with body mass index. Open Access Maced J Med Sci 8(B): 731–737. https://doi.org/10.3889/oamjms.2020.4569

Khodabande Z, Jafarian V, Sariri R (2017) Antioxidant activity of Chelidonium majus extract at phenological stages. Appl Biol Chem 60(5): 497–503. https://doi.org/10.1007/s13765-017-0304-x

Khoja AA, Andrabi AH, Mir RA (2022) Traditional medicine in the treatment of gastrointestinal diseases in northern part of Kashmir Himalayas. Ethnobot Res Appl 23: 22. http://dx.doi.org/10.32859/era.23.22.1-17

Kolak U, Boğa M, Uruşak EA, Ulubelen A (2011) Constituents of Plantago major subsp. intermedia with antioxidant and anticholinesterase capacities. Turk J Chem 35(4): 637–645. http://dx.doi.org/10.3906/kim-1102-990

Kim HG, Nam YH, Jung YS, Oh SM, Nguyen TN, Lee MH, Baek NI (2021). Aurones and flavonols from Coreopsis lanceolata L. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in zebrafish. Molecules 26: 6098. https://doi.org/10.3390/molecules26206098

Kos B, Grčman H, Leštan D (2003) Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ 49(12): 548–553. http://dx.doi.org/10.17221/4192-PSE

Kumar KS, Bhowmik D, Chiranjib B, Tiwari P (2010) Allium cepa: A traditional medicinal herb and its health benefits. J Chem Pharm Res 2(1): 283–291.

Mahmood AM, Sallo AK, Hasan MA (2014) Chemical components and antibacterial activity of Gundelia tournefortii L. Compositae/Asteraceae (Iraq, Kurdistan Region, Sulaymaniyah, Penjwin area, “Kokhalan”). J Indian Chem Soc91: 2107–2111. https://doi.org/10.5281/zenodo.5741404

Mao Z, Gan C, Zhu J, Ma N, Wu L, Wang L, Wang X (2017) Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg Med Chem Lett 27(12): 2812–2817. https://doi.org/10.1016/j.bmcl.2017.04.076

Mitrović PM, Stamenković OS, Banković-Ilić l, Djalović IG, Nježić ZB, Farooq M, Veljković VB (2020) White mustard (Sinapis alba L.) oil in biodiesel production: A review. Front Plant Sci 11: 299. https://doi.org/10.3389/fpls.2020.00299

Molares S, Ladio A (2009) Ethnobotanical review of the Mapuche medicinal flora: Use patterns on a regional scale. J Ethnopharmacol 122(2): 251–260. https://doi.org/10.1016/j.jep.2009.01.003

Muhamad S (2020) Economic Crunch Revives Farming in Soran. Rudaw Bus https://www.rudaw.net/english/business/050720201 [05 July 2020].

Najem M, Nassiri L, Ibijbijen J (2021) Vernacular names of plants between diversity and potential risks of confusion: Case of toxic plants used in medication in the central Middle Atlas, Morocco. J Pharm Pharmacogn Res 9(2): 222–250. https://doi.org/10.56499/jppres20.950_9.2.222

Nakyai W, Pabuprapap W, Sroimee W, Ajavakom V, Yingyongnarongkul BE, Suksamrarn A (2021) Anti-acne vulgaris potential of the ethanolic extract of Mesua ferrea L. flowers. Cosmetics 8: 107. https://doi.org/10.3390/cosmetics8040107

Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N (2020) Traditional herbal medicine candidates as complementary treatments for COVID-19: A review of their mechanisms, pros and cons. Evid Based Complement Alternat Med 2020: 2560645. https://doi.org/10.1155/2020/2560645

Opuni KF, Togoh G, Frimpong-Manso S, Adu-Amoah D, Alkanji O, Boateng KP (2021) Monitoring of residual solvent contamination in herbal medicinal products in Ghana: A pilot study. Sci Afr 13: e00825. https://doi.org/10.1016/j.sciaf.2021.e00825

Özgen U, Kaya Y, Houghton P (2012) Folk medicines in the villages of Ilıca District (Erzurum, Turkey). Turk J Biol 36(1): 93–106. https://doi.org/10.3906/biy-1009-124

Payyappallimana U (2010) Role of traditional medicine in primary health care: an overview of perspectives and challenges. Yokohama J Soc Sci 14: 57–77.

Piyaviriyakul S, Siripong P, Vallisuta O (2014) HPTLC simultaneous quantification of triterpene acids for quality control of Plantago major L. and evaluation of their cytotoxic and antioxidant activities. Ind Crops Prod 60: 239–246. https://doi.org/10.1016/j.indcrop.2014.06.020

Polat R, Cakilcioglu U, Satıl F (2013) Traditional uses of medicinal plants in Solhan (Bingöl—Turkey). J Ethnopharmacol 148(3): 951–963. https://doi.org/10.1016/j.jep.2013.05.050

Rahman M, Khatun A, Liu L, Barkla BJ (2018) Brassicaceae mustards: Traditional and agronomic uses in Australia and New Zealand. Molecules 23(1): 231. https://doi.org/10.3390/molecules23010231

Rajaei P, Mohamadi N (2012) Ethnobotanical study of medicinal plants of Hezar mountain allocated in southeast of Iran. Iran J Pharm Res 11(4): 1153–1167.

Rzgar M (2021) Soran. Retrieved from Zanyare. https://zaniary.com/blog/6106acc700727 [01 August 2021].

Segal TR, Giudice LC (2019) Before the beginning: environmental exposures and reproductive and obstetrical outcomes. Fertil Steril 112(4): P613–621. https://doi.org/10.1016/j.fertnstert.2019.08.001

Shaker E, Mahmoud H, Mnaa S (2010) Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem Toxicol 48(3): 803–806. https://doi.org/10.1016/j.fct.2009.12.011

Sõukand RY, Hrynevich J, Prakofjewa T, Valodzina I, Vasilyeva J, Paciupa R, Shrubok A, Hlushko A, Knureva Y, Litvinava Y, Vyskvarka S, Silivonchyk H, Paulava A, Kõiva M, Kalle R (2017) Use of cultivated plants and non-plant remedies for human and animal homemedication in Liubań district, Belarus. J Ethnobiol Ethnomed 13(1): 54. https://doi.org/10.1186/s13002-017-0183-6

Sreekeesoon DP, Mahomoodally MF (2014) Ethnopharmacological analysis of medicinal plants and animals used in the treatment and management of pain in Mauritius. J Ethnopharmacol157: 181–200. https://doi.org/10.1016/j.jep.2014.09.030

Stanisavljević N, Soković Bajić S, Jovanović Ž, Matić I, Tolinački M, Popović D, Popović N, Terzić-Vidojević A, Golić N, Beškoski V, Samardžić J (2020) Antioxidant and antiproliferative activity of Allium ursinum and their associated microbiota during simulated in vitro digestion in the presence of food matrix. Front Microbiol 11: 601616. https://doi.org/10.3389/fmicb.2020.601616

Szema AM, Reeder RJ, Harrington AD, Schmidt M, Liu J, Golightly M, Rueb T, Hamidi SA (2014) Iraq dust is respirable, sharp, metal-laden, and induces lung inflammation with fibrosis in mice via IL-2 upregulation and depletion of regulatory T cells.J Occup Environ Med 56(3): 243–251. https://doi.org/10.1097/jom.0000000000000119

Tangjitman K, Wongsawad C, Kamwong K, Sukkho T, Trisonthi C (2015) Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailan. J Ethnobiol Ethnomed 11(1): 27. https://doi.org/10.1186/s13002-015-0011-9

Teall EK (2014) Medicine and doctoring in ancient Mesopotamia. Grand Valley J Hist 3(1): 2–5.

Tetik F, Civelek S, Cakilcioglu U (2013) Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol 146(1): 331–346. https://doi.org/10.1016/j.jep.2012.12.054

Tounekti T, Mahdhi M, Khemira H (2019) Ethnobotanical study of indigenous medicinal plants of Jazan region, Saudi Arabia. Evid Based Complement Alternat Med 2019: 3190670. https://doi.org/10.1155/2019/3190670

Trotter RT, Logan MH (1986) Informant consensus: A new approach for identifying potentially effective medicinal plants. In: Plants in Indigenous Medicine & Diet. Edited by Etkin NL. Redgrave Publishing Company, NY, USA: Bedford Hill, pp. 91–112. http://dx.doi.org/10.4324/9781315060385-6

Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, Kalema J (2016) Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J Ethnobiol Ethnomedicine 12(1): 5. https://doi.org/10.1186/s13002-015-0077-4

Upadhya V, Hegde HV, Bhat S, Kholkute SD (2014) Non-codified traditional medicine practices from Belgaum Region in Southern India: present scenario. JEthnobiol Ethnomed 10(1): 49. https://doi.org/10.1186/1746-4269-10-49

Wali ZZ (2021) Budget quagmire: The Erbil-Baghdad never-ending problem. Rudaw News Analy. 2021. https://www.rudaw.net/english/analysis/24052021 [24 May 2021].

Weil AT (1981) The therapeutic value of coca in contemporary medicine. J Ethnopharmacol 3(2-3): 367–376. https://doi.org/10.1016/0378-8741(81)90064-7

WHO (2000) Programme on Traditional Medicine: General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine. Geneva, Switzerland: World Health Organization. WHO/EDM/TRM/2000.1.

WHO (2012) WorldHealth Statistics: A Snapshot of Global Health. Organization Mundial De La Salud. Geneva, Switzerland: World Health Organization. WHO/IER/HSI/12.1.

Wilasrusmee C, Kittur S, Shah G, Siddiqui J, Bruch D, Wilasrusmee S, Kittur DS (2002) Immunostimulatory effect of Silybum marianum (milk thistle) extract. Med Sci Monit Int Med J Exp Clin Res8(11): BR439–443.

Yabrir B, Touati M, Adli B, Bezini E, Ghafoul M, Khalifa S, Guit B (2018) Therapeutic use of spontaneous medicinal flora from an extreme environment (dune cordon) in Djelfa region, Algeria. J Pharm Pharmacogn Res 6(5): 358–373.

Zenderland J, Hart R, Bussmann RW, Paniagua Zambrana NY, Sikharulidze S, Kikvidze Z, Kikodze D, Tchelidze D, Khutsishvili M, Batsatsashvili K (2019) The use of ‘use value’: Quantifying importance in ethnobotany. Econ Bot 73(3): 293–303. https://doi.org/10.1007/s12231-019-09480-1

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Polyether ionophores as potential antimalarial

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1139-1148, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1478_10.6.1139

Original Article

Potential of polyether ionophore compounds as antimalarials through inhibition on Plasmodium falciparum glutathione S-transferase by molecular docking studies

[Potencial de los compuestos ionóforos de poliéter como antimaláricos mediante la inhibición de glutatión S-transferasa de Plasmodium falciparum a través de estudios de acoplamiento molecular]

Alfian Wika Cahyono1,2, Icha Farihah Deniyati Faratisha1, Nabila Erina Erwan1,3, Rivo Yudhinata Brian Nugraha1,4, Ajeng Maharani Putri1,3, Loeki Enggar Fitri1,4*

1Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

2Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

3Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

4Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

*E-mail: lukief@ub.ac.id

Abstract

Context: Malaria is still a serious global health problem due to the development of drug resistance. It is necessary to find new drugs with renewable mechanisms that are effective in killing parasites. Our previous research has analyzed more than one compound of polyether ionophore group in ethyl acetate Streptomyces hygroscopicus subsp. hygroscopicus extract. Polyether ionophore is known to have a similar mechanism of action to chloroquine which is potent in inhibiting Plasmodium falciparum glutathione S-transferase (PfGST).

Aims: To evaluate the potential effect of polyether ionophore toward PfGST as a target protein through molecular docking.

Methods: PfGST was obtained from Protein Data Bank. Test ligands (polyether ionophore) and control ligands (chloroquine) were obtained from PubChem. Pharmacokinetic analysis was done using SwissADME, molecular docking using PyRx 0.9, visualization using LigPlot and PyMOL, and molecular dynamics using YASARA for the best ligand activity.

Results: Lenoremycin had the highest binding affinity to PfGST (-8.53 kcal/mol) among other polyether ionophores, and nigericin had the best residue bonding with hydrophobic and hydrogen with a binding affinity of -8.25 kcal/mol compared to chloroquine complex in molecular docking and molecular dynamic simulation.

Conclusions: Polyether ionophore could serve as an antimalarial agent better than chloroquine, with nigericin as the best compound candidate in inhibiting PfGST compared to other polyether ionophores.

Keywords: malaria; molecular docking; PfGST; polyether ionophore; Streptomyces hygroscopicus.

jppres_pdf_free

Resumen

Contexto: La malaria sigue siendo un grave problema sanitario mundial debido al desarrollo de resistencia a los fármacos. Es necesario encontrar nuevos fármacos con mecanismos renovables que sean eficaces para matar a los parásitos. Nuestra investigación anterior ha analizado más de un compuesto del grupo ionóforo poliéter en el extracto de acetato de etilo de Streptomyces hygroscopicus subsp. hygroscopicus. Se sabe que el poliéter ionóforo tiene un mecanismo de acción similar al de la cloroquina, que es potente inhibidor de la gutatión S-transferasa de Plasmodiun falciparum (PfGST).

Objetivos: Evaluar el efecto potencial del poliéter ionóforo hacia la PfGST como proteína diana a través del acoplamiento molecular.

Métodos: PfGST se obtuvo del Banco de Datos de Proteínas. Los ligandos de prueba (poliéter ionóforo) y los ligandos de control (cloroquina) se obtuvieron de PubChem. El análisis farmacocinético se realizó con SwissADME, el docking molecular con PyRx 0.9, la visualización con LigPlot y PyMOL, y la dinámica molecular con YASARA para la mejor actividad del ligando.

Resultados: La lenoremycina tuvo la mayor afinidad de unión a PfGST (-8,53 kcal/mol) entre otros poliéteres ionóforos, y la nigericina tuvo la mejor unión de residuos con hidrófobos e hidrógenos con una afinidad de unión de -8,25 kcal/mol en comparación con el complejo de cloroquina en el docking molecular y la simulación dinámica molecular.

Conclusiones: El ionóforo poliéter podría servir como agente antimalárico mejor que la cloroquina, siendo la nigericina el mejor candidato para inhibir el PfGST en comparación con otros ionóforos poliéter.

Palabras Clave: acoplamiento molecular; ionóforo poliéter; malaria; PfGST; Streptomyces hygroscopicus.

jppres_pdf_free
Citation Format: Cahyono AW, Faratisha IFD, Erwan NE, Nugraha RYB, Putri AM, Fitri LE (2022) Potential of polyether ionophore compounds as antimalarials through inhibition on Plasmodium falciparum glutathione S-transferase by molecular docking studies. J Pharm Pharmacogn Res 10(6): 1139–1148. https://doi.org/10.56499/jppres22.1478_10.6.1139
References

Abkar AH, Djati MS, Widodo W (2021) In silico study to predict the potential of beta asarone, methyl piperonylketone, coumaric acid in Piper crocatum as anticancer agents. J Exp Life Sci 11: 89–99. https://doi.org/10.21776/ub.jels.2021.011.03.04

Adovelande J, Schrével J (1996) Carboxylic ionophores in malaria chemotherapy: The effects of monensin and nigericin on Plasmodium falciparum in vitro and Plasmodium vinckei petteri in vivo. Life Sci 59: 309-315. https://doi.org/10.1016/s0024-3205(96)00514-0

Fitri LE, Alkarimah A, Cahyono AW, Lady WN, Endharti AT, Nugraha RYB (2019) Effect of metabolite extract of Streptomyces hygroscopicus subsp. hygroscopicus on Plasmodium falciparum 3D7 in vitro. Iran J Parasitol 14: 444–452.

Gumila C, Ancelin ML, Delort AM, Jeminet G, Vial HJ (1997) Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrob Agents Chemother 41: 523–529. https://doi.org/10.1128/AAC.41.3.523

Hartuti ED, Inaoka DK, Komatsuya K, Miyazaki Y, Miller RJ, Xinying W, Sadikin M, Prabandari EE, Waluyo D, Kuroda M, Amalia E, Matsuo Y, Nugroho NB, Saimoto H, Pramisandi A, Watanabe YI, Mori M, Shiomi K, Balogun EO, Shiba T, Harada S, Nozaki T, Kita K (2018) Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target. Biochim Biophys Acta Bioenerg 1859: 191–200. https://doi.org/10.1016/j.bbabio.2017.12.004

Harwaldt P, Rahlfs S, Becker K (2002) Glutathione S-transferase of the malarial parasite Plasmodium falciparum: Characterization of a potential drug target. Biol Chem 383: 821–830. https://doi.org/10.1515/BC.2002.086

Hiller N, Fritz-Wolf K, Deponte M, Wende W, Zimmermann H, Becker K (2006) Plasmodium falciparum glutathione S-transferase–structural and mechanistic studies on ligand binding and enzyme inhibition. Protein Sci 15: 281–289. https://doi.org/10.1110/ps.051891106

Huczyński A (2012) Polyether ionophores—promising bioactive molecules for cancer therapy. Bioorg Med Chem Lett 22: 7002–7010. https://doi.org/10.1016/j.bmcl.2012.09.046

Kevin II DA, Meujo DA, Hamann MT (2009) Polyether ionophores: Broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Discov 4: 109–146. https://doi.org/10.1517/17460440802661443

Liebau E, Bergmann B, Campbell AM, Teesdale-Spittle P, Brophy PM, Lüersen K, Walter RD (2002) The glutathione S-transferase from Plasmodium falciparum. Mol Biochem Parasitol 124: 85–90. https://doi.org/10.1016/s0166-6851(02)00160-3

Na M, Meujo DAF, Kevin D, Hamann MT, Anderson M, Hill RT (2008) A new antimalarial polyether from a marine Streptomyces sp. H668. Tetrahedron Lett 49: 6282–6285. https://doi.org/10.1016/j.tetlet.2008.08.052

Novilla MN, McClary D, Laudert SB (2017) Chapter 29 – Ionophores, in: Gupta, R.C. (Ed.), Reproductive and Developmental Toxicology (2th Edition). Academic Press, pp. 503–518. https://doi.org/10.1016/B978-0-12-804239-7.00029-9

Otoguro K, Kohana A, Manabe C, Ishiyama A, Ui H, Shiomi K, Yamada H, Omura S (2001) Potent antimalarial activities of polyether antibiotic, X-206. J Antibiot (Tokyo) 54: 658–663. https://doi.org/10.7164/antibiotics.54.658

Perbandt M, Eberle R, Fischer-Riepe L, Cang H, Liebau E, Betzel C (2015) High resolution structures of Plasmodium falciparum GST complexes provide novel insights into the dimer–tetramer transition and a novel ligand-binding site. J Struct Biol 191: 365–375. https://doi.org/10.1016/j.jsb.2015.06.008

PubChem (2008) Sodium carriomycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/23698022 [Accessed 24 August 2021].

PubChem (2007) Septamycin sodium salt. Available: https://pubchem.ncbi.nlm.nih.gov/compound/23693333 [Accessed 24 August 2021].

PubChem (2006) Lenoremycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/6441669 [Accessed 24 August 2021].

PubChem (2005a) Nigericin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/34230 [Accessed 24 August 2021].

PubChem (2005b) Dianemycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/5475287 [Accessed 24 August 2021].

PubChem (2005c) Etheromycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/3042207 [Accessed 24 August 2021].

Rajendran V, Rohra S, Raza M, Hasan GM, Dutt S, Ghosh PC (2015) Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother 60: 1304–1318. https://doi.org/10.1128/AAC.01796-15

Raphemot R, Posfai D, Derbyshire ER (2016) Current therapies and future possibilities for drug development against liver-stage malaria. J Clin Invest 126: 2013–2020. https://doi.org/10.1172/JCI82981

Rivo YB, Alkarimah A, Ramadhani NN, Cahyono AW, Laksmi DA, Winarsih S, Fitri LE (2013) Metabolite extract of Streptomyces hygroscopicus Hygroscopicus inhibit the growth of Plasmodium berghei through inhibition of ubiquitin-proteasome system. Trop Biomed 30: 291–300.

Rutkowski J, Brzezinski B (2013) Structures and properties of naturally occurring polyether antibiotics. Biomed Res Int 2013: 162513. https://doi.org/10.1155/2013/162513

World Health Organization (2020) World malaria report: 20 years of global progress and challenges. Available: https://www.who.int/publications/i/item/9789240015791 [Accessed 25 August 2021].

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Sonchus arvensis L. against SARS-CoV-2 infection

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1126-1138, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1489_10.6.1126

Original Article

Molecular simulation of compounds from n-hexane fraction of Sonchus arvensis L. leaves as SARS-CoV-2 antiviral through inhibitor activity targeting strategic viral protein

[Simulación molecular de compuestos de la fracción de n-hexano de las hojas de Sonchus arvensis L. como antivirales del SARS-CoV-2 a través de la actividad inhibidora dirigida a la proteína viral estratégica]

Dwi Kusuma Wahyuni1,2*, Sumrit Wacharasindhu3, Wichanee Bankeeree2, Hunsa Punnapayak2, Hery Purnobasuki1, Junairiah1, Arif NM Ansori4, Viol Dhea Kharisma1,5, Arli Aditya Parikesit6, Listyani Suhargo1*, Sehanat Prasongsuk1,2*

1Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115, Indonesia.

2Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.

3Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok,10330, Thailand.

4Professor Nidom Foundation, Surabaya, East Java, 60115, Indonesia.

5Computational Virology Research Unit, Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, East Java, 61171, Indonesia.

6Department of Bioinformatics, School of Life Science, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia.

*E-mail: dwi-k-w@fst.unair.ac.id (DKW), listyani-s@fst.unair.ac.id (LS), sehanat.p@chula.ac.th (SP)

Abstract

Context: COVID-19 was caused by the spread and transmission of SARS-CoV-2 at the end of 2019 until now. The problem comes when antiviral drugs have not yet been found and patients infected with SARS-CoV-2 can trigger a cytokine storm condition due to the effects of viral replication. Indonesia has various kinds of medicinal plants, such as Sonchus arvensis L., which are used as medicinal plants.

Aims: To analyze the activity of the inhibitor as SARS-CoV-2 antiviral agents from n-hexane fractions of S. arvensis leaves.

Methods: The sample was collected from GC-MS analysis, PubChem, and Protein Databank database, then drug-likeness identification using Lipinski Rule of Five server and bioactive prediction of bioactive compounds as inhibitor activity was conducted by Molinspiration server. Furthermore, the docking simulation was performed using PyRx 0.9.9 software to determine the binding activity, molecular interaction by Discovery Studio software to identify position and interaction type, 3D molecular visualization by PyMol 2.5. software, and dynamic by CABS-flex 2.0 server to predict interaction stability.

Results: α-Amyrin and β-amyrin from n-hexane fractions of S. arvensis leaves had activity as SARS-CoV-2 inhibitors through interactions on helicase, RdRp, Mpro, and RBD-Spike, both compounds had more negative binding affinity than control drug and can produce stable chemical bond interactions in the ligand-protein complexes. However, the results were merely computational, so they must be validated through an in vivo and in vitro research approach.

Conclusions: Sonchus arvensis L. leaves were predicted to have SARS-CoV-2 antiviral through inhibitor activity by α-amyrin and β-amyrin.

Keywords: antiviral; bioinformatics; SARS-CoV-2; Sonchus arvensis L.

jppres_pdf_free

Resumen

Contexto: La propagación y la transmisión del SARS-CoV-2 han sido causadas por el COVID-19 desde finales de 2019 hasta ahora. El problema surge cuando aún no se han encontrado medicamentos antivirales y los pacientes infectados por el SARS-CoV-2 pueden desencadenar una condición de tormenta de citocinas debido a los efectos de la replicación viral. Indonesia tiene varios tipos de plantas medicinales, como Sonchus arvensis L., que se utilizan como plantas medicinales.

Objetivos: Analizar la actividad inhibidora de SARS-CoV-2 de fracciones de n-hexano de las hojas de S. arvensis.

Métodos: La muestra se recogió del análisis GC-MS, PubChem y la base de datos Protein Databank, luego se identificó la similitud de los fármacos utilizando el servidor Lipinski Rule of Five y se realizó la predicción de los compuestos bioactivos como actividad inhibidora mediante el servidor Molinspiration. Además, se realizó la simulación de acoplamiento mediante el software PyRx 0.9.9 para determinar la actividad de unión, la interacción molecular mediante el software Discovery Studio para identificar la posición y el tipo de interacción, la visualización molecular 3D mediante el software PyMol 2.5. y la dinámica mediante el servidor CABS-flex 2.0 para predecir la estabilidad de la interacción.

Resultados: La α-amirina y la β-amirina de las fracciones de n-hexano de las hojas de S. arvensis tuvieron actividad como inhibidores del SARS-CoV-2 a través de las interacciones en la helicasa, RdRp, Mpro y RBD-Spike, ambos compuestos tuvieron más afinidad de unión negativa que el fármaco de control y pueden producir interacciones de enlace químico estables en los complejos ligando-proteína. Sin embargo, los resultados fueron meramente computacionales, por lo que deben ser validados mediante un enfoque de investigación in vivo e in vitro.

Conclusiones: Se predijo que las hojas de S. arvensis tienen actividad antiviral contra el SARS-CoV-2 a través de la actividad inhibidora de la α-amirina y la β-amirina.

Palabras Clave: antiviral; bioinformática; SARS-CoV-2; Sonchus arvensis L.

jppres_pdf_free
Citation Format: Wahyuni DK, Wacharasindhu S, Bankeeree W, Punnapayak H, Parikesit AA, Kharisma VD, Ansori ANM, Suhargo L, Prasongsuk S (2022) Molecular simulation of compounds from n-hexane fraction of Sonchus arvensis L. leaves as SARS-CoV-2 antiviral through inhibitor activity targeting strategic viral protein. J Pharm Pharmacogn Res 10(6): 1126–1138. https://doi.org/10.56499/jppres22.1489_10.6.1126
References

Ahamed T, Rahman SKM, Shohae AM (2017) Thin layer chromatographic profiling and phytochemical screening of six medicinal plants in Bangladesh. Int J Biosci 11(1): 131-140. https://doi.org/10.12692/ijb/11.1.131-140

Ahmad B, Batool M, Ain QU, Kim MS, Choi S (2021) Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int J Mol Sci 22(17): 9124. https://doi.org/10.3390/ijms22179124

Aldakheel RK, Rehman S, Almessiere MA, Khan FA, Gondal MA, Mostafa A, Baykal A (2020) Bactericidal and in vitro cytotoxicity of Moringa oleifera seed extract and its elemental analysis using laser-induced breakdown spectroscopy. Pharmaceuticals 13(8): 193. https://doi.org/10.1101/2020.04.15.042663

Ali KS, Mohammed ASA, Munayem RT (2017) Phytochemical screening and thin layer chromatography of Acacia etbaica ssp. uncinata leaves. World J Pharm Res 6(12): 1278-1283. https://doi.org/10.20959/wjpr201712-9772

Ansori ANM, Fadholly A, Proboningrat A, Hayaza S, Susilo RJK, Naw SW, Posa GAV, Yusrizal YF, Sibero MT, Sucipto TH, Soegijanto S (2021a) In vitro antiviral activity of Pinus merkusii (Pinaceae) stem bark and cone against dengue virus type-2 (DENV-2). Res J Pharm Technol 14(7): 3705-3708. http://dx.doi.org/10.52711/0974-360X.2021.00641

Ansori ANM, Kharisma VD, Fadholly A, Tacharina MR, Antonius Y, Parikesit AA (2021b) Severe acute respiratory syndrome coronavirus-2 emergence and its treatment with alternative medicines: A review. Res J Pharm Technol 14(10): 5551-5557. https://doi.org/10.52711/0974-360X.2021.00967

Ansori ANM, Susilo RJK, Hayaza S (2021c) Biological activity investigation of phytocomponents in mangosteen (Garcinia mangostana L.): in silico study. Indian J Forensic Med Toxicol 15(1): 847-851. https://doi.org/10.37506/ijfmt.v15i1.13522

Benet LZ, Hosey CM, Ursu O, Oprea TI (2016) BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 101:89-98. https://doi.org/10.1016/j.addr.2016.05.007

Biskup E, Golebiowski R, Stepnowski P, Lojkowska E (2012) Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage. Acta Biochim Pol 59(2): 255–260.

Borg J, Toazara J, Hietter H, Henry M, Schmitt G, Luu B (1987) Neurotrophic effect of naturally occurring long-chain fatty alcohols on cultured CNS. Neurons 213(2): 406-410. https://doi.org/10.1016/0014-5793(87)81531-4

Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, van der Voort PH, Mulder DJ, van Goor H (2020) Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 251(3): 228-248. https://doi.org/10.1002/path.5471

Delyan E (2016) Analysis of composition of volatile compounds of field sow thistle (Sonchus arvensis L.) leaves using the method of gas chromatography with mass-detection. J Pharm Innov 5: 118-121.

Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) Coronavirus disease 2019-COVID-19. Clin Microbiol Rev 33(4): e00028-20. https://doi.org/10.1128/CMR.00028-20

Dibha AF, Wahyuningsih S, Ansori ANM, Kharisma VD, Widyananda MH, Parikesit AA, Sibero MT, Probojati RT, Murtadlo AAA, Trinugroho JP, Sucipto TH, Turista DDR, Rosadi I, Ullah ME, Jakhmola V, Zainul R (2022) Utilization of secondary metabolites in algae Kappaphycus alvarezii as a breast cancer drug with a computational method. Pharmacog J 14(3): 536-543. https://doi.org/10.5530/pj.2022.14.68

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016). Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2): 144. https://doi.org/10.3390/ijms17020144

Duke JA (1992) Handbook of phytochemical constituents of GRAS herbs and other economic plants, CRC Press, Boca Raton, FL, USA.

Ekalu A, Ayo RGO, Habila JD, Hamisu (2019) Bioactivities of phaeophytin a, α-amyrin, and lupeol from Brachystelma togoense Schltr. J Turk Chem Soc 6(3): 411-418. https://doi.org/10.18596/jotcsa.571770

Elnakady YA, Rushdi AI, Franke R, Abutaha N, Ebaid H, Baabbad M, Omar MOM, Al Ghamdi AA (2017) Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. Sci Rep 7: 41453. https://doi.org/10.1038/srep41453

Gade S, Rajamanikyam M, Vadlapudi V, Nukala MK, Aluvala R, Giddigari C, Karanam NJ, Barua NC, Pandey R, Upadhayayula VSV, Srpadi P, Amanchy R, Upadhyayula SM (2017) Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim Biophys Acta 1861(3): 541-550. https://doi.org/10.1016/j.bbagen.2016.11.044

Hassan NM, Alhossary AA, Mu Y, Kwoh CK (2017) Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Scie Rep 7(1): 15451. https://doi.org/10.1038/s41598-017-15571-7

Hendriani R, Sukandar EY, Anggadiredja K. Sukrasno (2015) In vitro evaluation of xanthine oxidase inhibitory activity of selected medicinal plants. Int J Pharm Clin 8: 235-238.

Imelda I, Azaria C, Lucretia T (2017) Protective effect of ethanol extract tempuyung leaf (Sonchus arvensis L.) against gentamicin induced renal injury viewed from blood ureum level. Med Health 1: 575-82. https://doi.org/10.28932/jmh.v1i6.555

Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P (2021) Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 28(9): 740-746. https://doi.org/10.1038/s41594-021-00651-0

Khan RA (2012) Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis. Chem Cent J6(1): 126. https://doi.org/10.1186/1752-153X-6-126

Kharisma VD, Agatha A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Kharisma VD, Ansori ANM, Nugraha AP (2020) Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus type 16 (HPV-16) infection. Biochem Cell Arch 20 (Suppl 1): 3155-3159. https://doi.org/10.35124/bca.2020.20.S1.3155

Listiyani P, Kharisma VD, Ansori AN, Widyananda MH, Probojati RT, Murtadlo AA (2022) In silico phytochemical compounds screening of Allium sativum targeting the Mpro of SARS-CoV-2. Pharmacog J 14(3): 604-609. https://10.5530/pj.2022.14.78

Maio N, Lafont BAP, Sil D, Li Y, Bollinger JM Jr, Krebs C, Pierson TC, Linehan WM, Rouault TA (2021) Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 373(6551): 236-241. https://doi.org/10.1126/science.abi5224

Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, Lieberman LA, Adam GC, Flynn J, McKenna P, Swaminathan G, Hazuda DJ, Olsen DB (2021) SARS-CoV-2 tropism, entry, replication, and propagation: considerations for drug discovery and development. PLoS Pathog 17(2): e1009225. https://doi.org/10.1371/journal.ppat.1009225

Niewolik D, Bednarczyk-Cwynar B, Ruszkowsk P, Sosnowski TR, Jaszcz K (2021) Bioactive betulin and PEG based polyanhydrides for use in drug delivery systems. Int J Mol Sci 22(3): 1090. https://doi.org/10.3390/ijms22031090

Ogwuche CE, Amupitan JO, Ayo RG (2014) Isolation and biological activity of the triterpene ß-amyrin from the aerial plant parts of Maesobotrya barteri (Baill). Med Chem 4: 729–733. https://doi.org/10.4172/2161-0444.1000221

Okoye NN, Ajaghaku DL, Okeke HN, Ilodigwe EE, Nworu CS, Okoye FBC (2014) Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm Biol 52: 1478–1486. https://doi.org/10.3109/13880209.2014.898078

Prahasanti C, Nugraha AP, Kharisma VD, Ansori ANM, Devijanti R, Ridwan TPSP, Ramadhani NF, Narmada IB, Ardani IGAW, Noor TNEBA (2021) A bioinformatic approach of hydroxyapatite and polymethylmethacrylate composite exploration as dental implant biomaterial. J Pharm Pharmacog Res 9(5): 746-754. https://doi.org/10.56499/jppres21.1078_9.5.746

Proboningrat A, Kharisma VD, Ansori ANM, Rahmawati R, Fadholly A, Posa GAV, Sudjarwo SA, Rantam FA, Achmad AB (2022) In silico study of natural inhibitors for human papillomavirus-18 E6 protein. Res J Pharm Technol 15(3): 1251-1256. https://doi.org/10.52711/0974-360X.2022.00209

Putra WE, Kharisma VD, Susanto H (2020) Potential of Zingiber officinale bioactive compounds as inhibitory agent against the IKK-B. AIP Conf Proc 2231(1): 040048. https://doi.org/10.1063/5.0002478

Ramos RS, Borges RS, de Souza JSN, Araujo IF, Chaves MH, Santos CBR (2022) Identification of potential antiviral inhibitors from hydroxychloroquine and 1,2,4,5-tetraoxanes analogues and investigation of the mechanism of action in SARS-CoV-2. Int J Mol Sci 23(3): 1781. https://doi.org/10.3390/ijms23031781

Rumondang M, Kusrini D, Fachriyah E (2013) Isolation, identification and antibacterial test of triterpenoid compounds from n-hexane extract of tempuyung leaves (Sonchus arvensis L.). Pharm Sci 05: 506-507.

Saito M, Kinoshita Y, Satoh I, Bex A, Bertaccini A (2006) Ability of cyclohexenonic long-chain fatty alcohol to reverse diabetes-induced cystopathy in the rat. Eur Urol 51(2): 479-488. https://doi.org/10.1016/j.eururo.2006.06.024

Shaheen U, Akka J, Hinore JS, Girdhar A, Bandaru S, Sumithnath TG, Nayarisseri A, Munshi A (2015) Computer aided identification of sodium channel blockers in the clinical treatment of epilepsy using molecular docking tools. Bioinformation 11(3): 131-137. https://doi.org/10.6026/97320630011131

Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI (2021) Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol 177: 1-9. https://doi.org/10.1016/j.ijbiomac.2021.02.071

Sharma K, Zafar R (2015) Occurrence of taraxerol and taraxasterol in medicinal plants. Pharmacog Rev 9(17): 19-23. https://doi.org/10.4103/0973-7847.156317

Shivanika C, Deepak KS, Venkataraghavan R, Pawan T, Sumitha A, Brindha DP (2022) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 40(2): 585-611. https://doi.org/10.1080/07391102.2020.1815584

Singh AK, Singh A, Singh R, Misra A (2021) Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab Syndr 15(6): 102329. https://doi.org/10.1016/j.dsx.2021.102329

Sunil C, Irudayaraj SS, Duraipandiyan V, AlDhabi NA, Agastian P, Ignacimuthu S (2014) Antioxidant and free radical scavenging effects of ß-amyrin isolated from S. cochinchinensis Moore. leaves. Ind Crops Prod 61: 510–516. https://doi.org/10.1016/j.indcrop.2014.07.005

Tolstikov GA, Flekhter OB, Shultz EE, Baltina LA, Tolstikov AG (2005) Betulin and its derivatives. Chemistry and biological activity. Chem Sustainable Dev 13: 1-29.

Wahyuni DK, Lestari S, Kuncoro EP, Purnobasuki H (2020b) Callus induction and its metabolite profiles of Sonchus arvensis L. under temperature treatment. Ann Biol 36(2): 299–303.

Wahyuni DK, Purnobasuki H, Kuncoro EP, Ekasari W (2020a) Callus induction of Sonchus arvensis L. and its antiplasmodial activity. Afr J Infect 14: 1-7. https://doi.org/10.21010/ajid.v14i1.1

Wahyuni DK, Rahayu S, Purnama PR, Saputro TB, Suharyanto, Wijayanti N (2019) Morpho-anatomical structure and DNA barcode of Sonchus arvensis L. Biodiversitas 20(24): 17-26. https://doi.org/10.13057/biodiv/d200841

Wahyuni DK, Rahayu S, Zaidan AH, Ekasari W, Prasongsuk S, Purnobasuki H (2021) Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. PLoS One 16: e0254804. https://doi.org/10.1371/journal.pone.0254804

Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Antonius Y (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacog Res 9(4): 484-496. https://doi.org/10.56499/jppres21.1047_9.4.484

Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori ANM, Parikesit AA (2021) COVID-19 in silico drug with Zingiber officinale natural product compound library targeting the Mpro protein. Makara J Sci 25(3): 162-171. https://doi.org/10.7454/mss.v25i3.1244

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Valproic acid concentrations in people with epilepsy

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1117-1125, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1500_10.6.1117

Original Article

Serum concentrations of valproic acid in people with epilepsy: Clinical implication

[Concentraciones séricas de ácido valproico en personas con epilepsia: Implicación clínica]

Angel T. Alvarado1*, Juan Cotuá2, Maryori Delgado2, Alexis Morales3, Ana María Muñoz4, César Li Amenero5, María R. Bendezú6, Jorge A. García6, Doris Laos-Anchante6, Felipe Surco-Laos6, Berta Loja7, Mario Bolarte-Arteaga8, Mario Pineda-Pérez9

1International Research Network of Pharmacology and Precision Medicine (REDIFMEP), Human Medicine, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

2Neurology and Neurosurgery of the Sabana Neurosabana, Sincelejo 700001, Colombia.

3Department of Toxicology and Pharmacology, Faculty of Pharmacy and Bioanalysis, Universidad Los Andes, 5101, Merida, Venezuela.

4Institute of Food Science and Nutrition, ICAN, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

5Outpatient Clinic, Victor Larco Herrera Hospital, 15076, Lima, Peru.

6Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, 11004, Ica, Peru.

7Environmental Engineering, Faculty of Engineering, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

8Human Medicine, Continental University, Los Olivos 15304, Lima, Peru.

9Pharmacy and Biochemistry, Faculty of Health Sciences, Scientific University of the South, UCSUR, 15067, Lima, Peru.

*E-mail: angel.alvarado@usil.pe

Abstract

Context: Therapeutic drug monitoring (TDM) allows personalizing the dose of valproic acid in patients with epilepsy to optimize drug therapy, minimize adverse effects and detect interactions.

Aims: To determine valproic acid concentrations in serum samples from people with epilepsy and to analyze its clinical implications.

Methods: Cloned donor enzyme immunoassay; descriptive, cross-sectional, non-randomized, convenience recruitment study of 57 voluntary patients with epilepsy (n = 39 male, 68.42%; n = 18 female, 31.58%) aged between 19 and 62 years. After three months of treatment with valproic acid, a single blood sample was collected from each volunteer at a minimal concentration.

Results: Serum drug concentrations 51.30-100.10 mg/L (SD 5.94) and level/dose 2.17-5.31 (SD 1.14) were observed. Association was shown between the dose ratio/dose of valproic acid (R2 = 0.8693; p<0.05) and the Mann-Whitney U test (p<0.05). Valproic acid monotherapy and association with carbamazepine and phenytoin are not different between treatment groups (Mann-Whitney U test: p = 0.391 > α = 0.05).

Conclusions: Serum valproic acid concentrations are within the therapeutic range, and there is a significant inverse linear correlation between dose ratio/dose, which must be considered to personalize the dose and optimize the pharmacotherapeutic result.

Keywords: dose-dose relationship; epilepsy; serum concentration; therapeutic monitoring; valproic acid.

jppres_pdf_free

Resumen

Contexto: La monitorización terapéutica del fármaco (TDM) permite personalizar la dosis de ácido valproico en pacientes con epilepsia, para optimizar la terapia farmacológica, minimizar los efectos adversos y detectar interacciones.

Objetivos: Determinar las concentraciones de ácido valproico en muestras de suero de personas con epilepsia, y analizar su implicancia clínica.

Métodos: Inmunoensayo de enzima donante clonada; estudio descriptivo, transversal, reclutamiento por conveniencia y no aleatorizado de 57 pacientes voluntarios con epilepsia (n = 39 masculinos, 68,42%; n =18 femenino, 31,58%) edad entre 19 y 62 años. Después de tres meses de tratamiento con ácido valproico, se colectó una sola muestra de sangre de cada voluntario a concentración mínima.

Resultados: Se observó concentraciones de fármaco en suero 51,30-100,10 mg/L (SD 5,94), nivel/dosis 2,17-5,31 (SD 1,14). Se mostró asociación entre relación dosis/dosis de ácido valproico (R2 = 0,8693; p<0,05), y Prueba U de Mann-Whitney (p<0,05). Monoterapia de ácido valproico y asociación con carbamazepina y fenitoína no son diferentes entre los grupos de tratamiento (Prueba U de Mann-Whitney: p = 0,391 > α = 0,05).

Conclusiones: Las concentraciones de ácido valproico en suero se encuentra dentro del intervalo terapéutico y existe una correlación lineal inversa significativa entre relación dosis/dosis, que se deben considerar para personalizar la dosis, y optimizar el resultado farmacoterapéutico.

Palabras Clave: ácido valproico; concentración sérica; relación dosis-dosis; epilepsia; seguimiento terapéutico.

jppres_pdf_free
Citation Format: Alvarado AT, Cotuá J, Delgado M, Morales A, Muñoz AM, Li C, Bendezú MR, García JA, Laos-Anchante D, Surco-Laos F, Loja B, Bolarte-Arteaga M, Pineda-Pérez M (2022) Serum concentrations of valproic acid in people with epilepsy: Clinical implication. J Pharm Pharmacogn Res 10(6): 1117–1125. https://doi.org/10.56499/jppres22.1500_10.6.1117
References

Alvarado A, Sullón L, Salazar-Granara A, Loja B, Miyasato J, Li-Amenero C, Miguel-Ato R, Quiñones L, Varela N, Espinoza O (2018) Estudio de las variantes alélicas del gen CYP2C9 y monitorización clínica del valproato en plasma como fundamento de la medicina personalizada. Diagnóstico 57(2): 73-78. https://doi.org/10.33734/diagnostico.v57i2.79

Alvarado AT, Muñoz AM, Loja B, Miyasato JM, García JA, Cerro RA, Quiñones LA, Varela NM (2019) Study of the allelic variants CYP2C9*2 and CYP2C9*3 in samples of the Peruvian mestizo population. Biomedica 39(3): 601-610. https://doi.org/10.7705/biomedica.4636

Alvarado AT, Pineda M, Cervantes L, Villanueva L, Morales A, Di Bernardo ML, Mora M, Bendezú M, García J, Li C, Alvarado E, Roldán A (2020) Estudio del índice nivel/dosis de la fenitoína en pacientes epilépticos voluntarios de Mérida. Rev Med Clin Condes 31(2): 197-203. https://doi.org/10.1016/j.rmclc.2020.02.008

Alvarado AT, Ybañez-Julca R, Muñoz AM, Tejada-Bechi C, Cerro R, Quiñones LA, Varela N, Alvarado CA, Alvarado E, Bendezú MR, García JA (2021a) Frequency of CYP2D6*3 and *4 and metabolizer phenotypes in three mestizo Peruvian populations. Pharmacia 68(4): 891-898. https://doi.org/10.3897/pharmacia.68.e75165

Alvarado AT, Muñoz AM, Bartra MS, Valderrama-Wong M, González D, Quiñones LA, Varela N, Bendezú MR, García JA, Loja-Herrera B (2021b) Frequency of CYP1A1*2A polymorphisms and deletion of the GSMT1 gene in a Peruvian mestizo population. Pharmacia 68(4): 747–754. https://doi.org/10.3897/pharmacia.68.e71621

Alvarado AT, Paredes G, García G, Morales A, Muñoz AM, Saravia M, Losno R, Bendezú MR, Chávez H, García JA, Pineda M, Sullón-Dextre L (2022a) Serum monitoring of carbamazepine in patients with epilepsy and clinical implications. Pharmacia 69(2): 401-406. https://doi.org/10.3897/pharmacia.69.e82425

Alvarado A, García G, Morales A, Paredes G, Mora M, Muñoz AM, Pariona R, Bendezú MR, Chávez H, García JA, Laos-Anchante D, Loja-Herrera B, Bolarte-Arteaga M, Pineda M (2022b) Phenytoin concentration in people with epilepsy: a comparative study in serum and saliva. Pharmacia 69(3): 809-814. https://doi.org/10.3897/pharmacia.69.e87168

Bartra M, Losno R, Valderrama-Wong M, Muñoz AM, Bendezú M, García J, Surco F, Basurto P, Pineda-Pérez M, Alvarado AT (2021) Pharmacokinetic interactions of azithromycin and clinical implication. Rev Cubana Med Militar 50(3): e02101284.

Ben Mahmoud L, Hakim A, Ghozzi H, Atheymen R, Sahnoun Z, Zeghal K (2017) Influence of age and co-medication on the steady-state pharmacokinetics of valproic acid in Tunisian patients with epilepsy. Rev Neurol 173(3): 159-163. https://doi.org/10.1016/j.neurol.2017.02.004

Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshé SL, Nordli D, Plouin P, Scheffer IE (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51(4): 676-685. https://doi.org/10.1111/j.1528-1167.2010.02522.x

Bonalde R, Morales A, Vicuña-Fernández N, Colmenares S, Saravia M, Losno R, Valderrama-Wong M, Muñoz AM, Alvarado AT (2021) Ketoprofeno como causa de falso positivo en la detección de Δ9-tetrahidrocannabinol en orina. Rev Cubana Farm 54(4): e716.

Buoli M, Serati M, Botturi A, Altamura AC (2018) The risk of thrombocytopenia during valproic acid therapy: A critical summary of available clinical aata. Drugs R D 18(1): 1-5. https://doi.org/10.1007/s40268-017-0224-6

Canisius T, Soons J, Verschuure P, Wammes-van der Heijden EA, Rouhl R, Majoie H (2020) Therapeutic drug monitoring of anti-epileptic drugs – a clinical verification of volumetric absorptive micro sampling. Clin Chem Lab Med 58(5): 828-835. https://doi.org/10.1515/cclm-2019-0784

Carmona-Vázquez CR, Ruiz-García M, Peña-Landín DM, Díaz-García L, Greenawalt SR (2015) Prevalencia de obesidad y síndrome metabólico en pacientes pediátricos con epilepsia tratados en monoterapia con ácido valproico. Rev Neurol 61: 193-201. https://doi.org/10.33588/rn.6105.2015134

Cotuá J, Morales A, Delgado M, Muñoz A, Quiñones L, Salazar A, Alvarado A (2017) Determinación del nivel de dosis del ácido valproico e influencia de los fármacos inductores y no inductores enzimáticos en pacientes voluntarios de la ciudad de Mérida, Venezuela. Horiz Med 17(3): 29-34. http://dx.doi.org/10.24265/horizmed.2017.v17n3.06

Doré M, San Juan AE, Frenette AJ, Williamson D (2017) Clinical Importance of monitoring unbound valproic acid concentration in patients with hypoalbuminemia. Pharmacotherapy 37(8): 900-907. https://doi.org/10.1002/phar.1965

Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, Altman RB, Klein TE (2013) Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 23(4): 236-241. https://doi.org/10.1097/FPC.0b013e32835ea0b2

Guk J, Lee SG, Chae D, Kim JH, Park K (2019) Optimal dosing regimen of phenytoin for Korean epilepsy patients: from premature babies to the elderly. J Pharm Sci 108(8): 2765-2773. https://doi.org/10.1016/j.xphs.2019.03.022

Hernández-Jerónimo MDR, Chehue-Romero A, Olvera-Hernández EG, Robles-Piedras AL (2022) Appropriateness of valproic acid-level monitoring at a childrens’ hospital in Mexico. Ars Pharm 63(1): 11-18. https://doi.org/10.30827/ars.v63i1.20820

Hernández-Ramos JA, Caro-Telle JM, Bruni-Montero MÁ, Canales-Siguero D, Ferrari-Piquero JM (2021) Interaction between valproic acid and meropenem or ertapenem in patients with epilepsy: clinical relevance and results from pharmaceutical intervention. Farm Hosp 45(6): 335-339.

Lampón N, Tutor JC (2013) Valproic acid serum through concentrations estimated from 12 hours post-dose concentrations in patients treated with Depakine® Crono. Farm Hosp 37(1):74-84. https://dx.doi.org/10.7399/FH.2013.37.1.168

Lan X, Mo K, Nong L, He Y, Sun Y (2021) Factors influencing sodium valproate serum concentrations in patients with ppilepsy based on logistic regression analysis. Med Sci Monit 27: e934275. https://doi.org/10.12659/MSM.934275

Li Y, Jiang Y, Cao H, Lin H, Ren W, Huang J, Zhang J (2021) Therapeutic drug monitoring of valproic acid using a dried plasma spot sampling device. J Mass Spectrometry 56(4): e4603. https://doi.org/10.1002/jms.4603

Patsalos PN, Spencer EP, Berry DJ (2018) Therapeutic drug monitoring of anti-epileptic drugs in apilepsy: A 2018 update. Ther Drug Monit 40(5): 526-548. https://doi.org/10.1097/FTD.0000000000000546

Shaikh AS, Liu H, Li Y, Cao L, Guo R (2018) Therapeutic drug monitoring of valproic acid. Pak J Pharm Sci 31(4 Sl): 1773-1776.

Song C, Li X, Mao P, Song W, Liu L, Zhang Y (2022) Impact of CYP2C19 and CYP2C9 gene polymorphisms on sodium valproate plasma concentration in patients with epilepsy. Eur J Hosp Pharm 29(4): 198-201. https://doi.org/10.1136/ejhpharm-2020-002367

Taylor DM, Barnes T, Young A (2019) The Maudsley prescribing guidelines in psychiatry. 13th edition. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, 2019: 214-218.

Tseng YJ, Huang SY, Kuo CH, Wang CY, Wang KC, Wu CC (2020) Safety range of free valproic acid serum concentration in adult patients. PloS One 15(9): e0238201. https://doi.org/10.1371/journal.pone.0238201

Wallenburg E, Klok B, de Jong K, de Maat M, van Erp N, Stalpers-Konijnenburg S, Essink G, van Luin M (2017) Monitoring protein-unbound valproic acid serum concentrations in clinical practice. Ther Drug Monit 39(3): 269-272. https://doi.org/10.1097/FTD.0000000000000405

Wu X, Dong W, Li H, Yang X, Jin Y, Zhang Z, Jiang Y (2021) CYP2C9*3/*3 gene expression affects the total and free concentrations of valproic acid in pediatric patients with epilepsy. Pharmgenomics Pers Med 14: 417-430. https://doi.org/10.2147/PGPM.S301893

Zhao M, Chen Y, Wang M, Li G, Zhao L (2020) Impact of age and genotype on serum concentrations of valproic acid and its hepatotoxic metabolites in Chinese pediatric patients with epilepsy. Ther Drug Monit 42(5): 760-765. https://doi.org/10.1097/FTD.0000000000000751

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Phyllanthus tenellus and Kaempferia parviflora compounds inhibit SARS-CoV-2

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1103-1116, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1485_10.6.1103

Original Article

Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study

[Compuestos de Phyllanthus tenellus Roxb. y Kaempferia parviflora Wall. ex Baker como inhibidores de la proteasa principal del SARS-CoV-2 y de la ARN polimerasa dependiente de ARN: Un estudio de acoplamiento molecular]

Suhaina Supian*, Muhamad Aizuddin Ahmad, Lina Rozano, Machap Chandradevan, Zuraida Ab Rahman

Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia.

*E-mail: suhaina@mardi.gov.my

Abstract

Context: The outbreak of a novel coronavirus, SARS-CoV-2 has caused an unprecedented COVID-19 pandemic. To put an end to this pandemic, effective antivirals should be identified or developed for COVID-19 treatment. However, specific and effective antivirals or inhibitors against SARS-CoV-2 are still lacking.

Aims: To evaluate bioactive compounds from Phyllanthus tenellus and Kaempferia parviflora as inhibitorsagainst two essential SARS-CoV-2 proteins, main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), through molecular docking studies and to predict the drug-likeness properties of the compounds.

Methods: The inhibition potential and interaction of P. tenellus and K. parviflora compounds against Mpro and RdRp were assessed through molecular docking. The drug-likeness properties of the compounds were predicted using SwissADME and AdmetSAR tools.

Results: Rutin and ellagic acid glucoside from P. tenellus and 4-hydroxy-6-methoxyflavone and 5-hydroxy-3,7,4’-trimethoxyflavone from K. parviflora exhibited the highest binding conformations to Mpro by interacting with its substrate binding site that was predicted to halt the Mpro activity. As for RdRp, ellagitannin and rutin from P. tenellus and peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were the best-docked compounds that bound to the RdRp catalytic domain (Asp760 and Asp761) and NTP-entry channel that were anticipated to stop RNA polymerization. However, in the context of drug developability, 4-hydroxy-6-methoxyflavone, 5-hydroxy-3,7,4’-trimethoxyflavone, peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were highly potential to be oral active drugs compared to rutin, ellagic acid glucoside and ellagitannin from P. tenellus.

Conclusions: P. tenellus and K. parviflora compounds, particularly the aforementioned compounds, were suggested as potential inhibitors of SARS-CoV-2 Mpro and RdRp.

Keywords: antiviral; compounds; COVID-19; in silico; Kaempferia parviflora; Phyllanthus tenellus.

jppres_pdf_free

Resumen

Contexto: El brote de un nuevo coronavirus, el SARS-CoV-2, ha provocado una pandemia de COVID-19 sin precedentes. Para poner fin a esta pandemia, es necesario identificar o desarrollar antivirales eficaces para el tratamiento del COVID-19. Sin embargo, aún se carece de antivirales o inhibidores específicos y eficaces contra el SARS-CoV-2.

Objetivos: Evaluar compuestos bioactivos de Phyllanthus tenellus y Kaempferia parviflora como inhibidores contra dos proteínas esenciales del SARS-CoV-2, la proteasa principal (Mpro) y la ARN polimerasa dependiente del ARN (RdRp), mediante estudios de acoplamiento molecular y predecir las propiedades de similitud con los fármacos de los compuestos.

Métodos: El potencial de inhibición y la interacción de los compuestos de P. tenellus y K. parviflora contra la Mpro y la RdRp fueron evaluados mediante docking molecular. Las propiedades de semejanza de los compuestos se predijeron mediante las herramientas SwissADME y AdmetSAR.

Resultados: La rutina y el glucósido del ácido elágico de P. tenellus y la 4-hidroxi-6-metoxiflavona y la 5-hidroxi-3,7,4′-trimetoxiflavona de K. parviflora mostraron las conformaciones de unión más altas a Mpro al interactuar con su sitio de unión al sustrato que se predijo para detener la actividad de Mpro. En cuanto a la RdRp, la elagitanina y la rutina de P. tenellus y la peonidina y la 5,3′-dihidroxi-3,7,4′-trimetoxiflavona de K. parviflora fueron los compuestos mejor acoplados que se unieron al dominio catalítico de la RdRp (Asp760 y Asp761) y al canal de entrada NTP que se anticipó que detendría la polimerización del ARN. Sin embargo, en el contexto del desarrollo de fármacos, la 4-hidroxi-6-metoxiflavona, la 5-hidroxi-3,7,4′-trimetoxiflavona, la peonidina y la 5,3′-dihidroxi-3,7,4′-trimetoxiflavona de K. parviflora tendrían un gran potencial para ser fármacos activos por vía oral en comparación con la rutina, el glucósido de ácido elágico y la elagitanina de P. tenellus.

Conclusiones: Los compuestos de P. tenellus y K. parviflora, en particular los mencionados, fueron sugeridos como potenciales inhibidores de Mpro y RdRp del SARS-CoV-2.

Palabras Clave: antiviral; compuestos; COVID-19; in silico; Kaempferia parviflora; Phyllanthus tenellus.

jppres_pdf_free
Citation Format: Supian S, Ahmad MA, Rozano L, Chandradevan M, Ab Rahman Z (2022) Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study. J Pharm Pharmacogn Res 10(6): 1103–1116. https://doi.org/10.56499/jppres22.1485_10.6.1103
References

Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N (2020)Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 18(1): 275. https://doi.org/10.1186/s12967-020-02439-0

Amin ML (2013) P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7: 27–34. https://doi.org/10.33393/dti.2013.1349

Babar M, Najam‑Us‑Sahar SZ, Ashraf M, Kazi AG (2013) Antiviral drug therapy – Exploiting medicinal plants. J Antivir Antiretrovir 5: 28–36. https://doi.org/10.4172/2155-6113.1000215

Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 10(2): 354–367. https://doi.org/10.1007/s13346-019-00691-6

Chen D, Li H, Li W, Feng S, Deng D (2018) Kaempferia parviflora and its methoxyflavones: Chemistry and biological activities. Evid Based Complement Alternat Med 2018: 4057456. https://doi.org/10.1155/2018/4057456

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11): 3099–3105. https://doi.org/10.1021/ci300367a

Cheng PW, Ng LT, Chiang LC, Lin CC (2006) Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 33(7): 612–616. https://doi.org/10.1111/j.1440-1681.2006.04415.x

Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11: 1117–1121. https://doi.org/10.1002/cmdc.201600182

Eweas AF, Alhossary AA, Abdel-Moneim AS (2021) Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Front Microbiol 11: 592908. https://doi.org/10.3389/fmicb.2020.592908

Farouk F, Shamma R (2019) Chemical structure modifications and nano-technology applications for improving ADME-Tox properties, a review. Arch Pharm Chem Life Sci 352(2): e1800213. https://doi.org/10.1002/ardp.201800213

Jin Z, Wang H, Duan Y, Yang H (2020) The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun 538: 63–71. https://doi.org/10.1016/j.bbrc.2020.10.091

Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368: 779–782. https://doi.org/10.1126/science.abb7498

Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar Drugs 18(4): 225. https://doi.org/10.3390/md18040225

Ghanimi R, Ouhammou A, El Atki Y, Cherkaoui M (2022) Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. J Pharm Pharmacogn Res 10(2): 227–238. https://doi.org/10.56499/jppres21.1200_10.2.227

Goyal B, Goyal D (2020) Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci 22(6): 297–305. https://doi.org/10.1021/acscombsci.0c00058

Kharisma VD, Aghata A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Lamb YN (2022) Nirmatrelvir plus ritonavir: first approval. Drugs 82:585–591. https://doi.org/10.1007/s40265-022-01692-5  

Long C, Romero ME, La Rocco D, Yu J (2021) Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 19: 3339–3348. https://doi.org/10.1016/j.csbj.2021.06.005

Martin R, Li J, Parvangada A, Perry J, Cihlar T, Mo H, Porter D, Svarovskaia E (2021) Genetic conservation of SARS-CoV-2 RNA replication complex in globally circulating isolates and recently emerged variants from humans and minks suggests minimal pre-existing resistance to remdesivir. Antiviral Res 188: 105033. https://doi.org/10.1016/j.antiviral.2021.105033

Mehrbod P, Hudy D, Shyntum D, Markowski J, Łos MJ, Ghavami S (2021) Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomol 11(1): 10. https://doi.org/10.3390/biom11010010

Mohammad Zadeh N, Mashinchi Asl NS, Forouharnejad K, Ghadimi K, Parsa S, Mohammadi S, Omidi A (2021) Mechanism and adverse effects of COVID-19 drugs: a basic review. Int J Physiol Pathophysiol Pharmacol 13(4): 102–109.

Mohd Jusoh NH, Subki A, Yeap SK, Yap KC, Jaganath IB (2019) Pressurized hot water extraction of hydrosable tannins from Phyllanthus tenellus Roxb. BMC Chem 13(1): 134. https://doi.org/10.1186/s13065-019-0653-0

Nutan MM, Goel T, Das T, Malik S, Suri S, Rawat AKS, Srivastava SK, Tuli R, Malhotra S, Gupta SK (2013) Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J Med Res 137: 540–548.

Oh C, Price J, Brindley MA, Widrlechner MP, Qu L, McCoy JA, Murphy P, Hauck C, Maury W (2011) Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virol J 8: 188. https://doi.org/10.1186/1743-422X-8-188

Ortega JT, Suárez AI, Serrano ML, Baptista J, Pujol FH, Rangel HR (2017) The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res Ther 14(1): 57. https://doi.org/10.1186/s12981-017-0183-6

Pitts J, Li J, Perry JK, Du Pont V, Riola N, Rodriguez L, Lu X, Kurhade C, Xie X, Camus G, Manhas S, Martin R, Shi PY, Cihlar T, Porter DP, Mo H, Maiorova E, Bilello JP (2022) Remdesivir and GS-441524 retain antiviral activity against delta, omicron, and other emergent SARS-CoV-2 variants. Antimicrob Agents Chemother 66(6): e0022222. https://doi.org/10.1128/aac.00222-22

Ritchie TJ, Macdonald SJ (2009) The impact of aromatic ring count on compound developability–are too many aromatic rings a liability in drug design? Drug Discovery Today 14(21/22): 1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014

Shivanika C, Deepak Kumar S, Venkataraghavan R, Pawan T, Sumitha A, Brindha Devi P (2020) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 40(2): 585–611. https://doi.org/10.1080/07391102.2020.1815584

Silva T, Veras Filho J, Lúcia CDAE, Antonia DSI, Albuquerque U, Cavalcante de Araújo E (2012) Acute toxicity study of stone-breaker (Phyllanthus tenellus Roxb.). Rev Cienc Farm 33: 205–210.

Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A, Danielson UH (2006) Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 61(8): 717–721.

Sornpet B, Potha T, Tragoolpua Y, Pringproa K (2017) Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med 10(9): 871–876. https://doi.org/10.1016/j.apjtm.2017.08.010

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L (2020) Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 17(6): 613–620. https://doi.org/10.1038/s41423-020-0400-4

Tan WC, Jaganath IB, Manikam R, Sekaran SD (2013) Evaluation of antiviral activities of four local Malaysian Phyllanthus species against herpes simplex viruses and possible antiviral target. Int J Med Sci 10(13): 1817–1829. https://doi.org/10.7150/ijms.6902

Tao J, Hu Q, Yang J, Li R, Li X, Lu C, Chen C, Wang L, Shattock R, Ben K (2007) In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral Res75(3): 227–233. https://doi.org/10.1016/j.antiviral.2007.03.008

te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ (2010) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38(1): 203–214. https://doi.org/10.1093/nar/gkp904

te Velthuis AJ, van den Worm SH, Snijder EJ (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40(4): 1737–1747. https://doi.org/10.1093/nar/gkr893

Vangeel L, Chiu W, De Jonghe S, Maes P, Slechten B, Raymenants J, André E, Leyssen P, Neyts J, Jochmans D (2022) Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 198: 105252. https://doi.org/10.1016/j.antiviral.2022.105252

Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S (2014) Structural disorder in viral proteins. Chem Rev 114(13): 6880–6911. https://doi.org/10.1021/cr4005692

Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75(1): 89–92. https://doi.org/10.1016/j.fitote.2003.08.017

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 368: 409–412. https://doi.org/10.1126/science.abb3405

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 588(7836): E6. https://doi.org/10.1038/s41586-020-2951-z

Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y (2020) From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21(1): 224. https://doi.org/10.1186/s12931-020-01479-w

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Stachytarpheta jamaicensis antibacterial activity

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1087-1102, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1474_10.6.1087

Original Article

Antibacterial activity of Stachytarpheta jamaicensis (L.) Vahl roots extract on some bacteria proteins: An in silico and in vitro study

[Actividad antibacteriana del extracto de raíces de Stachytarpheta jamaicensis (L.) Vahl sobre algunas proteínas bacterianas: un estudio in silico e in vitro]

Juliyatin Putri Utami1*, Sherli Diana2, Rahmad Arifin3, Irham Taufiqurrahman4, Kholifa Aulia Nugraha5, Milka Widya Sari5, Rizky Yoga Wardana5

1Department of Biomedicine, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

 2Department of Conservative Dentistry, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

3Department of Prosthodontic, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

4Departement of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

5Undergraduate of Dentistry Program, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

*E-mail: juliyatin.utami@ulm.ac.id

Abstract

Context: Stachytarpheta jamaicensis (L.) Vahlplant is used for traditional therapy because of its content, including flavonoids, alkaloids, tannins, saponins, terpenoids, and coumarins.

Aims: To determine the antibacterial ability of S. jamaicensis roots extract (SJRE) on some selected mouth bacteria through in vitro and in silico studies.

Methods: Phytochemical analysis and liquid chromatography-high resolution mass spectrometry (LC-HRMS) were done to explore the active compounds on SJRE. Absorption, distribution, metabolism, excretion and toxicity prediction, molecular docking simulation and visualization of luvangetin, and xanthyletin as anti-inflammatory and antibacterial were investigated in silico. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of SJRE against Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, and Actinomyces spp. were calculated.

Results: Luvangetin and xanthyletin are good candidate drug molecules with low toxicity. Xanthyletin has higher binding activity than luvangetin to TNF-α, IL-6, IL-10, peptidoglycan, flagellin, and dectin protein. SJRE exhibited a high antibacterial ability, and MIC. This extract inhibits the growth of A. actinomycetemcomitans, E. faecalis and Actinomyces spp. at various concentrations 2000, 8000, and 8000 µg/mL, respectively, with statistically significant differences (p = 0.0001; p<0.05).

Conclusions: SJRE has an antibacterial ability, and 2000 µg/mL SJRE may act as an antibacterial agent in vitro. In addition, xanthyletin in SJRE has a potential role as an antibacterial and anti-inflammatory in silico.

Keywords: communicable disease; dentistry; infectious disease; medicine; periodontal disease.

jppres_pdf_free

Resumen

Contexto: La planta de Stachytarpheta jamaicensis (L.) Vahl se utiliza para la terapia tradicional por su contenido, que incluye flavonoides, alcaloides, taninos, saponinas, terpenoides y cumarinas.

Objetivos: Determinar la capacidad antibacteriana del extracto de raíces de S. jamaicensis (SJRE) sobre algunas bacterias bucales seleccionadas mediante estudios in vitro e in silico.

Métodos: Se realizaron análisis fitoquímico y cromatografía líquida-espectrometría de masas de alta resolución (LC-HRMS) para explorar los compuestos activos en SJRE. Se investigaron in silico la absorción, la distribución, el metabolismo, la excreción y la predicción de la toxicidad, la simulación de acoplamiento molecular y la visualización de la luvangetina y la xantiletina como antiinflamatorios y antibacterianos. Se calcularon la concentración inhibitoria mínima (MIC) y la concentración bactericida mínima (MBC) de SJRE contra Aggregatibacter actinomycetemcomitans, Enterococcus faecalis y Actinomyces spp.

Resultados: Luvangetin y xanthyletin son buenas moléculas candidatos a fármacos y tienen baja toxicidad. La xantiletina tiene una mayor actividad de unión que la luvangetina a TNF-α, IL-6, IL-10, peptidoglicano, flagelina y proteína dectina. SJRE exhibió una alta capacidad antibacteriana y MIC. Este extracto inhibe el crecimiento de A. actinomycetemcomitans, E. faecalis y Actinomyces spp. a varias concentraciones 2000, 8000 y 8000 µg/mL, respectivamente, con diferencias estadísticamente significativas (p = 0,0001; p<0,05).

Conclusiones: SJRE tiene una capacidad antibacteriana y a 2000 µg/mL SJRE puede actuar como un agente antibacteriano in vitro. Además, la xantiletina en SJRE tiene un papel potencial como antibacteriano y antiinflamatorio in silico.

Palabras Clave: enfermedad infecciosa; enfermedad periodontal; enfermedad transmisible; odontología; medicamento.

jppres_pdf_free
Citation Format: Utami JP, Diana S, Arifin R, Taufiqurrahman I, Nugraha KA, Sari MW, Wardana RY (2022) Antibacterial activity of Stachytarpheta jamaicensis (L.) Vahl roots extract on some bacteria proteins: An in silico and in vitro study. J Pharm Pharmacogn Res 10(6): 1087–1102. https://doi.org/10.56499/jppres22.1474_10.6.1087
References

Aberg CH, Kelk P, Johansson A (2015) Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence, 6(3): 188–195. https://doi.org/10.4161/21505594.2014.982428.

Ardani IGAW, Nugraha AP, Suryani NM, Pamungkas RH, Vitamamy DG, Susanto RA, Sarno R, Fajar A, Kharisma VD, Nugraha AP, Noor TNEBTA (2022) Molecular docking of polyether ether ketone and nano-hydroxyapatite as biomaterial candidates for orthodontic mini-implant fabrication. J Pharm Pharmacogn Res 10(4): 676–686. https://doi.org/10.56499/jppres22.1371_10.4.676

Asmah N (2020) Pathogenicity biofilm formation of Enterococcus faecalis. J Syiah Kuala Dent Soc 5(1): 11. https://doi.org/10.24815/jds.v5i1.20011

Babii C, Mihalache G, Bahrin LG, Neagu AN, Gostin I, Mihai CT, Sârbu LG, Birsa LM, Stefan (2018) A novel synthetic flavonoid with potent antibacterial properties: In vitro activity and proposed mode of action. PLoS ONE 13(4): e0194898. https://doi.org/10.1371/journal.pone.0194898

Berniyanti T, Nugraha AP, Hidayati NN, Kharisma VD, Nugraha AP, Tengku NEBTAN (2022) Computational study of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ binding sites identification on cytokines to predict dental metal allergy: An in silico study. J Pharm Pharmacogn Res 10(4): 687–694. https://doi.org/10.56499/jppres22.1372_10.4.687

Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, Bordes C (2019) Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front Microbiol 10: 829. https://doi.org/10.3389/fmicb.2019.00829

Chinonye I, Uchenna LO, Adanna UA, Rita ON (2019) Phytochemical, antimicrobial and GC/MS analysis of the root of Stachytarpheta cayennensis (L.Vahl) grown in Eastern Nigeria. Int Res J Nat Sci 7(2): 20–32.

Cook L, Lisko DJ, Wong MQ, Garcia RV, Himmel ME, Seidman EG, Bressler B, Levings MK, Steiner TS (2020) Analysis of flagellin-specific adaptive immunity reveals links to dysbiosis in patients with inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 9(3): 485–506. https://doi.org/10.1016/j.jcmgh.2019.11.012

de Souza GA, Leversen NA, Målen H, Wiker HG (2011) Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 75(2): 502–510. https://doi.org/10.1016/j.jprot.2011.08.016

Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Lo Muzio L, Troiano G (2020) Prevalence of bacteria of genus Actinomyces in persistent extraradicular lesions-systematic review. J Cin Med 9(2): 457. https://doi.org/10.3390/jcm9020457

Elashiry M, Tian F, Elashiry M, Zeitoun R, Elsayed R, Andrews ML, Bergeon BE, Cutler, Tay F (2021) Enterococcus faecalis shifts macrophage polarization toward M1-like phenotype with an altered cytokine profile. J Oral Microbiol 13: 1868152. https://doi.org/10.1080/20002297.2020.1868152

Erst AS, Chernonosov AA, Petrova NV, Kulikovskiy MS, Maltseva SY, Wang W, Kostikova VA (2022) Investigation of chemical constituents of Eranthis longistipitata (Ranunculaceae): Coumarins and furochromones. Int J Mol Sci 23: 406. https://doi.org/10.3390/ijms23010406

Fahmi M, Kharisma VD, Ansori AN, Ito M (2021) Retrieval and investigation of data on SARS-CoV-2 and COVID-19 using bioinformatics approach. In Coronavirus Disease-COVID-19 1318: 839–857. https://doi.org/10.1007/978-3-030-63761-3_47

Guimarães AC, Meireles LM, Lemos MF, Guimarães M, Endringer DC, Fronza M, Scherer R (2019) Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24(13): 2471. https://doi.org/10.3390/molecules24132471

Irazoki O, Hernandez SB, Cava F (2019) Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front Microbiol 10: 500. https://doi.org/10.3389/fmicb.2019.00500

Kharisma VD, Agatha A, Ansori AN, Widyananda MH, Rizky WC, Dings TG, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2021) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Kharisma VD, Widyananda MH, Ansori ANM, Nege AS, Naw SW, Nugraha AP (2021) Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res 9(4): 435–445. https://doi.org/10.56499/jppres21.1009_9.4.435

Krueger E, Brown AC (2020) Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol. 35(3): 85–105. https://doi.org/10.1111/omi.12284

Kumar A, Kaur H, Jain A, Nair DT, Salunke DM (2018) Docking, thermodynamics and molecular dynamics (MD) studies of a non-canonical protease inhibitor, MP-4, from Mucuna pruriens. Sci Rep 8: 689. https://doi.org/10.1038/s41598-017-18733-9

Liew PM, Yong YK (2016) Stachytarpheta jamaicensis (L.) Vahl: From traditional usage to pharmacological evidence. Evid Based Complement Alternat Med 2016: 7842340. https://doi.org/10.1155/2016/7842340

Luqman A, Kharisma VD, Ruiz RA, Götz F (2020) In silico and in vitro study of trace amines (TA) and dopamine (DOP) interaction with human alpha 1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cell Physiol Biochem 54: 888–898. https://doi.org/10.33594/000000276

Maisetta G, Batoni G, Caboni P, Esin S, Rinaldi AC, Zucca P (2019) Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement Altern Med 19(1): 82. https://doi.org/10.1186/s12906-019-2487-7

Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C (2022) Dectin-1 signaling update: New perspectives for trained immunity. Front Immunol 13: 812148. https://doi.org/10.3390/cells11182879

Mehrotra N, Singh S (2022) Periodontitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

Mingga M, Oramahi HA, Tavita GE (2019) Utilization of medicinal plants by the community of Raba Village in Menjalin subdistict of Landak Regency [Indonesian]. Jurnal Hutan Lestari 7(1): 97–105.

Nice JB, Balashova NV, Kachlany SC, Koufos E, Krueger E, Lally ET, Brown AC (2018) Aggregatibacter actinomycetemcomitans leukotoxin is delivered to host cells in an LFA-1-indepdendent manner when associated with outer membrane vesicles. Toxins 10(10): 414. https://doi.org/10.3390/toxins10100414

Nugraha AP, Sibero MT, Nugraha AP, Puspitaningrum MS, Rizqianti Y, Rahmadhani D, Kharisma VD, Ramadhani NF, Ridwan RD, Noor TNEBTA, Ernawati DS (2022a) Anti-periodontopathogenic ability of mangrove leaves (Aegiceras corniculatum) ethanol extract: In silico and in vitro study. Eur J Dent. https://doi.org/10.1055/s-0041-1741374

Nugraha AP, Kitaura H, Ohori F, Pramusita A, Ogawa S, Noguchi T, Marahleh A, Nara Y, Kinjo R, Mizoguchi I (2022b) C‑X‑C receptor 7 agonist acts as a C‑X‑C motif chemokine ligand 12 inhibitor to ameliorate osteoclastogenesis and bone resorption. Mol Med Rep 25(3): 78. https://doi.org/10.3892/mmr.2022.12594

Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Nugraha AP, Joestandari F (2022c) Gingival mesenchymal stem cells metabolite decreasing TRAP, NFATc1, and sclerostin expression in LPS-Associated inflammatory osteolysis in vivo. Eur J Dent. https://doi.org/10.1055/s-0042-1748529

Ololade Zs, Oo O, Se K, Oo A (2017) Stachytarpheta jamaicensis leaf extract: Chemical composition, antioxidant, anti-arthritic, anti-inflammatory and bactericidal potentials. J Sci Innov Res 6(4): 119–125.

Onofre SB, Santos ZMQ, Kagimura FY, Mattiello SP (2015) Antioxidant activity, total phenolic and flavonoids contents in Stachytarpheta cayennensis (Rich.) Vahl. (Verbenaceae). J Med Plants Res 9(17): 569–575. https://doi.org/10.5897/JMPR2014.5751

Ozok AR, Persoon IF, Huse SM, Keijser BJF, Wesselink PR, Crielaard W (2012) Ecology of the microbiome of the infected root canal system: A comparison between apical and coronal root segments. Int Endod J 45: 530–541. https://doi.org/10.1111/j.1365-2591.2011.02006.x

Pinzi L, Rastelli G (2019) Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 20(18): 4331. https://doi.org/10.3390/ijms20184331

Prada I, Micó-Muñoz P, Giner-Lluesma T, Micó-Martínez P, Colla-do-Castellano N, Manzano-Saiz A (2019) Influence of microbiology on endodontic failure. Literature review. Med Oral Patol Oral Cir Bucal 24(3): e364-72. https://doi.org/10.4317/medoral.22907

Prahasanti C, Nugraha AP, Kharisma VD, Ansori AN, Devijanti R, Ridwan TP, Ramadhani NF, Narmada IB, Ardani IG, Noor TN (2021) A bioinformatic approach of hydroxyapatite and polymethylmethacrylate composite exploration as dental implant biomaterial. J Pharm Pharmacogn Res 9(5): 746–754. https://doi.org/10.56499/jppres21.1078_9.5.746

Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I (2020) Cytokines and chemokines in periodontitis. Eur J Dent 14(3): 483–495. https://doi.org/10.1055/s-0040-1712718

Ramadhani NF, Nugraha AP, Gofur NRP, Hakiki D, Ridwan RD (2020a) Elevation of c-reactive protein in chronic periodontitis patient as cardiovascular disease risk factor. Biochem Cell Arch 20: 2875–2878.

Ramadhani NF, Nugraha AP, Putra Gofur NR, Permatasari RI, Ridwan RD (2020b) Increased levels of malondialdehyde and cathepsin C by Aggregatibacter actinomycetemcomitans in saliva as aggressive periodontitis biomarkers: A review. Biochem Cell Arch 20: 2895–2901. https://doi.org/10.35124/bca.2020.20.S1.2895

Ramadhani NF, Nugraha AP, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Noor TNEBTA, Ridwan RD, Ernawati DS, Nugraha AP (2022) Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach. J Pharm Pharmacogn Res 10(3): 418–428. http://doi.org/10.56499/jppres21.1316_10.3.418

Ridwan RD (2012) The role of Actinobacillus actinomycetemcomitans fimbrial adhesin on MMP-8 activity in aggressive periodontitis pathogenesis. Dent J (Majalah Kedokteran Gigi) 45(4): 181–186. https://doi.org/10.20473/j.djmkg.v45.i4.p181-186

Ridwan RD, Juliastuti WS, Setijanto RD (2017) Effect of electrolyzed reduced water on Wistar rats with chronic periodontitis on malondialdehyde levels. Dent J (Majalah Kedokteran Gigi) 50(1): 10–13. https://doi.org/10.20473/j.djmkg.v50.i1.p10-13

Ruksakiet K, Hanák L, Farkas N, Hegyi P, Sadaeng W, Czumbel LM, Sang-Ngoen T, Garami A, Mikó A, Varga G, Lohinai Z (2020) Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: A systematic review and meta-analysis of randomized controlled trials. J Endod 46(8): 1032–1041.e7. https://doi.org/10.1016/j.joen.2020.05.002

Shafquat Y, Jabeen K, Farooqi J, Mehmood K, Irfan S, Hasan R, Zafar A (2019) Antimicrobial susceptibility against metronidazole and carbapenem in clinical anaerobic isolates from Pakistan. Antimicrob Resist Infect Control 8: 99. https://doi.org/10.1186/s13756-019-0549-8

Strickertsson JA, Desler C, Martin-Bertelsen T, Machado AM, Wadstrøm T, Winther O, Rasmussen LJ, Friis-Hansen L (2013) Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells. PLoS One 8(4): e63147. https://doi.org/10.1371/journal.pone.0063147

Suhirman S (2015) Phytochemicals screening of several types of blue porterweed (Stachytarpheta jamaicensis L. Vahl). Prosiding Seminar Nasional Swasembada Pangan Polinela 29 April 2015, pp. 93–97. https://doi.org/10.25181/prosemnas.v0i0.516

Tagousop CN, Tamokou JD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L (2018) Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18(1): 252. https://doi.org/10.1186/s12906-018-2321-7

Tatsimo TJDD, Lamshöft M (2015) LC-MS guided isolation of antibacterial and cytotoxic constituents from Clausena anisata. Med Chem Res 24: 1468–1479. https://doi.org/10.1007/s00044-014-1233-4

Ticoalu JP, Kepel BJ, Mintjelungan CN (2016) Hubungan periodontitis dengan penyakit jantung koroner pada pasien di RSUP Prof. Dr. R. D. Kandou Manado. e-GiGi 4(2): 277–281. https://doi.org/10.35790/eg.4.2.2016.14222

Tuan Anh HL, Kim DC, Ko W, Ha TM, Nhiem NX, Yen PH, Tai BH, Truong LH, Long VN, Gioi T, Hong Quang T, Minh CV, Oh H, Kim YC, Kiem PV (2017) Anti-inflammatory coumarins from Paramignya trimera. Pharm Biol 55(1): 1195–1201. https://doi.org/10.1080/13880209.2017.1296001

Utami JK, Kurnianingsih N, Faisal MR (2022) An in silico study of the cathepsin L inhibitory activity of bioactive compounds in Stachytarpheta jamaicensis as a Covid-19 drug therapy. Makara J Sci 26(1): 3. https://doi.org/10.7454/mss.v26i1.1269

Utami JP, WasiaturrahmahY, Putri KTD (2021) Hydroxyl radical scavenging activity of Stachytarpheta jamaicensis root extract using in vitro deoxyribose degradation assay. Trad Med J 26(2): 103–112. https://doi.org/10.22146/mot.61746

Utami K, Sari I, Nurhafidhah (2019) Pengaruh Pemberian Topikal Ekstrak Etanol Daun Pecut Kuda (Stachytarpheta jamaicensis (L.) Vahl) Terhadap Penyembuhan Luka Terbuka Pada Punggung Mencit (Mus musculus). J Ilm Pendidik Kim Indones 2(1): 21–27.

Vu TT, Kim H, Tran VK, Vu HD, Hoang TX, Han JW, Choi YH, Jang KS, Choi GJ, Kim JC (2017) Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS One 12(7): e0181499. https://doi.org/10.1371/journal.pone.0181499

Wahyudi VA, Seqip P, Sahirah N, Resya N (2019) Formulation of throat relief candy from Stacytarpheta jamaicensis leaf as a functional food. J Pangan Agroind 7(4): 31–41. https://doi.org/10.21776/ub.jpa.2019.007.04.4

Wang CY, Chen YW, Hou CY (2019) Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop 22(1): 230–238. https://doi.org/10.1080/10942912.2019.1582541

Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori AN, Parikesit AA (2021) Covid-19 in silico drug with Zingiber officinale natural product compound library targeting the mpro protein. Makara J Sci 25(3): 5. https://doi.org/10.7454/mss.v25i3.1244

Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X (2020) Advances in pharmacological activities of terpenoids. Nat Prod Comm 15(3). 1–13. https://doi.org/10.1177/1934578X20903555

Yuliana Y, Auwaliyah F, Fatmawati S (2019) 6β-hydroxyipolamiide of Stachytarpheta jamaicensis leaves. J Technol Sci 30(3): 68–72. http://dx.doi.org/10.12962/j20882033.v30i3.5408

Zhang W, Wang J, Chen Y, Zheng H, Xie B, Sun Z (2020) Flavonoid compounds and antibacterial mechanisms of different parts of white guava (Psidium guajava L. cv. Pearl). Nat Prod Res 34(11): 1621–1625. https://doi.org/10.1080/14786419.2018.1522313

Zhou X, Nanayakkara S (2021) Chlorhexidine and sodium hypochlorite provide similar antimicrobial effect in root canal disinfection. J Evid Based Dent Pract 21(3): 101577. https://doi.org/10.1016/j.jebdp.2021.101577

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Rhodomyrtus tomentosa and HIF1α-VEGF expressions in placental

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1076-1086, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1517_10.6.1076

Original Article

Effect of Rhodomyrtus tomentosa Hassk. on HIF1α and VEGF expressions on hypertension placental

[Efecto de Rhodomyrtus tomentosa Hassk. sobre las expresiones de HIF1α y VEGF sobre la hipertensión placentaria]

Putri Cahaya Situmorang1*, Syafruddin Ilyas1, Doni Aldo Samuel Siahaan1, Martina Restuati2, Endang Ratna Sari1, Chairunisa Chairunisa1, Muhammad Faldhy Maliki1

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia.

2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia.

*E-mail: putri.cahaya@usu.ac.id

Abstract

Context: HIF1α and VEGF are proteins marker oxidative stress and a decrease in placental growth factor (PlGF). Decreasing of HIF1α and VEGF in rats displayed poor trophoblast differentiation, placental abnormalities, and fetal mortality. Rhodomyrtus tomentosa is a flowering plant in the Myrtaceae family that has the potential to be a source of health-promoting chemicals.

Aims: To analyze HIF1α and VEGF in serum and hypertension placental tissue after giving Rhodomyrtus tomentosa (RHO) leaves extract.

Methods: Six treatments were given to the rats that were identified as being pregnant and pregnant rats with hypertension were given RHO with three doses: (a) normal pregnant rats (control); (b) hypertensive rats; (c) hypertensive rats + 100 mg/kg BW of RHO; (d) hypertensive rats +200 mg/kg BW of RHO; and (e) hypertensive rats + 400 mg/kg BW of RHO and (f) hypertensive rats + nifedipine. Under ketamine anesthesia, pregnant rats were removed on their 20th day of gestation. Immunohistochemistry and ELISA were used to assess HIF1α and VEGF protein expression.

Results: There was a significant difference (p<0.01) in the expression of HIF1α and VEGF in the labyrinthine zone and yolk sac of the rat placenta between the normal (C-) and hypertensive (C+) groups. HIF1α and VEGF expression decreased when RHO was administered at doses ranging from 100 to 400 mg/kg BW. However, there was no significant change (p>0.05) in VEGF expression in the basal zone of the rat placenta across all groups.

Conclusions: Rhodomyrtus tomentosa leaves extract decreases HIF1α and VEGF expressions in serum and repairs the tissue of the placenta’s labyrinth, basal, and yolk sacs.

Keywords: basal zone; HIF1α; hypertension; labyrinth zone; plant extract; VEGF; yolk sac.

jppres_pdf_free

Resumen

Contexto: HIF1α y VEGF son proteínas marcadoras de estrés oxidativo y disminución del factor de crecimiento placentario (PlGF). La disminución de HIF1α y VEGF en ratas mostró una pobre diferenciación del trofoblasto, anomalías placentarias y mortalidad fetal. Rhodomyrtus tomentosa es una planta con flores de la familia Myrtaceae que tiene el potencial de ser una fuente de productos químicos que promueven la salud.

Objetivos: Analizar HIF1α y VEGF en suero y tejido placentario hipertenso después de administrar extracto de hojas de Rhodomyrtus tomentosa (RHO).

Métodos: Se administraron seis tratamientos a las ratas que se identificaron como preñadas ya las ratas preñadas con hipertensión se les administró RHO con tres dosis: (a) ratas preñadas normales (control); (b) ratas hipertensas; (c) ratas hipertensas + 100 mg/kg de peso corporal de RHO; (d) ratas hipertensas +200 mg/kg de peso corporal de RHO; y (e) ratas hipertensas + 400 mg/kg de peso corporal de RHO y (f) ratas hipertensas + nifedipina. Bajo anestesia con ketamina, las ratas preñadas se extrajeron en su día 20 de gestación. Se usaron inmunohistoquímica y ELISA para evaluar la expresión de proteínas HIF1α y VEGF.

Resultados: Hubo diferencia significativa (p<0.01) en la expresión de HIF1α y VEGF en la zona laberíntica y saco vitelino de la placenta de rata entre los grupos normal (C-) e hipertenso (C+). La expresión de HIF1α y VEGF disminuyó cuando se administró RHO en dosis que oscilaron entre 100 y 400 mg/kg de peso corporal. Sin embargo, no hubo cambios significativos (p>0,05) en la expresión de VEGF en la zona basal de la placenta de rata en todos los grupos.

Conclusiones: El extracto de hojas de Rhodomyrtus tomentosa disminuye las expresiones de HIF1α y VEGF en suero y repara el tejido del laberinto, basal y saco vitelino de la placenta.

Palabras Clave: extracto de plantas; HIF1α; hipertensión; saco vitelino; VEGF; zona basal; zona laberinto.

jppres_pdf_free
Citation Format: Situmorang PC, Ilyas S, Siahaan DAS, Restuati M, Sari ER, Chairunisa C, Maliki MF (2022) Effect of Rhodomyrtus tomentosa Hassk. on HIF1α and VEGF expressions on hypertension placental. J Pharm Pharmacogn Res 10(6): 1076–1086. https://doi.org/10.56499/jppres22.1517_10.6.1076
References

Belkacemi L, Desai M, Nelson DM, Ross MG (2011) Altered mitochondrial apoptotic pathway in placentas from undernourished rat gestations. Am J Physiol Regul Integr Comp Physiol 301(6): R1599-R1615. https://doi.org/10.1152/ajpregu.00100.2011

Braunthal S, Brateanu A (2019) Hypertension in pregnancy: Pathophysiology and treatment. SAGE Open Med 7: 2050312119843700. https://doi.org/10.1177/2050312119843700

Fan X, Rai A, Kambham N, Sung JF, Singh N, Petitt M, Dhal S, Agrawal R, Sutton RE, Druzin ML, Gambhir SS, Ambati BK, Cross JC, Nayak NR (2014) Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest 124(11): 4941-4952. https://doi.org/10.1172/JCI76864

Fan X, Muruganandan S, Shallie PD, Dhal S, Petitt M, Nayak NR (2021) VEGF maintains maternal vascular space homeostasis in the mouse placenta through modulation of trophoblast giant cell functions. Biomolecules 11(7): 1062. https://doi.org/10.3390/biom11071062

Furukawa S, Tsuji N, Sugiyama A (2019) Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol 32(1): 1–17. https://doi.org/10.1293/tox.2018-0042

Furukawa S, Kuroda Y, Sugiyama A (2014) A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 27(1): 11–18. https://doi.org/10.1293/tox.2013-0060

Hemberger M (2012) Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med44: 325–337. https://doi.org/10.3109/07853890.2012.663930

Hutagaol JM, Bintang, Hidayat B (2021) Identification of highland peat vegetation in the sub-district of Lintong Nihuta, Humbang Hasundutan Regency, North Sumatera, Indonesia. IOP Conf Series: Earth Environ Sci 912: 012027 https://doi.org/10.1088/1755-1315/912/1/012027

Ilyas S, Murdela F, Hutahaean S, Situmorang PC (2019) The effect of haramounting leaf ethanol extract (Rhodomyrtus tomentosa (Aiton) Hassk.) on the number of leukocyte type and histology of mice pulmo (Mus musculus L.) exposed to electronic cigarette. Open Access Maced J Med Sci 7(11): 1750-1756. https://doi.org/10.3889/oamjms.2019.467

Ilyas S, Situmorang PC (2021) Role of heat shock protein 70 (HSP-70) after giving nanoherbal haramonting (Rhodomyrtus tomentosa) in preeclamptic rats. Pak J Biol Sci 24: 139-145. https://doi.org/10.3923/pjbs.2021.139.145

Irianti E, Ilyas S, Hutahaean S, Rosidah R, Situmorang PC (2020) Placental histological on preeclamptic rats (Rattus norvegicus) after administration of nanoherbal haramonting (Rhodomyrtus tomentosa). Res J Pharm Technol 13(8): 3879-3882. https://doi.org/10.5958/0974-360X.2020.00686.1

Kametas NA, Nzelu D, Nicolaides KH (2022) Chronic hypertension and superimposed preeclampsia: Screening and diagnosis. Am J Obstet Gynecol 226(2S): S1182-S1195. https://doi.org/10.1016/j.ajog.2020.11.029

Kubo T, Fujie K, Yamashita M, Misu Y (1981) Antihypertensive effects of nifedipine on conscious normotensive and hypertensive rats. J Pharmacobiodyn 4(4): 294-300. https://doi.org/10.1248/bpb1978.4.294

Kurnianto A, Kurniadi Sunjaya D, Ruluwedrata Rinawan F, Hilmanto D (2020) Prevalence of hypertension and its associated factors among Indonesian adolescents. Int J Hypertens 2020: 4262034. https://doi.org/10.1155/2020/4262034

Li Q, Yao B, Endler L, Chen L, Shibasaki F, Cheng H (2018) Int6/eIF3e silencing promotes placenta angiogenesis in a rat model of pre-eclampsia. Sci Rep 8(1): 8944. https://doi.org/10.1038/s41598-018-27296-2

Malnou EC, Umlauf D, Mouysset M, Cavaillé J (2019) Imprinted microRNA gene clusters in the evolution, development, and functions of mammalian placenta.Front Genet 9: 706. https://doi.org/10.3389/fgene.2018.00706

Maria JM, Warrington JP (2019) Cerebral blood flow regulation in pregnancy, hypertension, and hypertensive disorders of pregnancy. Brain Sci 9(9): 224. https://doi.org/10.3390/brainsci9090224

Morfoisse F, Renaud E, Hantelys F, Prats AC, Garmy-Susini B (2014) Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis. Mol Cell Oncol 1(1): e29907. https://doi.org/10.4161/mco.29907

Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ (2021) Vascular dysfunction in preeclampsia. Cells 10(11): 3055. https://doi.org/10.3390/cells10113055

Pandey AK, Singhi EK, Arroyo JP, Ikizler TA, Gould ER, Brown J, Beckman JA, Harrison DG, Moslehi J (2018) Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension 71(2): e1-e8. https://doi.org/10.1161/HYPERTENSIONAHA.117.10271

Phipps EA, Benzing TR, Thandani TR, Karumanchi SA (2019) Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15(5): 275–289. https://doi.org/10.1038/s41581-019-0119-6

Reshef T (2012) The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod 87(6): 134. https://doi.org/10.1095/biolreprod.112.102723

Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD (2010) Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol 30(6): 591-601. https://doi.org/10.1016/j.semnephrol.2010.09.007

Ross C, Boroviak TE (2020) Origin and function of the yolk sac in primate embryogenesis. Nature Comm 11: 3760. https://doi.org/10.1038/s41467-020-17575-w

Salles AMR, Galvao TF, Silva MT, Motta LCD, Pereira MG (2012) Antioxidants for preventing preeclampsia: A systematic review. ScientificWorldJournal 2012: 243476. https://doi.org/10.1100/2012/243476

Sarkar AA, Sabatino JA, Sugrue KF, Zohn IE (2016) Abnormal labyrinthine zone in the Hectd1-null placenta. Placenta 38: 16-23. https://doi.org/10.1016/j.placenta.2015.12.002

Siragher E, Sferruzzi-Perri AN (2021) Placental hypoxia: What have we learnt from small animal models. Placenta113: 29-47. https://doi.org/10.1016/j.placenta.2021.03.01

Situmorang PC, Ilyas S (2018) Description of testis histology of Mus musculus after giving nano herbal Rhodomyrtus tomentosa (haramonting). Asian J Pharm Clin Res 11: 461-463. https://doi.org/10.22159/ajpcr.2018.v11i11.29042

Situmorang PC, Ilyas S, Hutahaean S, Rosidah R (2020) Components and acute toxicity of nanoherbal haramonting (Rhodomyrtus tomentosa). J Herbmed Pharmacol 10: 139-148. https://doi.org/10.34172/jhp.2021.15

Situmorang PC, Ilyas S, Hutahaean S, Rosidah R (2021) Histological changes in placental rat apoptosis via FasL and cytochrome c by the nano-herbal Zanthoxylum acanthopodium. Saudi J Bio Sci 28(5): 3060–3068. https://doi.org/10.1016/j.sjbs.2021.02.047

Situmorang PC, Syahputra RA, Simanullang RH (2022) EGFL7 and HIF-1a expression on human trophoblast placental by Rhodomyrtus tomentosa and Zanthoxylum acanthopodium. Pak J Biol Sci 25(2): 123-130. https://doi.org/10.3923/pjbs.2022.123.130

Strowitzki C, Taylor (2019) Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: Unique or ubiquitous? Cells 8(5): 384. https://doi.org/10.3390/cells8050384

Villanueva-Toledo JR, Chale-Dzul J, Castillo-Bautista C, Olivera-Castillo LA, Rangel-Méndez LA, Graniel-Sabido MJ, Moo-Puc RE (2020) Hepatoprotective effect of an ethanol extract of Tradescantia pallida against CCl4-induced liver damage in rats. S Afr J Bot 13: 444–450. https://doi.org/10.1016/j.sajb.2020.09.031

Vo T, Ngo D (2019) The health beneficial properties of Rhodomyrtus tomentosa as potential functional food. Biomolecules 9(2): 76. https://doi.org/10.3390/biom9020076

Wang HJ, Lu CK, Chen WC, Chen AC, Ueng YF (2019) Shenmai-Yin decreased the clearance of nifedipine in rats: The involvement of time-dependent inhibition of nifedipine oxidation. J Food Drug Anal 27(1): 284-294. https://doi.org/10.1016/j.jfda.2018.10.005

Zhang B, Kim MY, Elliot G, Zhou Y, Zhao G, Li D, Lowdon RF, Gormley M, Kapidzic M, Robinson JF, McMaster MT, Hong C, Mazor T, Hamilton E, Sears RL, Pehrsson EC, Marra MA, Jones SJM, Bilenky M, Hirst M, Wang T, Costello JF, Fisher SJ (2021) Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. Dev Cell 56(9): 1238–1252.e5. https://doi.org/10.1016/j.devcel.2021.04.001

Zhang YB, Li W, Jiang L, Yang L, Chen NH, Wu ZN, Li YL, Wang GC (2018) Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 153: 111–119. https://doi.org/10.1016/j.phytochem.2018.05.018.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)