Bioadsorption of silver ions by chitin derivatives

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 101-109, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1529_11.1.101

Original Article

Bioadsorption of silver ions by calcareous chitin, chitin and chitosan

[Bioadsorción de iones de plata por quitina calcárea, quitina y quitosano]

John Jáuregui-Nongrados1, Angel T. Alvarado2*, Miguel Mucha1, Ana M. Muñoz3, Haydee Chávez4, Aura Molina-Cabrera4, Pompeyo A. Cuba-García4, Elizabeth J. Melgar-Merino4, Mario Bolarte-Arteaga5, Jaime A. Mori-Castro6

1Environmental Engineering, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

2International Research Network of Pharmacology and Precision Medicine (REDIFMEP), San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

3Institute of Food Science and Nutrition, ICAN, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

4Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, 11004, Ica, Peru.

5Human Medicine, Continental University, Los Olivos 15304, Lima, Peru.

6Professional School of Nursing, Faculty of Health Sciences, Norbert Wiener University, Lince 15046, Lima, Peru.

*E-mail: angel.alvarado@usil.pe

Abstract

Context: Calcareous chitin, chitin, chitosan, and their modifications are used as bioadsorbents of metals and dyes that cause environmental pollution, endocrine disruption, and human diseases.

Aims: To evaluate the selective bioadsorption of silver ions (Ag+) by calcareous chitin, chitin, and chitosan.

Methods: Experimental and prospective study. The presence of functional groups of the bioadsorbents was identified by Fourier-transformed infrared spectroscopy (FT-IR), 1H-NMR spectroscopy and scanning electron microscopy (SEM). The Langmuir, Freundlich, and Elovich models were applied to describe the adsorption capacity of bioadsorbents according to granule size (20-40, 40-60, 60-80 meshes) and temperature (10, 20, and 30°C).

Results: The FT-IR spectrum of calcareous chitin indicates the presence of carbonate (CO3= 1420 cm-1), amide III (1313 cm-1), –OH groups (3441.90 cm-1), and pyranose structure (952.83 cm-1); chitin has –OH groups (3441.90 cm-1), NH (3268 cm-1), amide I (1654 cm-1) and II (1559 cm-1); chitosan has –OH groups (3419.90 cm-1), –NH (3200 cm-1), amide I (1712.18 cm-1), –NH2 (1654.46 cm-1), amide III (1317.11 cm-1) and pyranose structure (1070.12 cm-1 and 1031 cm-1). The Langmuir model indicates greater bioadsorption of Ag+ ions at smaller particle sizes (60-80 = 0.25-0.18 mm) and at a temperature of 20-30°C.

Conclusions: The bioadsorption of silver ions (Ag+) by chitosan is greater with respect to calcareous chitin and chitin; the Langmuir model fits for the Ag+ isotherm and suggests that the process is controlled by physisorption.

Keywords: bioadsorption; calcareous chitin; chitin; chitosan; silver ions.

Resumen

Contexto: La quitina calcárea, quitina, quitosano y sus modificaciones se utilizan como bioadsorbentes de metales y tintes causantes de la contaminación medioambiental, disrupción endocrina y enfermedades en humanos.

Objetivos: Evaluar la bioadsorción selectiva de iones plata (Ag+) por quitina calcárea, quitina y quitosano.

Métodos: Estudio experimental y prospectivo. Se identificó la presencia de grupos funcionales de los bioadsorbentes por espectroscopia infrarroja transformada de Fourier (FT-IR), espectroscopia 1H-RMN y por microscopía electrónica de barrido (SEM). Se aplicó los modelos de Langmuir, Freundlich, y Elovich, para describir la capacidad de adsorción de los bioadsorbentes de acuerdo al tamaño del granulo (20-40, 40-60, 60-80 meshes) y temperatura (10, 20 y 30°C).

Resultados: El espectro FT-IR de la quitina calcárea indica presencia de carbonato (CO3= 1420 cm-1), amida III (1313 cm-1), grupos –OH (3441,90 cm-1) y estructura piranósica (952,83 cm-1); quitina presenta grupos –OH (3441,90 cm-1), NH (3268 cm-1), amida I (1654cm-1) y II (1559 cm-1); quitosano se identifica grupos –OH (3419.90 cm-1), –NH (3200 cm-1), amida I (1712.18 cm-1), –NH2 (1654.46 cm-1), amida III (1317.11 cm-1) y estructura piranósica (1070.12 cm-1 y 1031 cm-1). El modelo de Langmuir indica mayor bioadsorción de iones Ag+ a menor tamaño de partícula (60-80 = 0.25-0.18 mm) y a una temperatura de 20-30°C.

Conclusiones: La bioadsorción de iones de plata (Ag+) por quitosano es mayor respecto a quitina calcárea y quitina; el modelo de Langmuir se ajusta para la isoterma de Ag+ y sugiere que el proceso está controlado por fisisorción.

Palabras Clave: bioadsorción; iones plata; quitina; quitina calcárea; quitosano.

Citation Format: Jáuregui J, Alvarado AT, Mucha M, Muñoz AM, Chávez H, Molina A, Cuba PA, Melgar EJ, Bolarte M, Mori JA (2023) Bioadsorption of silver ions by calcareous chitin, chitin and chitosan. J Pharm Pharmacogn Res 11(1): 101–109. https://doi.org/10.56499/jppres22.1529_11.1.101
References

Al-Wabel MI, Ahmad M, Usman ARA, Al-Farraj ASF (2021) Designing chitosan based magnetic beads with Conocarpus waste-derived biochar for efficient sulfathiazole removal from contaminated water. Saudi J Biol Sci 28(11): 6218–6229. https://doi.org/10.1016/j.sjbs.2021.06.072

Azizkhani S, Hussain SA, Abdullah N, Ismail MHS, Mohammad AW (2021) Synthesis and application of functionalized Graphene oxide-silica with chitosan for removal of Cd (II) from aqueous solution. J Environ Health Sci Eng 19(1): 491–502. https://doi.org/10.1007/s40201-021-00622-z

Banisheykholeslami F, Hosseini M, Najafpour Darzi G (2021) Design of PAMAM grafted chitosan dendrimers biosorbent for removal of anionic dyes: Adsorption isotherms, kinetics and thermodynamics studies. International J Biol Macromol 177: 306–316. https://doi.org/10.1016/j.ijbiomac.2021.02.118

Basova TV, Vikulova ES, Dorovskikh SI, Hassan A, Morozova NB (2021) The use of noble metal coatings and nanoparticles for the modification of medical implant materials. Maters Des 204: 109672. https://doi.org/10.1016/j.matdes.2021.109672

Ding Y, Zhang S, Liu B, Zheng H, Chang C, Ekberg C (2019) Recovery of precious metals from electronic waste and spent catalysts: A review. Resour Conserv Recycl 141: 284–298. https://doi.org/10.1016/j.resconrec.2018.10.041

El-Naggar ME, Radwan EK, Rashdan HRM, El-Wakeel ST, Koryam AA, Sabt A (2022) Simultaneous removal of Pb2+ and direct red 31 dye from contaminated water using N-(2-hydroxyethyl)-2-oxo-2H-chromene-3-carboxamide loaded chitosan nanoparticles. RSC Adv 12(29): 18923–18935. https://doi.org/10.1039/D2RA02526D

Gao Y, Zhou Y, Wang H, Lin W, Wang Y, Sun D, Hong J, Li, Q (2013) Simultaneous silver recovery and cyanide removal from electroplating wastewater by pulse current electrolysis using static cylinder electrodes. Ind Eng Chem Res 52(17): 5871–5879. https://doi.org/10.1021/ie301731g

Golnaraghi Ghomi A, Asasian-Kolur N, Sharifian S, Golnaraghi A (2020) Biosorpion for sustainable recovery of precious metals from wastewater. J Environ Chem Eng 8(4): 103996. https://doi.org/10.1016/j.jece.2020.103996

Goulet PJG, Lennox RB (2010) New insights into Brust−Schiffrin metal nanoparticle synthesis. J Am Chem Soc 132: 9582–9584. https://doi.org/10.1021/ja104011b

Hsu E, Barmak K, West AC, Park AHA (2019) Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem 21(5): 919–936. https://doi.org/10.1039/C8GC03688H

Jiang Y, Fu C, Wu S, Liu G, Guo J, Su Z (2017) Determination of the deacetylation degree of chitooligosaccharides. Mar Drugs 15(11): 332. https://doi.org/10.3390/md15110332

Khayrova A, Lopatin S, Varlamov V (2021) Obtaining chitin, chitosan and their melanin complexes from insects. Int J of Biol Macromol 167: 1319–1328. https://doi.org/10.1016/j.ijbiomac.2020.11.086

Kumar D, Niraula P, Aryal H, Budhathoki B, Phuyal S, Marahatha R, Subedi K (2022) Plant-mediated green synthesis of Ag NPs and their possible applications: A critical review. J Nanotechnol 2022: 2779237. https://doi.org/10.1155/2022/2779237

Lee SH, Jun BH (2019) Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci 20(4): 865. https://doi.org/10.3390/ijms20040865

Li Q, Mao Q, Li M, Zhang S, He G, Zhang W (2020) Cross-linked chitosan microspheres entrapping silver chloride via the improved emulsion technology for iodide ion adsorption. Carbohydr Polym 234: 115926. https://doi.org/10.1016/j.carbpol.2020.115926

Mao J, Lin S, Lu XJ, Wu XH, Zhou T, Yun YS (2020) Ion-imprinted chitosan fiber for recovery of Pd(II): Obtaining high selectivity through selective adsorption and two-step desorption. Environ Res 182: 108995. https://doi.org/10.1016/j.envres.2019.108995

Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, Babapoor A, Arjmand O (2018) Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif Cells Nanomed Biotechnol 46(Supp. 3): S855–S872. https://doi.org/10.1080/21691401.2018.1517769

Murcia-Salvador A, Pellicer JA, Fortea MI, Gómez-López VM, Rodríguez-López MI, Núñez-Delicado E, Gabaldón JA (2019) Adsorption of direct blue 78 using chitosan and cyclodextrins as adsorbents. Polymers 211(6): 1003. https://doi.org/10.3390/polym11061003

Oliver AL, Oliver A (2017) La nanotecnología, la arquitectura y el arte. Mundo Nano 10(19): 117–128. https://doi.org/10.22201/ceiich.24485691e.2017.19.57719

Pascu B, Ardean C, Davidescu CM, Negrea A, Ciopec M, Duțeanu N, Negrea P, Rusu G (2020) Modified chitosan for silver recovery-kinetics, thermodynamic, and equilibrium studies. Materials 13(3): 657. https://doi.org/10.3390/ma13030657

Pavlova O, Trusova M (2021) Optimisation of conditions for deacetylation of chitin-containing raw materials. Food Sci Technol 15(3): 63–70. https://doi.org/10.15673/fst.v15i3.2152

Petrova YS, Pestov AV, Usoltseva MK, Neudachina LK (2015) Selective adsorption of silver(I) ions over copper(II) ions on a sulfoethyl derivative of chitosan. J Hazard Mater 299: 696–701. https://doi.org/10.1016/j.jhazmat.2015.08.001

Sadiq AC, Rahim NY, Suah FBM (2020) Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int J Biol Macromol 164: 3965–3973. https://doi.org/10.1016/j.ijbiomac.2020.09.029

Sergeevna KA, Leonidovna CM, Konstantinovna NL, Sergeevich PI (2020) Method of adsorption-atomic-absorption determination of silver (I) using a modified polysiloxane. React Funct Polym 152: 104596. https://doi.org/10.1016/j.reactfunctpolym.2020.104596

Sharef HY, Fakhre NA (2022) Rapid adsorption of some heavy metals using extracted chitosan anchored with new aldehyde to form a Schiff base. PLoS One 17(9): e0274123. https://doi.org/10.1371/journal.pone.0274123

Soto-Vazquez R, Záyago E, Maldonado LA (2022) Gobernanza de la nanomedicina: Una revisión sistemática. Mundo Nano 15(28): 1e–25e. https://doi.org/10.22201/ceiich.24485691e.2022.28.69682

Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, Cioffi N (2020) Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials (Basel) 10(4): 802. https://doi.org/10.3390/nano10040802

Terzioğlu D, Dalgıç Bozyiğit G, Fırat Ayyıldız M, Chormey DS, Bakırdere S (2021) Combination of slotted quartz tube flame atomic absorption spectrometry and dispersive liquid–liquid microextraction for the trace determination of silver in electroplating rinse bath. Anal Lett 54: 761–771. https://doi.org/10.1080/00032719.2020.1780603

Wang Z, Li Q, Xu L, Ma J, Wei B, An Z, Wu W, Liu S (2020) Silver nanoparticles compromise the development of mouse pubertal mammary glands through disrupting internal estrogen signaling. Nanotoxicology 14(6): 740–756. https://doi.org/10.1080/17435390.2020.1755470

Weißpflog J, Vehlow D, Müller M, Kohn B, Scheler U, Boye S, Schwarz S (2021) Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state-Insights by various complimentary methods. Int J Biol Macromol 171: 242–261. https://doi.org/10.1016/j.ijbiomac.2021.01.010

Zhao F, Peydayesh M, Ying Y, Ping J, Mezzenga R (2020) Transition metal dichalcogenide-silk nanofibril membrane for one-step water purification and precious metals recovery. ACS Appl Mater Interfaces 12(21): 24521–24530 https://doi.org/10.1021/acsami.0c07846

© 2023 Journal of Pharmacy & Pharmacognosy Research