Category Archives: Pharmaceutical Science

Alendronate and platelet-rich plasma in sheep anterior cruciate ligament

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 526-538, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1845_12.3.526

Original Article

Effect of alendronate and platelet-rich plasma in tendon-bones integration in sheep anterior cruciate ligament surgery

[Efecto del alendronato y del plasma rico en plaquetas en la integración tendón-hueso en la cirugía del ligamento cruzado anterior ovino]

Tangkas Sibarani1*, Bambang Purwanto2, Ambar Mudigdo3, Brian Wasita3

1Doctoral Program, Faculty of Medicine, Universitas Sebelas Maret, Solo, Indonesia.

2Department of Internal Medicine, Dr. Moewardi Hospital/Faculty of Medicine UNS, Surakarta, Indonesia.

3Department of Anatomical Pathology, Dr. Moewardi Hospital/Faculty of Medicine UNS, Surakarta, Indonesia.

*E-mail: tangkas_sibarani@staff.uns.ac.id, sbrn.orto@gmail.com

Abstract

Context: Anterior cruciate ligament (ACL) reconstruction often faces challenges due to poor integration of the tendon with bone.

Aims: To evaluate the potential benefits of alendronate and platelet-rich plasma (PRP) in enhancing tendon-to-bone osteointegration in ACL surgery.

Methods: This was a post-test only control group experimental study with Ovis aries Linnaeus sheep as experimental animals. The sample was divided into four groups: the control group ACL reconstruction with calcaneal tendons given NaCl, the group given PRP, alendronate, and PRP and alendronate. Bone healing biomarkers (NF-kB, TNF-α, MMP-9, TGF-β1, and COL1A1) were examined through immunohistochemical analysis and histological studies to assess osteoblast counts and inflammatory tissue.

Results: There was a statistically significant (p<0.05) increase in MMP-9 and osteoblast count after alendronate and PRP administration. Administration of alendronate and PRP also increased other variables, namely TNF-α, COL1A1, and the level of inflammation, although not statistically significant (p>0.05). The intervention did not affect NF-kB and TGF-β1 (p> 0.05).

Conclusions: These results show that the administration of alendronate and PRP improves the healing of tendon-calcaneal ACL reconstruction surgery in sheep.

Keywords: alendronate; anterior cruciate ligament reconstruction; platelet-rich plasma.

PDF Download

Resumen

Contexto: La reconstrucción del ligamento cruzado anterior (LCA) a menudo se enfrenta a desafíos debido a la mala integración del tendón con el hueso.

Objetivos: Evaluar los beneficios potenciales del alendronato y el plasma rico en plaquetas (PRP) en la mejora de la osteointegración tendón-hueso en la cirugía del LCA.

Métodos: Se trató de un estudio experimental de grupo control sólo postest con ovejas Ovis aries Linnaeus como animales de experimentación. La muestra se dividió en cuatro grupos: el grupo de control de reconstrucción del LCA con tendones calcáneos al que se administró NaCl, el grupo al que se administró PRP, alendronato, y PRP y alendronato. Se examinaron los biomarcadores de curación ósea (NF-kB, TNF-α, MMP-9, TGF-β1 y COL1A1) mediante análisis inmunohistoquímicos y estudios histológicos para evaluar el recuento de osteoblastos y el tejido inflamatorio.

Resultados: Hubo un aumento estadísticamente significativo (p<0,05) de la MMP-9 y del recuento de osteoblastos tras la administración de alendronato y PRP. La administración de alendronato y PRP también aumentó otras variables, concretamente el TNF-α, COL1A1 y el nivel de inflamación, aunque no de forma estadísticamente significativa (p>0,05). La intervención no afectó al NF-kB ni al TGF-β1 (p>0,05).

Conclusiones: Estos resultados demuestran que la administración de alendronato y PRP mejora la cicatrización de la cirugía de reconstrucción del LCA tendinoso-calcáneo en ovejas.

Palabras Clave: alendronato; reconstrucción del ligamento cruzado anterior; plasma rico en plaquetas.

PDF Download
 
Citation Format: Sibarani T, Purwanto B, Mudigdo A, Wasita B (2024) Effect of alendronate and platelet-rich plasma in tendon-bones integration in sheep anterior cruciate ligament surgery. J Pharm Pharmacogn Res 12(3): 526–538. https://doi.org/10.56499/jppres23.1845_12.3.526
References

Arumnada G (2021) Number of osteoblasts in the bone formation process after implantation of artificial coral scaffolds incorporating platelet rich plasma, platelet rich fibrin, and propolis in non-osseous areas (in vivo study). [Indpnesian]. Thesis, Department Destistry, Universitas Muhammadiyah Yogyakarta.

Ávila OR, Parizzi NG, Souza AP, Botini DS, Alves JY, Almeida SH (2016) Histological response to platelet-rich plasma added to polypropylene mesh implemented in rabbits. Int Braz J Urol 42(5): 993–998. https://doi.org/10.1590/S1677-5538.IBJU.2015.0319

Boakye LA, Ross KA, Pinski JM, Smyth NA, Haleem AM, Hannon CP, Fortier LA, Kennedy JG (2015) Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model. World J Orthop 6(11): 961–969. https://doi.org/10.5312/wjo.v6.i11.961

Cengiz SB, Batirbaygil Y, Onur MA, Atilla P, Asan E, Altay N, Cehreli ZC (2005) Histological comparison of alendronate, calcium hydroxide and formocresol in amputated rat molar. Dent Traumatol 21(5): 281–288. https://doi.org/10.1111/J.1600-9657.2005.00325.x

Dahlan S (2011) Steps to Create a Research Proposal in the Field of Medicine and Health. [Indonesian]. Seri Evidence Based Medicine. Jakarta: Sagung Seto.

Figueroa D, Figueroa F, Calvo R, Vaisman A, Ahumada X, Arellano S (2015) Platelet-rich plasma use in anterior cruciate ligament surgery: Systematic review of the literature. Arthroscopy 31(5): 981–988. https://doi.org/10.1016/j.arthro.2014.11.022

Gans I, Retzky JS, Jones LC, Tanaka MJ (2018) Epidemiology of recurrent anterior cruciate ligament injuries in national collegiate athletic association sports: The Injury Surveillance Program, 2004-2014. Orthop J Sports Med 6(6): 2325967118777823. https://doi.org/10.1177/2325967118777823

Gentile P, Garcovich S (2020) Systematic review-The potential implications of different platelet-rich plasma (PRP) concentrations in regenerative medicine for tissue repair.  Int J Mol Sci 21(16): 5702. https://doi.org/10.3390/IJMS21165702

Gobbi G, Vitale M (2012) Platelet-rich plasma preparations for biological therapy: Applications and limits. Oper Tech Orthop 22(1): 10–15. https://doi.org/10.1053/J.OTO.2012.01.002

Jia J, Yao W, Amugongo S, Shahnazari M, Dai W, Lay YA, Olvera D, Zimmermann EA, Ritchie RO, Li CS, Alliston T, Lane NE (2013) Prolonged alendronate treatment prevents the decline in serum TGF-β1 levels and reduces cortical bone strength in long-term estrogen deficiency rat model. Bone 52(1): 424–432. https://doi.org/10.1016/J.BONE.2012.10.017

Kinoshita H, Orita S, Inage K, Fujimoto K, Shiga Y, Abe K, Inoue M, Norimoto M, Umimura T, Ishii T, Yonemoto T, Kamoda H, Tsukanishi T, Suzuki M, Hirosawa N, Akazawa T, Ohtori S (2020) Freeze-dried platelet-rich plasma induces osteoblast proliferation via platelet-derived growth factor receptor-mediated signal transduction. Asian Spine J 14(1): 1–8. https://doi.org/10.31616/ASJ.2019.0048

Lee JW, Kwon OH, Kim TK, Cho YK, Choi KY, Chung HY, Cho BC, Yang JD, Shin JH (2013) Platelet-rich plasma: Quantitative assessment of growth factor levels and comparative analysis of activated and inactivated groups. Arch Plast Surg 40(5): 530–535. https://doi.org/10.5999/APS.2013.40.5.530

Lui PP, Lee YW, Mok TY, Cheuk YC (2013) Local administration of alendronate reduced peri-tunnel bone loss and promoted graft-bone tunnel healing with minimal systemic effect on bone in contralateral knee. J Orthop Res 31(12): 1897–1906. https://doi.org/10.1002/JOR.22442

Machado ES, Leite R, Dos Santos CC, Artuso GL, Gluszczak F, de Jesus LG, Caldas JMP, Bredemeier M (2019) Turn down-turn up: A simple and low-cost protocol for preparing platelet-rich plasma. Clinics 74: e1132. https://doi.org/10.6061/clinics/2019/e1132

Meller R, Willbold E, Hesse E, Dreymann B, Fehr M, Haasper C, Hurschler C, Krettek C, Witte F (2008) Histologic and biomechanical analysis of anterior cruciate ligament graft to bone healing in skeletally immature sheep. Arthroscopy 24(11): 1221–1231. https://doi.org/10.1016/j.arthro.2008.06.021

Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW, Moser MW (2015) Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg 3(4): 220–240. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628627/ (Accessed: 12 August 2023).

Schnabel LV, Mohammed HO, Miller BJ, McDermott WG, Jacobson MS, Santangelo KS, Fortier LA (2007) Platelet rich plasma (PRP) enhances anabolic gene expression patterns in flexor digitorum superficialis tendons. J Orthop Res 25(2): 230–240. https://doi.org/10.1002/JOR.20278

Shah P, Keppler L, Rutkowski J (2014) A review of platelet derived growth factor playing pivotal role in bone regeneration. J Oral Implantol 40(3): 330–340. https://doi.org/10.1563/AAID-JOI-D-11-00173

Sundman EA, Cole BJ, Fortier LA (2011) Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med 39(10): 2135–2140. https://doi.org/10.1177/0363546511417792

Xin F, Wang H, Yuan F, Ding Y (2020) Platelet-rich plasma combined with alendronate reduces pain and inflammation in induced osteoarthritis in rats by inhibiting the nuclear factor-kappa B signaling pathway. Biomed Res Int 2020: 8070295. https://doi.org/10.1155/2020/8070295

Yin W, Xu H, Sheng J, Xu Z, Xie X, Zhang C (2017) Comparative evaluation of the effects of platelet-rich plasma formulations on extracellular matrix formation and the NF-kB signaling pathway in human articular chondrocytes. Mol Med Rep 15(5): 2940–2948. https://doi.org/10.3892/MMR.2017.6365

Zbrojkiewicz D, Vertullo C, Grayson JE (2018) Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000-2015. Med J Aust 208(8): 354–358. https://doi.org/10.5694/mja17.00974

Zhao B (2017) TNF and bone remodeling. Curr Osteoporos Rep 15(3): 126–134. https://doi.org/10.1007/S11914-017-0358-z

Zhu T, Zhou J, Hwang J, Xu X (2022) Effects of platelet-rich plasma on clinical outcomes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Orthop J Sports Med 10(1): 23259671211061535.  https://doi.org/10.1177/23259671211061535

© 2024 Journal of Pharmacy & Pharmacognosy Research

Brassicaceae selenium complexes versus SARS-COV-2 MAP4 and spike protein

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 514-525, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1739_12.3.514

Original Article

Antiviral potential of selenium complexes from Brassicaceae by inhibiting protein bond between MAP4 and the spike of SARS-CoV-2

[Potencial antiviral de complejos de selenio de Brassicaceae mediante la inhibición de la unión proteica entre MAP4 y la espiga de SARS-CoV-2]

Silvi Z. Ilmiyah1, Sharida Fakurazi2, Agustina T. Endharti3,4, Sofy Permana5*

1Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia.

2Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Daru I Ehsan, Malaysia.

3Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.

4Biomedical Central Laboratory, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia.

5Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia.

*E-mail: sofy-bio@ub.ac.id

Abstract

Context: Coronavirus disease 2019 (COVID-19), a highly contagious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic. Selenium derived from the plants of the Brassicaceae family plays an important role in several biological functions, often as an antioxidant or antiviral. In particular, selenium can be used as an adjuvant in the treatment of various viral infections.

Aims: To determine the potential drug, as well as the affinity and the bond energy associated with chemical interaction bonds between the complex selenium compounds from Brassicaceae as inhibitors of the SARS-CoV-2 spike protein and MAP4 through the use of in silico studies.

Methods: The methods used in this study consisted of receptor and ligand data collection, ADMET analysis, molecular docking, and molecular dynamics.

Results: The results of this study indicate that the selenium complex compounds have the potential to be used as a spike inhibitor drug for SARS-CoV-2, as they have passed the Lipinski test and showed promise in the pharmacokinetic analysis. The results of the bond docking show that several complex selenium compounds, such as ethaselen, selenomethionine, and selenocystine, have stronger binding affinity values than the controls. This is compared to the control MAP4, which yielded binding affinities of -6.1 kcal/mol and spike protein -7 kcal/mol, respectively. Controlled bisoxatin and estramustine are drugs with mechanisms targeted to MAP4 and spike protein, which are the usual standards used.

Conclusions: The similarity of sites, the binding of several amino acid residues dominated by hydrogen bonds, and the result of molecular dynamic results for the selenium compound derived from Brassicaceae showed a stable bond to the spike protein and MAP4 with low fluctuation levels.

Keywords: MAP4; SARS-CoV-2; selenium; spike protein.

PDF Download

Resumen

Contexto: La enfermedad por coronavirus 2019 (COVID-19), una enfermedad vírica altamente contagiosa por coronavirus de tipo 2 causante del síndrome respiratorio agudo severo (SARS-CoV-2), se ha convertido en una pandemia mundial. El selenio derivado de las plantas de la familia Brassicaceae desempeña un papel importante en varias funciones biológicas, a menudo como antioxidante o antiviral. En particular, el selenio puede utilizarse como coadyuvante en el tratamiento de diversas infecciones virales.

Objetivos: Determinar el fármaco potencial, así como la afinidad y la energía de enlace asociada a los enlaces de interacción química entre los compuestos complejos de selenio de Brassicaceae como inhibidores de la proteína espiga del SARS-CoV-2 y MAP4 mediante el uso de estudios in silico.

Métodos: Los métodos utilizados en este estudio consistieron en la recopilación de datos de receptores y ligandos, análisis ADMET, docking molecular y dinámica molecular.

Resultados: Los resultados de este estudio indican que los compuestos del complejo de selenio tienen potencial para ser utilizados como fármaco inhibidor de picos para el SARS-CoV-2, ya que han superado el test de Lipinski y se han mostrado prometedores en el análisis farmacocinético. Los resultados del acoplamiento de enlaces muestran que varios compuestos complejos de selenio, como el etaseleno, la selenometionina y la selenocisteína, tienen valores de afinidad de enlace más fuertes que los controles. Esto se compara con el MAP4 de control, que arrojó afinidades de unión de -6,1 kcal/mol y proteína pico -7 kcal/mol, respectivamente. La bisoxatina y la estramustina controladas son fármacos con mecanismos dirigidos a MAP4 y spike protein, que son los patrones habituales utilizados.

Conclusiones: La similitud de los sitios, la unión de varios residuos de aminoácidos dominados por enlaces de hidrógeno, y el resultado de los resultados de dinámica molecular para el compuesto de selenio derivado de Brassicaceae mostraron una unión estable a la proteína espiga y MAP4 con bajos niveles de fluctuación.

Palabras Clave: MAP4; SARS-CoV-2; selenio; proteína espiga.

PDF Download

 

 
 
Citation Format: Ilmiyah SZ, Fakurazi S, Endharti AT, Permana S (2024) Antiviral potential of selenium complexes from Brassicaceae by inhibiting protein bond between MAP4 and the spike of SARS-COV-2. J Pharm Pharmacogn Res 12(3): 514–525. https://doi.org/10.56499/jppres23.1739_12.3.514
References

Aminpour M, Hameroff S, Tuszynski JA (2022) How COVID-19 hijacks the cytoskeleton: Therapeutic implications. Life (Basel) 12(6): 814. https://doi.org/10.3390/life12060814

Boopathi S, Poma AB, Kolandaivel P, Novel (2019) coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 39(9): 3409–3418. https://doi.org/10.1080/07391102.2020.1758788

Chauhan R, Awasthi S, Srivastava S, Dwivedi S, Pilon-Smits EAH, Dhankher OP, Rudra D (2019) Understanding selenium metabolism in plants and its role as a beneficial element. Crit Rev Environ Sci Tech 49(21): 1937–1958. http://dx.doi.org/10.1080/10643389.2019.1598240

Chinnasamy SG, Selvaraj AC, Kaushik S, Kaliamurthi C, Selvaraj SK, Singh R, Thirugnanasambandam K, Gu A, Wei DQ (2019) Molecular docking and molecular dynamics simulation studies to identify potent AURKA inhibitors: Assessing the performance of density functional theory, MM-GBSA and mass action kinetics calculations. J Biomol Struct Dyn 38(14): 4325–4335. https://doi.org/10.1080/07391102.2019.1674695

Collier TA, Piggot TJ, Allison JR (2019) Molecular dynamics simulation of protein. In: Gerrard J, Domigan L (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. New York, NY: Humana, pp. 311–327. https://doi.org/10.1007/978-1-4939-9869-2_17

Endharti AT, Wahyuningtyas TE, Hardini KH, Widjajanto E, Permana S (2018) Dendrophthoe pentandra leaves extract promotes apoptotic effects of doxorubicin in human breast cancer cell via modulation of intracellular calcium and survivin. J Appl Pharm Sci 8(8): 39–43. http://dx.doi.org/10.7324/JAPS.2018.8806

Fedorov VA, Orekhov PS, Kholina EG, Gudimchuk NB (2019) Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability. PloS Comput Biol 18: 14–21. https://doi.org/10.1371/journal.pcbi.1007327

Ghosh S, Dellibovi TA, Kerviel A, Pak E, Qiu Q, Fisher M, Takvorian PM, Bleck C, Hsu VW, Fehr AR (2020) β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 83: 1520–1535.e14. https://doi.org/10.1016/j.cell.2020.10.039

Gudimchuk NB, McIntosh JR (2021) Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 22: 777–795. https://doi.org/10.1038/s41580-021-00399-x

Hollingsworth SA, Dror RO (2019) Molecular dynamics simulation for all. Neuron 99(6): 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H (2020) The architecture of SARS-CoV-2 transcriptome. Cell 181: 914–921. https://doi.org/10.1016/j.cell.2020.04.011

Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 55(3): 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

Mawaddani N, Wibowo NRK, Nadhira QHH, Pramifta RA (2020) In silico study of Centella asiatica compund as BACE1 inhibitor in Alzheimer’s disease. J Smart Bioprosp Technol 1(2): 36–40. https://doi.org/10.21776/ub.jsmartech.2020.001.02.3

Permana S, Fityanti PR, Norahmawati E, Iskandar A, Mulyadi AED, Endharti TA (2020) Coelomic fluid of Eisenia fetida ameliorates cetuximab to reduce K-Ras and vimentin expression through promoting RUNX3 in an AOM/DSS-induced colitis associated colon cancer. Evid Based Complement Alternat Med 2020: 9418520. https://doi.org/10.1155/2020/9418520

Rakib A, Nain Z, Sami SA, Mahmud S, Islam A, Ahmed S, Siddiqui ABF, Babu SMOF, Hossain P, Shahriar A, Nainu F, Emran TB, Simal-Gandara J (2021) A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an in silico investigation. Brief Bioinform 22(2): 1476-1498. https://doi.org/10.1093/bib/bbab045

Sethi A, Joshi K, Sasikala K, Alvala M (2019) Molecular docking in modern drug discovery: Principles and recent applications. In: Drug Discovery and Development – New Advances. Gaitonde V, Karmakar P, Trivedi A (eds.). Intechopen. https://doi.org/10.5772/intechopen.85991

Simpson C, Yamauchi Y (2020) Microtubules in influenza virus entry and egress. Viruses 12: 117. https://doi.org/10.3390/v12010117

Tian L, Pang Z, Li M, Lou F, An X, Zhu S, Fan J (2022) Molnupiravir and its antiviral activity against COVID-19. Front Immunol 13: 855496. https://doi.org/10.3389/fimmu.2022.855496

Uddin M, Mustafa F, Rizvi TA, Loney TA, Suwaidi H, Senok AC (2020) SARS-CoV-2/COVID-19: Viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses 12: 526. https://doi.org/10.3390/v12050526

Van ELE, Binkhorst M, Bourgonje AR, Offringa AK, Mulder DJ, Bos EM, Kolundzic N, Abdulle AE, Van D, Voort PH, Olde RMG, Hoeven JG, Dunnen WF, Hillebrands JL, Goor VH (2021) COVID-19: Immunopathology, pathophysiological mechanisms, and treatment options. J Pathol 254: 307–331. https://doi.org/10.1002/path.5642

Wang Q, Wu J, Wang H, Gao Y, Liu Q, Mu A, Ji W, Yan L, Rao Z (2020) Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182: 417–428. https://doi.org/10.1016/j.cell.2020.05.034

Yoshimoto FK (2020) The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J 39(3): 198–216. https://doi.org/10.1007/s10930-020-09901-4

© 2024 Journal of Pharmacy & Pharmacognosy Research

Andrographis paniculata and cardiovascular diseases

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 487-513, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1841_12.3.487

Review

Andrographis paniculata: A potential supplementary therapy for cardiovascular diseases – A systematic review of its effects and molecular actions

[Andrographis paniculata: Una terapia suplementaria potencial para las enfermedades cardiovasculares – Una revisión sistemática de sus efectos y acciones moleculares]

Oluebube Magnificient Eziefule1, Wawaimuli Arozal2*, Septelia Inawati Wanandi3, Syarifah Dewi3, Nafrialdi2, Meilania Saraswati4, Melva Louisa2

1Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Central Jakarta 10430, Indonesia.

2Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, JI. Salemba, Raya No. 6, Jakarta 10430 Indonesia.

3Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, JI. Salemba, Raya No. 6, Jakarta 10430 Indonesia.

4Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia, JI. Salemba, Raya No. 6, Jakarta 10430 Indonesia.

*E-mail: wawaimuli.arozal@ui.ac.id

Abstract

Context: Cardiovascular diseases claim the lives of an estimated 17.9 million people worldwide (report by the World Health Organization), yet the drug pipeline compared to some other life-threatening diseases, including cancer and neurological disorders, is low.

Aims: To investigate the potential of Andrographis paniculata as a supplementary therapy for cardiovascular diseases based on recent in vivo animal studies.

Methods: This study adopted a systematic review approach to analyze preclinical evidence from in vivo animal studies. Three databases (PubMed, Scopus, and Embase) were searched using the keywords “Andrographis paniculata”, “cardiovascular disease”, “CVD”, “heart disease”, “cardioprotective”, “cardio*”, “inflammation”, “oxidative stress”, “obesity”, “lipopolysaccharide”, “hypertension”, “arrhythmia” and “aortic disease”. The search period was from April 20th, 2023, to April 26th, 2023, and included studies published from 2013 to 2023. Only in vivo animal studies were appraised. In contrast, clinical studies, in vitro studies, in silico studies, and review papers were excluded. SYRCLE’s risk of bias tool was used to assess the risk of bias.

Results: Sixteen eligible in vivo animal studies showed that Andrographis paniculata extracts and isolated bioactive compounds have strong anti-inflammatory and antioxidant effects on cardiovascular diseases. These effects lead to lowering the risk of coronary artery disease and myocardial infarction, easing the effects of bad cardiac remodeling, stopping cardiac hypertrophy, and improving diabetic cardiomyopathy. Although SYRCLE’s tool detected some bias, the studies were included since they met the inclusion criteria and had no conflicts of interest.

Conclusions: Andrographis paniculata may have the potential to be used as a supplementary therapy for cardiovascular diseases, but more animal studies and clinical trials should be done to establish these findings.

Keywords: Andrographis paniculata; animal models; cardiovascular diseases; herbal medicine; inflammation; oxidative stress.

PDF Download

Resumen

Contexto: Se calcula que las enfermedades cardiovasculares se cobran la vida de 17,9 millones de personas en todo el mundo (informe de la Organización Mundial de la Salud) y, sin embargo, el número de fármacos disponibles es bajo en comparación con otras enfermedades potencialmente mortales, como el cáncer y los trastornos neurológicos.

Objetivos: Investigar el potencial de Andrographis paniculata como terapia complementaria para enfermedades cardiovasculares basándonos en estudios recientes in vivo en animales.

Métodos: Este estudio adoptó un enfoque de revisión sistemática para analizar la evidencia preclínica de estudios in vivo en animales. Se realizaron búsquedas en tres bases de datos (PubMed, Scopus y Embase) utilizando las palabras clave “Andrographis paniculata“, “cardiovascular disease”, “CVD”, “heart disease”, “cardioprotective”, “cardio*”, “inflammation”, “oxidative stress”, “obesity”, “lipopolysaccharide”, “hypertension”, “arrhythmia” y “aortic disease”. El periodo de búsqueda fue del 20 de abril de 2023 al 26 de abril de 2023, e incluyó estudios publicados entre 2013 y 2023. Sólo se valoraron estudios in vivo en animales. Por el contrario, se excluyeron los estudios clínicos, los estudios in vitro, los estudios in silico y los artículos de revisión. Se utilizó la herramienta de riesgo de sesgo de SYRCLE para evaluar el riesgo de sesgo.

Resultados: Dieciséis estudios in vivo con animales demostraron que los extractos de Andrographis paniculata y los compuestos bioactivos aislados tienen potentes efectos antiinflamatorios y antioxidantes sobre las enfermedades cardiovasculares. Estos efectos conducen a la reducción del riesgo de enfermedad coronaria e infarto de miocardio, el alivio de los efectos de la mala remodelación cardiaca, la detención de la hipertrofia cardiaca y la mejora de la cardiomiopatía diabética. Aunque la herramienta SYRCLE detectó cierto sesgo, los estudios se incluyeron ya que cumplían los criterios de inclusión y no presentaban conflictos de intereses.

Conclusiones: Andrographis paniculata puede tener potencial para ser utilizada como terapia complementaria en enfermedades cardiovasculares, pero deben realizarse más estudios en animales y ensayos clínicos para establecer estos hallazgos.

Palabras Clave: Andrographis paniculata; modelos animales; enfermedades cardiovasculares; fitoterapia; inflamación; estrés oxidativo.

PDF Download
 
Citation Format: Eziefule OM, Arozal W, Wanandi SI, Dewi S, Nafrialdi, Saraswati M, Louisa M (2024) Andrographis paniculata: A potential supplementary therapy for cardiovascular diseases - A systematic review of its effects and molecular actions. J Pharm Pharmacogn Res 12(3): 487–513. https://doi.org/10.56499/jppres23.1841_12.3.487
References

Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ (2022) Type 2 diabetes. Lancet 400(10365): 1803–1820. https://doi.org/10.1016/S0140-6736(22)01655-5

Akhtar MT, Sarib MSBM, Ismail IS, Abas F, Ismail A, Lajis NH, Shaari K (2016) Anti-diabetic activity and metabolic changes induced by Andrographis paniculata plant extract in obese diabetic rats. Molecules 21(8): 1026. https://doi.org/10.3390/molecules21081026

Al Batran R, Al-Bayaty F (2014) Insights into the antiatherogenic molecular mechanisms of andrographolide against Porphyromonas gingivalis -induced atherosclerosis in rabbits. Naunyn-Schmiedeberg’s Arch Pharmacol 387(12): 1141–1152. https://doi.org/10.1007/s00210-014-1041-x

Al Batran R, Al-Bayaty F, Jamil Al-Obaidi MM, Hussain SF, Mulok TZ (2014) Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by Porphyromonas gingivalis. BioMed Res Int 2014: 724718. https://doi.org/10.1155/2014/724718

Al-Madhagi HA (2023) FDA-approved drugs in 2022: A brief outline. Saudi Pharm J 31(3): 401–409. https://doi.org/10.1016/j.jsps.2023.01.007

Assmann G, Cullen P, Jossa F, Lewis B, Mancini M (1999) Coronary heart disease: Reducing the risk – The scientific background to primary and secondary prevention of coronary heart disease. A worldwide view. Arterioscler Thromb Vasc Biol 19(8): 1819–1824. https://doi.org/10.1161/01.atv.19.8.1819

Bhargava S, de la Puente-Secades S, Schurgers L, Jankowski J (2022) Lipids and lipoproteins in cardiovascular diseases: A classification. Trends Endocrinol Metab 33(6): 409–423. https://doi.org/10.1016/j.tem.2022.02.001

Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11(1): 31–39. https://doi.org/0.1007/s11154-010-9131-7

Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3(4): 267–277. https://doi.org/10.1038/nrm782

Chen CC, Lii CK, Lin YH, Shie PH, Yang YC, Huang CS, Chen HW (2020) Andrographis paniculata improves insulin resistance in high-fat diet-induced obese mice and TNFα-treated 3T3-L1 adipocytes. Am J Chin Med 48(5): 1073–1090. https://doi.org/10.1142/S0192415X20500524

Chturvedi GN, Tomar GS, Tiwari SK, Singh KP (1983) Clinical studies of kalmegh (Andrographis paniculata Nees) in effective hepatitis. Anc Sci Life 2(4): 208–215. https://pubmed.ncbi.nlm.nih.gov/22556984/

DiMeglio LA, Evans-Molina C, Oram RA (2018) Type 1 diabetes. Lancet 391(10138): 2449–2462. https://doi.org/10.1016/S0140-6736(18)31320-5

Ding L, Li J, Song B, Xiao X, Huang W, Zhang B, Tang X, Qi M., Yang Q, Yang Q, Yang L, Wang Z (2014) Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway. J Pharmacol Exp Ther 351(2): 474–483. https://doi.org/10.1124/jpet.114.217968

Elasoru SE, Rhana P, de Oliveira Barreto T, Naves de Souza DL, Menezes-Filho JER, Souza DS, Loes Moreira MV, Gomes Campos MT, Adedosu OT, Roman-Campos D, Melo MM, Cruz JS (2021) Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca2+ and increase of cardiac transient outward K+ currents. Eur J Pharmacol 906: 174194. https://doi.org/10.1016/j.ejphar.2021.174194

Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109: 69–75. https://doi.org/10.1289/ehp.01109s169

Feng B, Zhang Q, Wang X, Sun X, Mu X, Dong H (2017) Effect of andrographolide on gene expression profile and intracellular calcium in primary rat myocardium microvascular endothelial cells. J Cardiovasc Pharmacol 70(6): 369–381. https://doi.org/10.1097/FJC.0000000000000528

Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J (2022) Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J 43(27): 2549–2561. https://doi.org/10.1093/eurheartj/ehac223

Galle J, Quaschning T, Seibold S, Wanner C (2003) Endothelial dysfunction and inflammation: What is the link? Kidney Int 63(Suppl. 84): S45–S49. https://doi.org/10.1046/j.1523-1755.63.s84.12.x

Garza MA (2015) Cardiac remodeling and physical training post myocardial infarction. World J Cardiol 7(2): 52–64. https://doi.org/10.4330/wjc.v7.i2.52

Gervois P, Torra IP, Fruchart JC, Staels B (2000) Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chem Lab Med 38(1): 3–11. https://doi.org/10.1515/cclm.2000.002

Godo S, Shimokawa H (2017) Endothelial functions. Arterioscler Thromb Vasc Biol 37(9): 108–114. https://doi.org/10.1161/ATVBAHA.117.309813

Hajar R (2017) Risk factors for coronary artery disease: Historical perspectives. Heart Views 18(3): 109–114. https://doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_106_17

Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F (2015) Myocardial hypertrophy and its role in heart failure with preserved ejection fraction left ventricular hypertrophy – Clinical presentation. J Appl Physiol 119(10): 1233–1242. https://doi.org/10.1152/japplphysiol.00374.2015

Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14(1): 43. https://doi.org/10.1186/1471-2288-14-43

Horton JD, Goldstein JL, Brown1 MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125–1131. https://doi.org/10.1172/JCI200215593

Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100(21): 12027–12032. https://doi.org/10.1073/pnas.1534923100

Hsieh YL, Shibu MA, Lii CK, Viswanadha VP, Lin YL, Lai CH, Chen YF, Lin KH, Kuo WW, Huang CY (2016) Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice. J Ethnopharmacol 192: 170–177. https://doi.org/10.1016/j.jep.2016.07.018

Ikeda U, Matsui K, Murakami Y, Shimada K (2002) Monocyte chemoattractant protein-1 and coronary artery disease. Clin Cardiol 25(4): 143–147. https://doi.org/10.1002/clc.4960250403

Jayakumar T, Hsieh CY, Lee JJ, Sheu JR (2013) Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid Based Complement Alternat Med 2013: 846740. https://doi.org/10.1155/2013/846740

Karimi A, Majlesi M, Rafieian-Kopaei M (2015) Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 4(1): 27–30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297475/

Lattoo SK, Shabnam K, Dhar AK, Choudhary D, Gupta KK, Sharma P (2006) Current science association genetics and mechanism of induced male sterility in Andrographis paniculata (Burm. f.) Nees and its significance. Curr Sci Assoc 91(4): 515–319.

Lee HL, Jang JW, Lee SW, Yoo SH, Kwon JH, Nam SW, Bae SH, Choi JY, Han NI, Yoon SK (2019) Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci Rep 9(1): 3260. https://doi.org/10.1038/s41598-019-40078-8

Liang E, Liu X, Du Z, Yang R, Zhao Y (2018) Andrographolide ameliorates diabetic cardiomyopathy in mice by blockage of oxidative damage and NF-κB-mediated inflammation. Oxid Med Cell Longev 2018: 9086747. https://doi.org/10.1155/2018/9086747

Lin KH, Marthandam Asokan S, Kuo WW, Hsieh YL, Lii CK., Viswanadha V, Lin YL, Wang S, Yang C, Huang CY (2020) Andrographolide mitigates cardiac apoptosis to provide cardio-protection in high-fat-diet-induced obese mice. Environ Toxicol 35(6): 707–713. https://doi.org/10.1002/tox.22906

Louisa M, Patintingan CGH, Wardhani BWK (2022) Moringa oleifera Lam. in cardiometabolic disorders: A systematic review of recent studies and possible mechanism of actions. Front Pharmacol 13: 792794. https://doi.org/10.3389/fphar.2022.792794

Matsuzawa Y, Lerman A (2014) Endothelial dysfunction and coronary artery disease: Assessment, prognosis, and treatment. Coron Artery Dis 25(8): 713–724. https://doi.org/10.1097/MCA.0000000000000178

Mullard A (2020) 2019 FDA drug approvals. Nat Rev Drug Discov 19(2): 79–84. https://doi.org/10.1038/d41573-020-00001-7

Nhs.uk (2022) Cardiovascular disease. https://www.nhs.uk/conditions/cardiovascular-disease/ [Consulted 13th July, 2023].

Ni WQ, Liu XL, Zhuo ZP, Yuan XL Song JP, Chi HS, Xu J (2015) Serum lipids and associated factors of dyslipidemia in the adult population in Shenzhen. Lipids Health Dis 14: 71. https://doi.org/10.1186/s12944-015-0073-7

Okhuarobo A, Ehizogie Falodun J, Erharuyi O, Imieje V, Falodun A, Langer P (2014) Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac J Trop Dis 4(3): 213–222. https://doi.org/10.1016/S2222-1808(14)60509-0

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Penny W, Moher D (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med 18(3): 1–15. https://doi.org/10.1371/JOURNAL.PMED.1003583

Palasubramaniam J, Wang X, Peter K (2019) Myocardial infarction – From atherosclerosis to thrombosis: uncovering new diagnostic and therapeutic approaches. Arterioscler Thromb Vasc Biol 39(8): e176–e185. https://doi.org/10.1161/ATVBAHA.119.312578

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017: 8416763. https://doi.org/10.1155/2017/8416763

Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J Nishigaki I (2014). Antioxidants and human diseases. Clin Chim Acta 436: 332–347. https://doi.org/10.1016/j.cca.2014.06.004

Salim MFH, Nugraha IMADP, Adilla F, Yanti LPD (2021) Chromatography profiles of terpenoid compounds in the extract of sambiloto (Andrographis paniculata) herb from various solvents. Walisongo J Chem 4(2): 74–80. https://doi.org/10.21580/wjc.v4i2.7783

Samaniego V, Moguel-Ancheita R (2021) Myocardial infarction as a consequence of atherosclerosis. Cardiovasc Metab Sci 32(S3): s247–252. https://doi.org/10.35366/100806

Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G (2020) Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front Pharmacol 11: 422. https://doi.org/10.3389/fphar.2020.00422

Shaw DM, Merien F, Braakhuis A, Dulson D (2018) T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 104: 136–142. https://doi.org/10.1016/j.cyto.2017.10.001

Sheeja K, Shihab PK, Kuttan G (2006). Antioxidant and anti-inflammatory activities of the plant Andrographis paniculata Nees. Immunopharmacol Immunotoxicol 28(1): 129–140. https://doi.org/10.1080/08923970600626007

Shu J, Huang R, Tian Y, Liu Y, Zhu R, Shi G (2020) Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways. Ann Palliat Med 9(4): 1965–1975. https://doi.org/10.21037/apm-20-960

Stern CS, Lebowitz J (2010) Latest drug developments in the field of cardiovascular disease. Int J Angiol 19(3): e100–e105. https://doi.org/10.1055/s-0031-1278379

Swinney DC (2011) Molecular Mechanism of Action (MMoA) in drug discovery. In Annual Reports in Medicinal Chemistry, volume 46. Elsevier Inc., pp. 301–317. https://doi.org/10.1016/B978-0-12-386009-5.00009-6

Sya’ban PA, Jonathan AP, Respati TS, Siti IR, Fauzia, I, Asep B, Masteria YP, Carmen F, Giuseppina C (2023) Evaluations of andrographolide-rich fractions of Andrographis paniculata with enhanced potential antioxidant, anticancer, antihypertensive, and anti-inflammatory activities. Plants 12(6): 1220. https://doi.org/10.3390/plants12061220

Tang Z, Yu Y, Ng K, Sow D, Hu J, Mei J (2021) Disease network delineates the disease progression profile of cardiovascular diseases. J Biomed Inform 115: 103686. https://doi.org/10.1016/j.jbi.2021.103686

Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C, Tousoulis D (2021) Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines 9(7): 781. https://doi.org/10.3390/biomedicines9070781

Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. Circulation 116(22): 2634–2653. https://doi.org/10.1161/CIRCULATIONAHA.107.187397

Tian Q, Liu J, Chen Q, Zhang (2023) Andrographolide contributes to the attenuation of cardiac hypertrophy by suppressing endoplasmic reticulum stress. Pharm Biol 61(1): 61–68. https://doi.org/10.1080/13880209.2022.2157021

Wang C, Huang Y, Liu X, Li L, Xu H, Dong N, Xu K (2021) Andrographolide ameliorates aortic valve calcification by regulation of lipid biosynthesis and glycerolipid metabolism targeting MGLL expression in vitro and in vivo. Cell Calcium 100: 102495. https://doi.org/10.1016/j.ceca.2021.102495

Wang H, Yu X, Xun Z, Wu Y (2022) Aqueous extract of Andrographis paniculata ameliorates cardiotoxicity induced by doxorubicin in vivo. Int J Pharmacol 18(3): 466–474. https://doi.org/10.3923/ijp.2022.466.474

Wang T, Wang J, Hu X, Huang X, Chen G-X (2020) Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 11(3): 76–98. https://doi.org/10.4331/wjbc.v11.i3.76

WHO (2023) World Health Organization 2023 data.who.int, Indonesia [Country overview]. (Accessed on 4 December 2023)

WHO (n.d.) Cardiovascular disease. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 [Consulted 13th July, 2023].

Wong SK, Chin KY, Ima-Nirwana S (2021) A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury. Drug Des Devel Ther 15: 4615–4632. https://doi.org/10.2147/DDDT.S331027

Xie S, Deng W, Chen J, Wu QQ, Li H, Wang J, Wei L, Liu C, Duan M, Cai Z, Xie Q, Hu T, Zeng X, Tang Q (2020) Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway. Int J Biol Sci 16(1): 12–26. https://doi.org/10.7150/ijbs.37269

Yoon JW, Jun HS (2005) Autoimmune destruction of pancreatic β cells. Am J Ther 12(6): 580–591. https://doi.org/10.1097/01.mjt.0000178767.67857.63

Yoon M (2009) The role of PPARα in lipid metabolism and obesity: Focusing on the effects of estrogen on PPARα actions. Pharmacol Res 60(3): 151–159. https://doi.org/10.1016/j.phrs.2009.02.004

Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L; INTERHEART Study Investigators (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364: 937–952. https://doi.org/10.1016/s0140-6736(04)17018-9

Zhang C, Gui L, Xu Y, Wu T, Liu D (2013) Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by inducing immune tolerance. Int Immunopharmacol 16(4): 451–456. https://doi.org/10.1016/j.intimp.2013.05.002

Zhang J, Zhu D, Wang Y, Ju Y (2015) Andrographolide attenuates LPS-induced cardiac malfunctions through inhibition of IκB phosphorylation and apoptosis in mice. Cell Physiol Biochem 37(4): 1619–1628. https://doi.org/10.1159/000438528

Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y (2021) Inflammation and tumor progression: signaling pathways and targeted intervention. Sig Transduct Target Ther 6: 263. https://doi.org/10.1038/s41392-021-00658-5

Zhu J (2017) GATA3 Regulates the development and functions of innate lymphoid cell subsets at multiple stages. Front Immunol 8: 1571. https://doi.org/10.3389/fimmu.2017.01571

© 2024 Journal of Pharmacy & Pharmacognosy Research

Facial skin and bakuchiol oil or encapsulated bakuchiol

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 477-486, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1812_12.3.477

Original Article

Comparative efficacy of bakuchiol oil and encapsulated bakuchiol cream on facial skin quality: A 28-day pilot study

[Eficacia comparativa del aceite de bakuchiol y la crema de bakuchiol encapsulado en la calidad de la piel facial: Un estudio piloto de 28 días]

Mediana Hadiwidjaja1,2, Eliza Romadhona1, Yulianto1, Novenia A. Chauwito2, Meva Gustina E. Sidauruk2, Rey Kardiono2, Christina Avanti1*

1Department of Pharmaceutics, University of Surabaya, Surabaya, 60293, Indonesia.

2Research and Development Lab, Infinisia Sumber Semesta, Jakarta, 11840, Indonesia.

*E-mail: c_avanti@staff.ubaya.ac.id

Abstract

Context: Along with the rapid growth of the beauty product industry, the community highly favors the use of plants as beauty ingredients and facial treatments. Bakuchiol, a lipid-soluble compound derived from Psoralea corylifolia is a gentle alternative to retinol in anti-aging skincare. To enhance its penetration into the skin, bakuchiol is formulated in liposomes through encapsulation technology.

Aims: To compare the efficacy of 0.5% bakuchiol oil and encapsulated 0.5% bakuchiol cream formula on facial skin quality.

Methods: The subjects consisted of 17 respondents, aged 25-45 years, with various skin types. Two creams, 0.5% bakuchiol oil cream and encapsulated 0.5% bakuchiol cream, were applied twice daily in the split face for 28 days. The study utilized the A-One Tab Skin Analyzer device to measure facial skin quality by scanning facial moisture, pores, sebum, and wrinkles levels on days 0, 14, and 28. Data obtained in the form of numerical values were analyzed using a comparative method employing both parametric and non-parametric methods with the aid of the SPSS software.

Results: The study results indicated that both creams enhanced skin moisture, reduced pore size, and improved wrinkle scores. However, the encapsulated bakuchiol cream performed better in minimizing pore size, sebum levels, and wrinkle scores.

Conclusions: The study findings imply that the use of encapsulated 0.5% bakuchiol cream formulation had a more pronounced effect on improving facial skin quality compared to the 0.5% bakuchiol oil cream formulation, signifying the superior efficacy of the former.

Keywords: anti-aging; bakuchiol oil; encapsulated; skin quality.

PDF Download

Resumen

Contexto: Junto con el rápido crecimiento de la industria de productos de belleza, la comunidad está muy a favor del uso de plantas como ingredientes de belleza y tratamientos faciales. El bakuchiol, un compuesto liposoluble derivado de la Psoralea corylifolia, es una alternativa suave al retinol en el cuidado antienvejecimiento de la piel. Para mejorar su penetración en la piel, el bakuchiol se formula en liposomas mediante tecnología de encapsulación.

Objetivos: Comparar la eficacia del aceite de bakuchiol al 0,5% y la fórmula en crema de bakuchiol encapsulado al 0,5% en la calidad de la piel del rostro.

Métodos: Los sujetos fueron 17 encuestados, de entre 25 y 45 años, con diversos tipos de piel. Se aplicaron dos cremas, crema de aceite de bakuchiol al 0,5% y crema de bakuchiol encapsulado al 0,5%, dos veces al día en la cara dividida durante 28 días. El estudio utilizó el dispositivo A-One Tab Skin Analyzer para medir la calidad de la piel del rostro mediante el escaneado de los niveles de humedad, poros, sebo y arrugas en los días 0, 14 y 28. Los datos obtenidos en forma de valores numéricos se analizaron mediante un método comparativo que empleaba métodos paramétricos y no paramétricos con ayuda del programa informático SPSS.

Resultados: Los resultados del estudio indicaron que ambas cremas mejoraron la hidratación de la piel, redujeron el tamaño de los poros y mejoraron la puntuación de las arrugas. Sin embargo, la crema de bakuchiol encapsulado obtuvo mejores resultados en la reducción del tamaño de los poros, los niveles de sebo y las puntuaciones de las arrugas.

Conclusiones: Los resultados del estudio implican que el uso de la formulación en crema de bakuchiol encapsulado al 0,5% tuvo un efecto más pronunciado en la mejora de la calidad de la piel facial en comparación con la formulación en crema de aceite de bakuchiol al 0,5%, lo que significa la eficacia superior de la primera.

Palabras Clave: antienvejecimiento; aceite de bakuchiol; encapsulado; calidad de la piel.

PDF Download
 
Citation Format: Hadiwidjaja M, Romadhona E, Yulianto, Chauwito NA, Sidauruk MGE, Kardiono R, Avanti C (2024) Comparative efficacy of bakuchiol oil and encapsulated bakuchiol cream on facial skin quality: A 28-day pilot study. J Pharm Pharmacogn Res 12(3): 477–486. https://doi.org/10.56499/jppres23.1812_12.3.477
References

Adhau A, Pardeshi M (2020) Bakuchiol: A retinol like structure in the field of cosmetics. Int J Adv Res Dev 3(7): 14. https://doi.org/10.5281/zenodo.3958020

Bastos F, Santos L (2015) Encapsulation of cosmetic active ingredients for topical application – A review. J Microencapsul 33(1): 1-17. https://doi.org/10.3109/02652048.2015.1115900

Baumann L (2007) Skin ageing and its treatment. J Pathol 211(2): 241-251. https://doi.org/10.1002/path.2098

Bhalerao S, Harshal A (2003) Preparation, optimization, characterization, and stability studies of salicylic acid liposomes. Drug Dev Ind Pharm 29(4): 451-467. https://doi.org/10.1081/DDC-120018380

Bluemke A, Ring AP, Immeyer J, Hoff A, Eisenberg T, Gerwat W, Meyer F, Breitkreutz S, Klinger LM, Brandner JM, Sandig G, Seifert M, Segger D, Rippke F, Schweiger D (2022) Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing – Experimental evidence for a holistic treatment approach. Int J Cosmet Sci 44(3): 377-393. https://doi.org/10.1111/ics.12784

Carlomagno F, Roveda G, Michelotti A, Ruggeri F, Tursi F (2022) Anti-skin-aging effect of a treatment with a cosmetic product and a food supplement based on a new hyaluronan: A randomized clinical study in healthy women. Cosmetics 9(3): 54. https://doi.org/10.3390/cosmetics9030054

Casanova F, Santos L (2016) Encapsulation of cosmetic active ingredients for topical application – A review. J Microencapsul 33(1): 1-17. https://doi.org/10.3109/02652048.2015.1115900

Chaudhuri RK, Bojanowski K (2014) Bakuchiol: A retinol-like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects. Int J Cosmet Sci 36(3): 221-230. https://doi.org/10.1111/ics.12117

Dhaliwal S, Rybak I, Ellis SR, Notay M, Trivedi M, Burney W, Vaughn AR, Nguyen M, Reiter P, Bosanac S, Yan H, Foolad N, Sivamani RK (2019) Prospective, randomized, double-blind assessment of topical bakuchiol and retinol for facial photoageing. Br J Dermatol 180(2): 289-296. https://doi.org/10.1111/bjd.16918

Endly DC, Miller RA (2017) Oily skin: A review of treatment options. J Clin Aesthet Dermatol 10(8): 49–55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605215/

Farage MA, Miller KW, Elsner P, Maibach HI (2008) Intrinsic and extrinsic factors in skin ageing: A review. Int J Cosmet Sci 30(2): 87-95. https://doi.org/10.1111/j.1468-2494.2007.00415.x

Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379(6563): 335-339. https://doi.org/10.1038/379335a0

Flament F, Francois G, Qiu H, Ye C, Hanaya T, Batisse D, Cointereau-Chardon S, Seixas M D G, Dal Belo SE, Bazin R (2015) Facial skin pores: a multiethnic study. Clin Cosmet Investig Dermatol 8: 85–93. https://doi.org/10.2147/CCID.S74401

Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC (2012) Skin anti-aging strategies. Dermatoendocrinol 4(3): 308-319. https://doi.org/10.4161/derm.22804

Gugleva V, Ivanova N, Sotirova Y, Andonova V (2021) Dermal drug delivery of phytochemicals with phenolic structure via lipid-based nanotechnologies. Pharmaceuticals 14(9): 837. https://doi.org/10.3390/ph14090837

Kang S, Duell EA, Fisher GJ, Datta SC, Wang ZQ, Reddy AP, Tavakkol A, Yi JY, Griffiths CE, Elder JT, Voorhees JJ (1995) Application of retinol to human skin in vivo induces epidermal hyperplasia and cellular retinoid binding proteins characteristic of retinoic acid but without measurable retinoic acid levels or irritation. J Invest Dermatol 105(4): 549-556. https://doi.org/10.1111/1523-1747.ep12323445

Kim D-G, Jeong Y-I, Choi C, Roh S-H, Kang S-K, Jang M-K, Nah J-W (2006) Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int J Pharm 319(1–2): 130-138. https://doi.org/10.1016/j.ijpharm.2006.03.040

Lewińska A, Domżał-Kędzia M, Maciejczyk E, Łukaszewicz M, Bazylińska U (2021) Design and engineering of “green” nanoemulsions for enhanced topical delivery of bakuchiol achieved in a sustainable manner: A novel eco-friendly approach to bioretinol. Int J Mol Sci 22(18): 10091. https://doi.org/10.3390/ijms221810091

Liu P, Chen G, Zhang J (2022) A Review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27(4): 1372. https://doi.org/10.3390/molecules27041372

Manríquez JJ, Cataldo K, Vera-Kellet C, Harz-Fresno I (2014) Wrinkles. BMJ 344: e1711. https://doi.org/10.1136/bmj.e1711

Mehta H Patel K, Gajjar PC, Mehta HH, Mehta H, Solanki J (2018) Study of moisture content on various skin sites in different seasons in Indian population. Int J Clin Exp Physiol 4(4): 190-194. https://doi.org/10.4103/ijcep.ijcep_3_18

Michalak M (2022) Plant-derived antioxidants: Significance in skin health and the ageing process. Int J Mol Sci 23(2): 585. https://doi.org/10.3390/ijms23020585

Řepka D, Kurillová A, Murtaja Y, Lapčík L (2023) Application of physical-chemical approaches for encapsulation of active substances in pharmaceutical and food industries. Foods 12(11): 2189. https://doi.org/10.3390/foods12112189

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K (2015) Oxidative stress in aging human skin. Biomolecules 5(2): 545-589. https://doi.org/10.3390/biom5020545

Rittié L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1(4): 705-720 https://doi.org/10.1016/s1568-1637(02)00024-7

Wadhwa G, Kumar S, Mittal V, Rao R (2019) Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. J Food Drug Anal 27(1): 60-70. https://doi.org/10.1016/j.jfda.2018.07.006

Yang S, Liu L, Han J, Tang Y (2020) Encapsulating plant ingredients for dermocosmetic application: an updated review of delivery systems and characterization techniques. Int J Cosmet Sci 42(1): 16-28. https://doi.org/10.1111/ics.12592

© 2024 Journal of Pharmacy & Pharmacognosy Research

Xylocarpus moluccensis potential as anti-hyperglycemic

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 453-476, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1816_12.3.453

Original Article

Two tetrahydroxyterpenoids and a flavonoid from Xylocarpus moluccensis M.Roem. and their α-glucosidase inhibitory and antioxidant capacity

[Dos tetrahidroxiterpenoides y un flavonoide de Xylocarpus moluccensis M.Roem. y su capacidad inhibidora y antioxidante de la α-glucosidasa]

Berna Elya1*, Fitri S. Budiarso1, Muhammad Hanafi2, Maria A. Gani3, Pekik W. Prasetyaningrum4

1Faculty of Pharmacy, University of Indonesia, Depok, Indonesia.

2Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Serpong, Indonesia.

3School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.

4Research Center for Genetic Engineering, National Research and Innovation Agency, Cibinong, Indonesia.

*E-mail: berna.elya@farmasi.ui.ac.id

Abstract

Context: Scientific verification of the anti-hyperglycemic potential of Kayu sarampa (Xylocarpus moluccensis), which is popularly used for diabetic medication in North Sulawesi, Indonesia, is strongly important to conduct to avoid inappropriate medication that might cause worse conditions.

Aims: To investigate the anti-hyperglycemic potential of X. moluccensis stem bark ethyl acetate extract and isolated compounds through the α-glucosidase enzyme inhibitory and antioxidant capacity determination.

Methods: The active compound was isolated from ethyl acetate extract of X. moluccensis stem bark. The structures of those compounds were elucidated by infrared spectroscopy, liquid chromatography–mass spectrometry, and nuclear magnetic resonance spectroscopies. To discover the anti-hyperglycemic potency, α-glucosidase enzyme inhibition assay, antioxidant assay (DPPH and FRAP), and in silico study were performed.

Results: Three isolated compounds were obtained and characterized as two tetrahydroxyterpenoids compounds, namely xyloccensin E (1) and ruageanin D (2), and one flavonoid compound, namely 3,5,7,3ʹ,4ʹ-pentahidroxyflavan (catechin) (3). Compounds 1 and 3 inhibited the α-glucosidase enzyme with IC50 values of 118.60 and 55.19 µg/mL, respectively, with a competitive inhibition mechanism. This is also in line with in silico findings, and both compounds showed good binding affinity of α-glucosidase protein, which indicated their anti-hyperglycemic activity potential by inhibiting α-glucosidase enzyme. Moreover, compounds 1 and 3 showed antioxidant capacity through the DPPH method with an IC50 value of 54.69 and 2.87 µg/mL. In addition, 100 µg/mL of compounds 1 and 3 also exhibited antioxidant capacity through the FRAP method with values of 66.35 and 213.82 µmol Fe2+/g, respectively.

Conclusions: The X. moluccensis stem bark ethyl acetate extract, and isolated compounds exhibit α-glucosidase enzyme inhibitory activity and antioxidant capacity, which confirms its potency as an alternative medication for hyperglycemia issues.

Keywords: anti-hyperglycemia; α-glucosidase; antioxidant; natural products.

PDF Download

Resumen

Contexto: La verificación científica del potencial anti-hiperglucémico de Kayu sarampa (Xylocarpus moluccensis), que se utiliza popularmente para la medicación de los diabéticos en el norte de Sulawesi, Indonesia, es muy importante para evitar una medicación inadecuada que podría causar peores condiciones.

Objetivos: Investigar el potencial anti-hiperglucémico del extracto de acetato de etilo de la corteza del tallo de X. moluccensis y de los compuestos aislados mediante la determinación de la capacidad antioxidante e inhibidora de la enzima α-glucosidasa.

Métodos: Se aislaron los compuestos activos del extracto de acetato de etilo de la corteza del tallo de X. moluccensis. Las estructuras de esos compuestos se dilucidaron mediante espectroscopía infrarroja, cromatografía líquida-espectrometría de masas y espectroscopía de resonancia magnética nuclear. Para descubrir la potencia anti-hiperglucémica, fueron realizados un ensayo de inhibición de la enzima α-glucosidasa, un ensayo antioxidante (DPPH y FRAP) y un estudio in silico.

Resultados: Se obtuvieron y caracterizaron tres compuestos aislados: dos compuestos tetrahidroxiterpenoides, a saber, xiloccensina E (1) y ruageanina D (2), y un compuesto flavonoide, a saber, 3,5,7,3ʹ,4ʹ-pentahidroxiflavano (catequina) (3). Los compuestos 1 y 3 inhibieron la enzima α-glucosidasa con valores de IC50 de 118,60 y 55,19 µg/mL, respectivamente, con un mecanismo de inhibición competitiva. Esto también coincide con los hallazgos in silico, y ambos compuestos mostraron una buena afinidad de unión con la proteína α-glucosidasa, lo que indica su potencial actividad anti-hiperglucémica mediante la inhibición de la enzima α-glucosidasa. Además, los compuestos 1 y 3 mostraron capacidad antioxidante mediante el método DPPH con un valor IC50 de 54,69 y 2,87 µg/mL. Además, 100 µg/mL de los compuestos 1 y 3 también mostraron capacidad antioxidante mediante el método FRAP con valores de 66,35 y 213,82 µmol Fe2+/g, respectivamente.

Conclusiones: El extracto de acetato de etilo de corteza de tallo de X. moluccensis y los compuestos aislados exhiben actividad inhibidora de la enzima α-glucosidasa y capacidad antioxidante, lo que confirma su potencia como medicamento alternativo para problemas de hiperglucemia.

Palabras Clave: anti-hiperglucemia; antioxidante; α-glucosidasa; productos naturales.

PDF Download
 
Citation Format: Elya B, Budiarso FS, Hanafi M, Gani MA, Prasetyaningrum PW (2024) Two tetrahydroxyterpenoids and a flavonoid from Xylocarpus moluccensis M.Roem. and their α-glucosidase inhibitory and antioxidant capacity. J Pharm Pharmacogn Res 12(3): 453–476. https://doi.org/10.56499/jppres23.1816_12.3.453
References

Asfandiyarova N, Kolcheva N, Ryazantsev I, Ryazantsev V (2007) Risk factors for stroke in type 2 diabetes mellitus. Diab Vasc Dis Res 3: 57–60. https://doi.org/10.3132/dvdr.2006.009

Bhagat M, Anand R, Datt R, Gupta V, Arya S (2019) Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mater 29(3): 1039–1047. https://doi.org/10.1007/s10904-018-0994-5

Budiarso FS, Elya B, Hanafi M, Forestrania RC (2020) The potential of stem bark of kayu sarampa (Xylocarpus moluccensis (Lam.) M. Roen)) as α-glucosidase inhibitor. Pharmacogn J 12(6): 1368–1376. https://doi.org/10.5530/pj.2020.12.189

Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49(6): 2774–2779. https://doi.org/10.1021/jf001413m

Das SK, Samantaray D, Thatoi H (2014) Ethnomedicinal, antimicrobial and antidiarrhoeal studies on the mangrove plants of the genus Xylocarpus: A mini review. J Bioanal Biomed S12: 004. https://doi.org/10.4172/1948-593X.S12-004

Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4: 177. https://doi.org/10.3389/fphar.2013.00177

Elya B, Basah K, Mun’im A, Yuliastuti W, Bangun A, Septiana EK (2012) Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. J Biomed Biotechnol 2012: 281078. https://doi.org/10.1155/2012/281078

Fu M, Shen W, Gao W, Namujia L, Yang X, Cao J, Sun L (2021) Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-glucosidase. Bioorg Chem 115: 105235. https://doi.org/10.1016/j.bioorg.2021.105235

Gani MA, Nurhan AD, Maulana S, Siswodihardjo S, Shinta DW, Khotib J (2021) Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. J Adv Pharm Technol Res 12(2): 120–126. https://doi.org/10.4103/japtr.JAPTR_88_21

Gao X, Cai X, Yang W, Chen Y, Han X, Ji L (2018) Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J Diabetes Investig 9(2): 321–331. https://doi.org/10.1111/jdi.12711

Islam MT, Sharifi-Rad J, Martorell M, Ali ES, Asghar MN, Deeba F, Firoz CK, Mubarak MS (2020) Chemical profile and therapeutic potentials of Xylocarpus moluccensis (Lam.) M. Roem.: A literature-based review. J Ethnopharmacol 259: 112958. https://doi.org/10.1016/j.jep.2020.112958

Kim KY, Nam KA, Kurihara H, Kim SM (2009) Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69(16): 2820–2825. https://doi.org/10.1016/j.phytochem.2008.09.007

Li H, Li Y, Wang XB, Pang T, Zhang LY, Luo J, Kong LY (2015) Mexicanolide limonoids with in vitro neuroprotective activities from seeds of Khaya senegalensis. RSC Adv 5(51): 40465–40474. https://doi.org/10.1039/C5RA05006E

Mahapatra AD, Bhowmik P, Banerjee A, Das A, Ojha D, Chattopadhyay D (2019) Ethnomedicinal wisdom: An approach for antiviral drug development. New Look to Phytomedicine 2019: 35–61. https://doi.org/10.1016/B978-0-12-814619-4.00003-3

Mootoo BS, Ramsewak R, Khan A, Tinto WF, Reynolds WF, McLean S, Yu M (1996) Tetranortriterpenoids from Ruagea glabra. J Nat Prod 59(5): 544–547. https://doi.org/10.1021/np960139g

Murray RK, David AB, Kathleen MB, Peter JK, Victor WR, Anthony PW (2012) Harper’s Illustrated Biochemistry 29th Edition. The McGraw-Hill Companies, Inc.

Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K (2020) Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res 2020: 7489795. https://doi.org/10.1155/2020/7489795

Phillips M, Cataneo RN, Cheema T, Greenberg J (2004) Increased breath biomarkers of oxidative stress in diabetes mellitus. Clin Chim Acta 344(1-2): 189–194. https://doi.org/10.1016/j.cccn.2004.02.025

Raja S, Ravindranadh KA (2014) Complete profile on Xylocarpus moluccensis: Traditional uses, pharmacological activities and phytoconstituents. World J Pharm Res 2(12): 1770–1777.

Ravangpai W, Sommit D, Teerawatananond T, Sinpranee N, Palaga T, Pengpreecha S, Muangsin N, Pudhom K (2011) Limonoids from seeds of Thai Xylocarpus moluccensis. Bioorg Med Chem Lett 21(15): 4485–4489. https://doi.org/10.1016/j.bmcl.2011.06.010

Rodbard H, Jellinger P, Davidson J, Einhorn D, Garber A, Grunberger G, Schwartz S (2009) Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: An algorithm for glycemic control. Endocr Pract 15(6): 540–559. https://doi.org/10.4158/ep.15.6.540

Ross SA, Gulve EA, Wang M (2004) Chemistry and biochemistry of type 2 diabetes. Chem Rev 104(3): 1255–1282. https://doi.org/10.1021/cr0204653

Sarian MN, Ahmed QU, Mat So’ad SZ, Alhassan AM, Murugesu S, Perumal V, Syed Mohamad SN, Khatib A, Latip J (2017) Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomed Res Int 2017: 8386065. https://doi.org/10.1155/2017/8386065

Sarigaputi C, Teerawatananond T, Pengpreecha S, Muangsin N, Pudhom K (2010) Xyloccensin E. Acta Cryst E66: o1348–o1349. https://doi.org/10.1107/S1600536810016582

Simlai A, Roy A (2013) Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview. Pharmacogn Rev 7(14): 170–178. https://doi.org/10.4103/0973-7847.120518

Srivastava AK, Tiwari PR, Srivastava SP, Srivastava RO, Mishra AK, Rahuja NE, Pandeti SU, Tamrakar AK, Narender TA, Srivastava MN, Lakshmi VI (2014) Antihyperglycaemic and antidyslipidemic activities in ethyl acetate fraction of fruits of marine mangrove Xylocarpus moluccensis. Int J Pharm Pharm Sci 6(1): 809–826.

Uddin SJ, Shilpi JA, Alam SM, Alamgir M, Rahman MT, Sarker SD (2005) Antidiarrhoeal activity of the methanol extract of the barks of Xylocarpus moluccensis in castor oil-and magnesium sulphate-induced diarrhoea models in mice. J Ethnopharmacol 101(1-3): 139–143. https://doi.org/10.1016/j.jep.2005.04.006

Wangensteen H, Alamgir M, Duong GM, Gronhaug TE, Samuelsen AB, Malterud KE (2009) Chemical and biological studies of medicinal plants from Sundarbans mangrove forest. Adv Phytother Res 1: 59–78.

Xiao J, Kai G, Yamamoto K, Chen X (2013) Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit Rev Food Sci Nutr 53(8): 818–836. https://doi.org/10.1080/10408398.2011.561379

Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB (2017) Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci 18(1): 96. https://doi.org/10.3390/ijms18010096

Zanwar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL (2014) Antioxidant role of catechin in health and disease. In: Polyphenols in human health and disease. Volume 1. Academic Press, pp. 267–271. https://doi.org/10.1016/B978-0-12-398456-2.00021-9

© 2024 Journal of Pharmacy & Pharmacognosy Research

Justicia gendarussa potential for osteoporosis prevention

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 439-452, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1781_12.3.439

Original Article

In silico approaches of gandarusa (Justicia gendarussa Burm. f.) potential for osteoporosis prevention via EGF pathway

[Enfoques in silico del potencial de gandarusa (Justicia gendarussa Burm. f.) para la prevención de la osteoporosis vía EGF]

Sri Dinengsih1,2*, Nurdiana3, Sri Winarsih4, Bambang Raharjo5, Agustina Tri Endharti3

1Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia.

2Midwifery Program, Faculty of Health Sciences Universitas Nasional, Jakarta, Indonesia.

3Department of Medical, Universitas Brawijaya, Malang 65145, Indonesia.

4Department of Pharmacology, Universitas Brawijaya, Malang 65145, Indonesia.

5Department of Obstetric Gynecology, Public Hospital of Saiful Anwar, Malang, Indonesia.

*E-mail: sridinengsih@civitas.unas.ac.id

Abstract

Context: On a cellular level, osteoporosis is a metabolic bone disease caused by osteoclastic bone resorption that is not offset by osteoblastic bone synthesis. This increases the risk of fractures by making bones weak and brittle. The selective inactivation of the epidermal growth factor receptor (EGFR) in osteoblast lineage cells demonstrated that EGFR promotes bone formation by increasing the number of mesenchymal progenitors. Active compounds of gandarusa (Justicia gendarussa Burm. f.) are potentially playing crucial roles in EGFR activation.

Aims: To evaluate the potential of J. gendarussa for osteoporosis prevention via EGF pathway in silico.

Methods: A GC-MS approach was used to screen the active compounds from 70 and 95% methanol extraction, which was continued with molecular docking analysis by PyRx v0.8. The visualization and amino acid interactions were also revealed using Discovery Studio software R17. ADME analysis was performed using the SwissADME webserver to consider whether the best compound could be classified as a drug following Lipinsky rule’s of five.

Results: The top five compounds with high binding affinity were selected from a total of 33 active compounds detected. One compound, namely eslicarbazepine, has a -6.7 kcal/mol affinity score and passes the threshold for drugs bioavailability, supported by the data of MW compounds 254.28 kDa, low rotatable bonds 1 bond, hydrogen bond acceptors and donors (2), high GI absorption, and ability to permeant to blood-brain barrier system.

Conclusions: This finding added new insight into J. gendarussa extract potential as anti-osteoporosis in humans. Nevertheless, in vitro and in vivo experiments are necessary to confirm the potential.

Keywords: activation; ADME; bone formation; leaf extract; molecular docking.

jppres_pdf_free

Resumen

Contexto: A nivel celular, la osteoporosis es una enfermedad ósea metabólica causada por una resorción ósea osteoclástica que no se ve compensada por la síntesis ósea osteoblástica. Esto aumenta el riesgo de fracturas al hacer que los huesos se vuelvan débiles y quebradizos. La inactivación selectiva del receptor del factor de crecimiento epidérmico (EGFR) en células del linaje de los osteoblastos demostró que el EGFR favorece la formación ósea al aumentar el número de progenitores mesenquimales. Los compuestos activos de la gandarusa (Justicia gendarussa Burm. f.) desempeñan potencialmente papeles cruciales en la activación del EGFR.

Objetivos: Evaluar el potencial de J. gendarussa para la prevención de la osteoporosis a través de la vía EGF in silico.

Métodos: Se utilizó un enfoque GC-MS para cribado de los compuestos activos de 70 y 95% de extracción de metanol, que se continuó con el análisis de acoplamiento molecular por PyRx v0.8. La visualización y las interacciones de aminoácidos también se revelaron mediante el software Discovery Studio R17. El análisis ADME se realizó utilizando el servidor web SwissADME para considerar si el mejor compuesto podía clasificarse como fármaco siguiendo la regla de los cinco de Lipinsky.

Resultados: Se seleccionaron los cinco compuestos con mayor afinidad de unión de un total de 33 compuestos activos detectados. Un compuesto, a saber, la eslicarbazepina, tiene una puntuación de afinidad de -6,7 kcal/mol y supera el umbral de biodisponibilidad de los fármacos, apoyado por los datos de compuestos con un MW de 254,28 kDa, bajo enlace rotatorio 1, aceptores y donantes de enlaces de hidrógeno (2), alta absorción GI y capacidad de permeabilidad al sistema de barrera hematoencefálica.

Conclusiones: Este hallazgo añade nuevos conocimientos sobre el potencial del extracto de J. gendarussa como antiosteoporosis en humanos. No obstante, son necesarios experimentos in vitro e in vivo para confirmar dicho potencial.

Palabras Clave: acoplamiento molecular; activación; ADME; extracto de hoja; formación ósea.

jppres_pdf_free

 

 
 
Citation Format: Dinengsih S, Nurdiana, Winarsih S, Raharjo B, Endharti AT (2024) In silico approaches of gandarusa (Justicia gendarussa Burm. f.) potential for osteoporosis prevention via EGF pathway. J Pharm Pharmacogn Res 12(3): 439–452. https://doi.org/10.56499/jppres23.1781_12.3.439
References

Akpriyanti DI, Pangkahila W, Aman IGM (2017) Pemberian ekstrak daun gandarusa (Justicia gendarussa Burm. f.) menurunkan kadar F2-isoprostan urin tikus Wistar (Rattus norvegicus) jantan yang diinduksi latihan fisik berlebih. J Biomedik 9: 159–165. https://doi.org/10.35790/jbm.9.3.2017.17337

Alexander PB, Yuan L, Yang P, Sun T, Chen R, Xiang H, Chen J, Wu H, Radiloff DR, Wang X-F (2015) EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Res 25: 135–138. https://doi.org/10.1038/cr.2014.141

Aspray TJ, Hill TR (2019) Osteoporosis and the ageing skeleton. In: Harris JR, Korolchuk VI (eds), Biochemistry and Cell Biology of Ageing: Part II Clinical Science. Singapore: Springer, pp. 453–476. https://doi.org/10.1007/978-981-13-3681-2_16

Brown C (2017) Osteoporosis: Staying strong. Nature 550: S15–S17. https://doi.org/10.1038/550S15a

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22: 465–475. https://doi.org/10.1359/jbmr.061113

Canalis E (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9: 575–583. https://doi.org/10.1038/nrendo.2013.154

Cauley JA, Chalhoub D, Kassem AM, Fuleihan GE-H (2014) Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol 10: 338–351. https://doi.org/10.1038/nrendo.2014.51

Chandra A, Lan S, Zhu J, Siclari VA, Qin L (2013) Epidermal growth factor receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (EGR2) expression. J Biol Chem 288: 20488–20498. https://doi.org/10.1074/jbc.M112.447250

Chen H, Senda T, Kubo K (2015) The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 48: 61–68. https://doi.org/10.1007/s00795-015-0099-y

Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. The Lancet 359: 1761–1767. https://doi.org/10.1016/S0140-6736(02)08657-9

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7: 42717. https://doi.org/10.1038/srep42717

Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi SK (1992) Critical functional requirement for the guanidinium group of the arginine 41 side chain of human epidermal growth factor as revealed by mutagenic inactivation and chemical reactivation. J Biol Chem 267: 2274–2281. https://doi.org/10.1016/S0021-9258(18)45874-7

Gerber PA, Buhren BA, Schrumpf H, Hevezi P, Bölke E, Sohn D, Jänicke RU, Belum VR, Robert C, Lacouture ME, Homey B (2016) Mechanisms of skin aging induced by EGFR inhibitors. Support Care Cancer 24: 4241–4248. https://doi.org/10.1007/s00520-016-3254-7

Gullberg B, Johnell O, Kanis JA (1997) Worldwide projections for hip fracture. Osteoporos Int 7: 407–413. https://doi.org/10.1007/PL00004148

Guo L, Xu J, Qi J, Zhang L, Wang J, Liang J, Qian N, Zhou H, Wei L, Deng L (2013) MicroRNA-17∼92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblasts apoptosis. J Cell Sci 126: 978–988. https://doi.org/10.1242/jcs.117515

Hasegawa T, Amizuka N (2017) Bone remodeling and modeling/mini-modeling. Clin Calcium 27: 1713–1722. https://pubmed.ncbi.nlm.nih.gov/29179165/

Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: Medical management, epidemiology and economic burden. Arch Osteoporos 8: 136. https://doi.org/10.1007/s11657-013-0136-1

Kanis JA, Johnell O, Oden A, Sernbo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 11: 669–674. https://doi.org/10.1007/s001980070064

Khosla S, Hofbauer LC (2017) Osteoporosis treatment: Recent developments and ongoing challenges. Lancet Diabetes Endocrinol 5: 898–907. https://doi.org/10.1016/S2213-8587(17)30188-2

Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: A summary of the literature and statistical synthesis. J Bone Miner Res 15: 721–739. https://doi.org/10.1359/jbmr.2000.15.4.721

Koide H, Muto Y, Kasai H, Kohri K, Hoshi K, Takahashi S, Tsukumo K, Sasaki T, Oka T, Miyake T, Fuwa T, Kohda D, Inagaki F, Miyazawa T, Yokoyama S (1992) A site-directed mutagenesis study on the role of isoleucine-23 of human epidermal growth factor in the receptor binding. Biochim Biophys Acta 1120: 257–261. https://doi.org/10.1016/0167-4838(92)90245-9

Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194: S3–S11. https://doi.org/10.1016/j.ajog.2005.08.047

Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: Now and the future. Lancet 377: 1276–1287. https://doi.org/10.1016/S0140-6736(10)62349-5

Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285: 25103–25108. https://doi.org/10.1074/jbc.R109.041087

Sølling ASK, Harsløf T, Langdahl B (2019) Current status of bone-forming therapies for the management of osteoporosis. Drugs Aging 36: 625–638. https://doi.org/10.1007/s40266-019-00675-8

Suchacki KJ, Cawthorn WP, Rosen CJ (2016) Bone marrow adipose tissue: Formation, function and regulation. Curr Opin Pharmacol 28: 50–56. https://doi.org/10.1016/j.coph.2016.03.001

Tadaki DK, Niyogi SK (1993) The functional importance of hydrophobicity of the tyrosine at position 13 of human epidermal growth factor in receptor binding. J Biol Chem 268: 10114–10119. https://doi.org/10.1016/S0021-9258(18)82179-2

Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212. https://doi.org/10.1016/0092-8674(90)90801-K

Walker J (2020) Osteoporosis and fragility fractures: Risk assessment, management and prevention. Nurs Older People 32: 34–41. https://doi.org/10.7748/nop.2019.e1153

Wei Y, Ma X, Sun H, Gui T, Li J, Yao L, Zhong L, Yu W, Han B, Nelson CL, Han L, Beier F, Enomoto‐Iwamoto M, Ahn J, Qin L (2022) EGFR signaling is required for maintaining adult cartilage homeostasis and attenuating osteoarthritis progression. J Bone Miner Res 37: 1012–1023. https://doi.org/10.1002/jbmr.4531

Wu F, Mason B, Horne A, Ames R, Clearwater J, Liu M, Evans MC, Gamble GD, Reid IR (2002) Fractures between the ages of 20 and 50 years increase women’s risk of subsequent fractures. Arch Intern Med 162: 33–36. https://doi.org/10.1001/archinte.162.1.33

Xiao W, Li S, Pacios S, Wang Y, Graves DT (2016) Bone remodeling under pathological conditions. In: Tooth Movement. Kentarci A, Yen WS (eds.). S. Karger AG. Front Oral Biol 18: 17–27. https://doi.org/10.1159/000351896

Yuan F-L, Xu R-S, Jiang D-L, He X-L, Su Q, Jin C, Li X (2015) Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. Bone 75: 128–137. https://doi.org/10.1016/j.bone.2015.02.017

Zhang X, Tamasi J, Lu X, Zhu J, Chen H, Tian X, Lee T-C, Threadgill DW, Kream BE, Kang Y, Partridge NC, Qin L (2011) Epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo. J Bone Miner Res 26: 1022–1034. https://doi.org/10.1002/jbmr.295

© 2024 Journal of Pharmacy & Pharmacognosy Research

α-Mangostin metal complex as anticancer candidate

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 423-438, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1827_12.3.423

Original Article

Synthesis and computational study of metal complex of α-mangostin as an anticancer candidate

[Síntesis y estudio computacional de un complejo metálico de α-mangostin como un candidato anticancerígeno]

Richa Mardianingrum1, Srie Rezeki Nur Endah1, Isti Daruwati2,3, Muchtaridi Muchtaridi3,4, Ruswanto Ruswanto5*

1Pharmacy Program, Faculty of Health Science, Universitas Perjuangan, Tasikmalaya 46115, West Java, Indonesia.

2Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Jl Puspiptek – Kota Tangerang Selatan, Indonesia.

3Research Collaboration Center for Theranostic Radiopharmaceuticals, Jl Ir. Soekarno KM 21, Jatinangor 45363, Indonesia.

4Department of Pharmaceutical Analysis and Medicinal Chemistry Faculty of Pharmacy, Padjadjaran University, Jatinangor, Sumedang 45363, West Java, Indonesia.

5Pharmacy Program, Universitas Bakti Tunas Husada, Tasikmalaya 46115, West Java, Indonesia.

*E-mail: ruswanto@universitas-bth.ac.id

Abstract

Context: The number of breast cancer patients from year to year is increasing, accompanied by an increase in global mortality; the position in Indonesia has reached 60-70% with end-stage conditions. ERα antiproliferative activity exists in α-mangostin compounds, but this compound still has several physicochemical problems, including its solubility. Therefore, efforts are needed to increase the activity of α-mangostin and its affinity as an alpha estrogen receptor antagonist through a structure-based design method.

Aims: To obtain new compounds derived from α-mangostin in the form of a metal complex with cobalt (AM-Co), platinum (AM-Pt), and iron (AM-Fe) as medicinal ingredients that can be used as breast cancer therapeutic agents.

Methods: The research methods include in silico studies (pharmacokinetic and toxicity prediction, molecular docking, and molecular dynamics), semi-synthesis to form a complex compound, and testing cytotoxic activity against MCF-7 and T-47D human breast cancer cells.

Results: From the in vitro test results, it can be seen that the AM-Pt compound showed the best anticancer activity on MCF-7 cells compared to others from IC50 and SI values; this was supported by the results of in silico studies either through molecular docking or molecular dynamics, where this compound was more effective.

Conclusions: Furthermore, it can be used as an anticancer candidate; particularly, its activity is predicted to be more potent as an ERa antagonist than a-mangostin and cisplatin.

Keywords: cobalt; iron; a-mangostin; metal complex; platinum.

jppres_pdf_free

Resumen

Contexto: El número de pacientes con cáncer de mama aumenta de año en año, acompañado de un aumento de la mortalidad global; la situación en Indonesia ha alcanzado el 60-70% con estados terminales. ERα existe actividad antiproliferativa en los compuestos de α-mangostin, pero este compuesto sigue presentando varios problemas fisicoquímicos, entre ellos su solubilidad. Por lo tanto, es necesario esforzarse por aumentar la actividad de α-mangostin y su afinidad como antagonista del receptor alfa de estrógenos mediante un método de diseño basado en la estructura.

Objetivos: Obtener nuevos compuestos derivados de α-mangostin en forma de complejo metálico con cobalto (AM-Co), platino (AM-Pt) y hierro (AM-Fe) como ingredientes medicinales que puedan utilizarse como agentes terapéuticos del cáncer de mama.

Métodos: Los métodos de investigación incluyen estudios in silico (predicción farmacocinética y de toxicidad, acoplamiento molecular y dinámica molecular), semisíntesis para formar un compuesto complejo y ensayo de la actividad citotóxica frente a células humanas de cáncer de mama MCF-7 y T-47D.

Resultados: A partir de los resultados de las pruebas in vitro, se puede observar que el compuesto AM-Pt mostró la mejor actividad anticancerígena sobre células MCF-7 en comparación con otros a partir de los valores de IC50 y SI; esto fue apoyado por los resultados de los estudios in silico ya sea a través de docking molecular o dinámica molecular, donde este compuesto fue más eficaz.

Conclusiones: Además, puede utilizarse como candidato anticancerígeno; en particular, se prevé que su actividad sea más potente como antagonista de ERα que α-mangostin y el cisplatino.

Palabras Clave: cobalto; complejo metálico; hierro; α-mangostin; platino.

jppres_pdf_free

 

 
 
Citation Format: Mardianingrum R, Endah SRN, Daruwati I, Muchtaridi M, Ruswanto R (2024) Synthesis and computational study of metal complex of α-mangostin as an anticancer candidate. J Pharm Pharmacogn Res 12(3): 423–438. https://doi.org/10.56499/jppres23.1827_12.3.423
References

Ahern TP, Hertz DL, Damkier P, Ejlertsen B, Hamilton-Dutoit SJ, Rae JM, Regan MM, Thompson AM, Lash TL, Cronin-Fenton DP (2017) Cytochrome P-450 2D6 (CYP2D6) genotype and breast cancer recurrence in tamoxifen-treated patients: evaluating the importance of loss of heterozygosity. Am J Epidemiol 185(2): 75–85. https://doi.org/10.1093/aje/kww178

Ahmad M, Yamin BM, Mat Lazim A (2013) A study on dispersion and characterisation of α-mangostin loaded pH sensitive microgel systems. Chem Central J 7: 85. https://doi.org/10.1186/1752-153X-7-85

Aisha AFA, Ismail Z, Abu-Salah KM, Majid AMSA (2012) Solid dispersions of α-mangostin improve its aqueous solubility through self-assembly of nanomicelles. J Pharm Sci 101(2): 815–825. https://doi.org/10.1002/jps.22806

American Cancer Society (2019) Breast Cancer Facts & Figures 2019-2020. Atlanta: American Cancer Society, Inc. pp. 44.

Ananda H, Sharath Kumar KS, Sudhanva MS, Rangappa S, Rangappa KS (2018) A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression. Mol Cell Biochem 449: 137–144. https://doi.org/10.1007/s11010-018-3350-8

Baile MB, Kolhe NS, Deotarse PP, Jain AS, Kulkarni AA (2015) Metal ion complex-potential anticancer drug-a review. Int J Pharm Res Rev 4(8): 59–66.

Budiman A, Megantara S, Apriliani A (2019) Solid dosage form development of glibenclamide-aspartame cocrystal using the solvent evaporation method to increase the solubility of glibenclamide. Int J Appl Pharm 11(3): 150–154. https://doi.org/10.22159/ijap.2019v11i3.32121

Case DA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2014) Amber 12 Reference Manual. San Francisco: University of California.

Céspedes I, Fuentes-León F, Rodeiro I, Laurencio-Lorca Y, Iglesias MV, Herrera JA, Cuellar C, Caballero V, Pereira L, Cuétara E, Sanchez Á, Fernández MD, Núñez RR, Hernández-Balmaseda I, Ortiz E (2023) Kinetic characterization, antioxidant and in vitro toxicity potential evaluation of the extract M116 from Bacillus amyloliquefaciens, a Cuban southern coast marine microorganism. J Pharm Pharmacogn Res 11(4): 547–556. https://doi.org/10.56499/jppres23.1574_11.4.547

Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL (2012) Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J Adv Pharm Educ Res 2(1): 32–67.

Chothiphirat A, Nittayaboon K, Kanokwiroon K, Srisawat T, Navakanitworakul R (2019) Anticancer potential of fruit extracts from Vatica diospyroides Symington type SS and their effect on program cell death of cervical cancer cell lines. Sci World J 2019: 5491904. https://doi.org/10.1155/2019/5491904

Christina YI, Rifa’i M, Widodo N, Djati MS (2022) Comparative study of antiproliferative activity in different plant parts of Phaleria macrocarpa and the underlying mechanism of action. Sci World J 2022: 3992660. https://doi.org/10.1155/2022/3992660

Damkier P, Kjærsgaard A, Barker KA, Cronin-Fenton D, Crawford A, Hellberg Y, Janssen EAM, Langefeld C, Ahern TP, Lash TL (2017) CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence: Analysis of the International Tamoxifen Pharmacogenomics Consortium dataset. Sci Rep 7: 7727. https://doi.org/10.1038/s41598-017-08091-x

Di Maio S, Carrier RL (2011) Gastrointestinal contents in fasted state and post-lipid ingestion: In vivo measurements and in vitro models for studying oral drug delivery. J Control Release 151(2): 110–122. https://doi.org/10.1016/j.jconrel.2010.11.034

Dilruba S, Kalayda GV (2016) Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol 77: 1103–1124. https://doi.org/10.1007/s00280-016-2976-z

Diyah NW, Siswandono, Bambang Tri Purwanto (2017) Synthesis, molecular docking, and cytotoxic activity of N-ethyl-n-ethylcarbamoyl) benzamide derivatives against MCF-7 cell line. Res J Pharm Biol Chem Sci 8(1s): 164–173.

Dong H, Zonta F, Wang S, Song K, He X, He M, Nie Y, Li S (2017) Structure and molecular dynamics simulations of protein tyrosine phosphatase non-receptor 12 provide insights into the catalytic mechanism of the enzyme. Int J Mol Sci 19(1): 60. https://doi.org/10.3390/ijms19010060

Florea AM, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3(1): 1351–1371. https://doi.org/10.3390/cancers3011351

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protocol 11(5): 905–919. https://doi.org/10.1038/nprot.2016.051

Fricker SP (2007) Metal based drugs: From serendipity to design. Dalton Trans 43: 4903–4917. https://doi.org/10.1039/b705551j

Galanski M, Arion VB, Jakupec MA, Keppler BK (2003) Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des 9(25): 2078–2089. https://doi.org/10.2174/1381612033454180

Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5): 449–461. https://doi.org/10.1517/17460441.2015.1032936

Gomez-Ruiz S, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN (2012) On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy. Bioinorg Chem Appl 2012: 140284. https://doi.org/10.1155/2012/140284

Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATPdependent transporters. Nat Rev Cancer 2(1): 48-58. https://doi.org/10.1038/nrc706

Hardjono S, Siswodihardjo S, Pramono P, Darmanto W (2017) Correlation between in silico and in vitro results of 1-(benzoyloxy)urea and its derivatives as potential anti-cancer drugs. Chem Chem Technol 11(1): 19–24. https://doi.org/10.23939/chcht11.01.019

Hariono M, Nuwarda RF, Yusuf M, Rollando R, Jenie RI, Al-Najjar B, Julianus J, Putra KC, Nugroho ES, Wisnumurti YK, Dewa SP, Jati BW, Tiara R, Ramadani RD, Qodria L, Wahab HA (2020) Arylamide as potential selective inhibitor for matrix metalloproteinase 9 (MMP9): Design, synthesis, biological evaluation, and molecular modeling. J Chem Inf Model 60(1): 349–359. https://doi.org/10.1021/acs.jcim.9b00630

Hariprasath K, Deepthi B, Babu IS, Venkatesh P, Sharfudeen S, Soumya V (2010) Metal complexes in drug research-a review. J Chem Pharm Res 2(4): 496–499.

Jafar FI, Muchtaridi M (2019) Potential of mangostin pericarp (Garcinia mangostana Linn.) for cancer in women: A review. Int J Pharm Sci Res 4(3): 14–18.

Kesuma D, Siswandono, Purwanto BT, Rudyanto M (2018) Synthesis of N-(phenylcarbamothioyl)-benzamide derivatives and their cytotoxic activity against MCF-7 cells. J Chin Pharm Sci 27(10): 696–702.

Kurose H, Shibata M.-A, Iinuma M, Otsuki Y (2012) Alterations in cell cycle and induction of apoptotic cell death in breast cancer cells treated with α-mangostin extracted from mangosteen pericarp. J Biomed Biotechnol 2012: 672428. https://doi.org/10.1155/2012/672428

Mardianingrum R, Yusuf M, Hariono M, Mohd Gazzali A, Muchtaridi M (2022) α-Mangostin and its derivatives against estrogen receptor alpha. J Biomol Struct Dyn 40(6): 2621–2634. https://doi.org/10.1080/07391102.2020.1841031

Maungchanburi S, Rattanaburee T, Sukpondma Y, Tedasen A, Tipmanee V, Graidist P (2022) Anticancer activity of Piper cubeba L. extract on triple negative breast cancer MDA-MB-231. J Pharm Pharmacogn Res 10(1): 39–51. https://doi.org/10.56499/jppres21.1160_10.1.39

Moongkarndi P, Kosem N, Luanratana O, Jongsomboonkusol S, Pongpan N (2004) Antiproliferative activity of Thai medicinal plant extracts on human breast adenocarcinoma cell line. Fitoterapia 75(3–4): 375–377. https://doi.org/10.1016/j.fitote.2004.01.010

Morelli CF, Biagiotti M, Pappalardo VM, Rabuffetti M, Speranza G (2015) Chemistry of α-mangostin. Studies on the semisynthesis of minor xanthones from Garcinia mangostana. Nat Prod Res 29(8): 750–755. https://doi.org/10.1080/14786419.2014.986729

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16): 2785–2791. https://doi.org/10.1002/jcc.21256

Muchtaridi M, Syahidah H, Subarnas A, Yusuf M, Bryant S, Langer T (2017) Molecular docking and 3d-pharmacophore modeling to study the interactions of chalcone derivatives with estrogen receptor alpha. Pharmaceuticals 10(4): 81. https://doi.org/10.3390/ph10040081

Muhammad N, Guo Z (2014) Metal-based anticancer chemotherapeutic agents. Curr Opin Chem Biol 19: 144–153. https://doi.org/10.1016/j.cbpa.2014.02.003

Nies AT, Koepsell H, Damme K, Schwab M  (2011) Organic Cation Transporters (OCTs, MATEs), In Vitro and In Vivo Evidence for the Importance in Drug Therapy. In: Fromm, M., Kim, R. (eds) Drug Transporters. Handbook of Experimental Pharmacology, vol 201. Berlin, Heidelberg; Springer Link, pp. 105–167. https://doi.org/10.1007/978-3-642-14541-4_3

Padilla-Benavides T, Vest KE, Campos-Parra AD, Raimunda D (2023) Editorial: Novel approaches to study metals in molecular biology. Front Mol Biosci 10: 1167896. https://doi.org/10.3389/fmolb.2023.1167896

Payne SJL, Bowen RL, Jones JL, Wells CA (2008) Predictive markers in breast cancer – The present. Histopathology 52(1): 82–90. https://doi.org/10.1111/j.1365-2559.2007.02897.x

Pervaram S, Ashok D, Sarasija M, Reddy CVR, Sridhar G (2018) Synthesis and anticancer activity of 1,2,4-oxadiazole fused benzofuran derivatives. Russ J Gen Chem 88(6): 1219–1223. https://doi.org/10.1134/S1070363218060282

Porter CJH, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3): 231–248. https://doi.org/10.1038/nrd2197

Purwanto BT, Siswandono S, Hardjono S, Triwidiandany D (2020) Rational design, synthesis and cytotoxic activity of N-(phenylcarbamoyl)benzamide on HeLa cell lines. J Math Fund Sci 52(2): 174–188. https://doi.org/10.5614/j.math.fund.sci.2020.52.2.3

Ruswanto R, Mardianingrum R, Lestari T, Nofianti T, Siswandono S (2018) 1-(4-Hexylbenzoyl)-3-methylthiourea. Molbank 2018(3): M1005. https://doi.org/10.3390/M1005

Saleem K, Wani WA, Haque A, Lone MN, Hsieh M.-F, Jairajpuri MA, Ali I (2013) Synthesis, DNA binding, hemolysis assays and anticancer studies of copper (II), nickel (II) and iron (III) complexes of a pyrazoline-based ligand. Future Med Chem 5(2): 135–146. https://doi.org/10.4155/fmc.12.201

Setiawati A (2014) Anticancer Activity of mangosteen pericarp dry extract against MCF-7 Breast Cancer cell line through estrogen receptor-α. Indonesian J Pharm 25(3): 119–124. https://doi.org/10.14499/indonesianjpharm25iss3pp119

Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7): 927–937. https://doi.org/10.1016/S0092-8674(00)81717-1

Shibata M, Hamaoka H, Morimoto J, Kanayama T, Maemura K, Ito Y, Iinuma M, Kondo Y (2018) Synthetic α‐mangostin dilaurate strongly suppresses wide‐spectrum organ metastasis in a mouse model of mammary cancer. Cancer Sci 109(5): 1660–1671. https://doi.org/10.1111/cas.13590

Sodalee K, Sapsuphan P, Wongsirikul R, Puttipipatkhachorn S (2016) Preparation and evaluation of alpha-mangostin solid self-emulsifying drug delivery system. Asian J Pharm Sci 11(1): 225–226. https://doi.org/10.1016/j.ajps.2015.11.024

Suharyani I, Muchtaridi M, Mohammed AFA, Elamin KM, Wathoni N, Abdassah M (2021) α-Mangostin/γ-cyclodextrin inclusion complex: Formation and thermodynamic study. Polymers 13(17): 2890. https://doi.org/10.3390/polym13172890

Tronina T, Bartmańska A, Popłoński J, Rychlicka M, Sordon S, Filip-Psurska B, Milczarek M, Wietrzyk J, Huszcza E (2023) Prenylated flavonoids with selective toxicity against human cancers. Int J Mol Sci 24(8): 7408. https://doi.org/10.3390/ijms24087408

van Rijt SH, Sadler PJ (2009) Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov Today 14(23–24): 1089–1097. https://doi.org/10.1016/j.drudis.2009.09.003

Wang X, Chen C, Binder K, Kuhn U, Pöschl U, Su H, Cheng Y (2018) Molecular dynamics simulation of the surface tension of aqueous sodium chloride: From dilute to highly supersaturated solutions and molten salt. Atmos Chem Phys 18(23): 17077–17086. https://doi.org/10.5194/acp-18-17077-2018

Yadav S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Mathur A, Narasimhan B (2018) Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamides. Chem Central J 12: 66. https://doi.org/10.1186/s13065-018-0432-3

Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354(3): 270–282. https://doi.org/10.1056/NEJMra050776

Yahuafai J, Onsrisawat P, Piyaviriyakul S, Nontakham J, Suthamnatpong N (2023) Anticancer effect of Triphala extract on the hepatocellular carcinoma cells in mice. J Pharm Pharmacogn Res 11(3): 448–454. https://doi.org/10.56499/jppres23.1602_11.3.448

Yeni Y, Supandi S, Merdekawati F (2018) In silico toxicity prediction of 1-phenyl-1-(quinazolin-4-yl) ethanol compounds by using Toxtree, pkCSM and preADMET. Pharmaciana 8(2): 205–216. https://doi.org/10.12928/pharmaciana.v8i2.9508

© 2024 Journal of Pharmacy & Pharmacognosy Research

Yoga impact in pre-eclampsia

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 414-422, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1820_12.3.414

Original Article

The impact of yoga in pregnancy on placental growth factor levels and mean arterial pressure in pre-eclampsia: A randomized controlled trial

[El impacto del yoga en el embarazo sobre los niveles del factor de crecimiento placentario y la presión arterial media en la pre-eclampsia: un ensayo controlado aleatorizado]

Zakkiyatus Zainiyah*, Eny Susanti, Novita Wulandari

Ngudia Husada Madura High School of Health Sciences, Madura, Indonesia.

*E-mail: zzainiyah@gmail.com

Abstract

Context: Pre-eclampsia is a pregnancy-related condition characterized by hypertension, proteinuria, and edema occurring after 20 weeks of pregnancy or during the postpartum period. Several markers are often assessed to determine the suitable option for confirming pre-eclampsia diagnosis, one of which is the examination of placental growth factor (PlGF) as a placental ischemia indicator.

Aims: To evaluate the impact of prenatal yoga on PlGF and mean arterial pressure (MAP) levels in pre-eclampsia within the Madura region.

Methods: A randomized controlled trial was conducted on fifty subjects that were randomly allocated to the experimental group with pre-post control groups consisting of 50 participants, namely 25 pregnant women with pre-eclampsia and 25 healthy individuals. The selection was conducted based on the following inclusion criteria: belonging to Madura ethnicity spanning three generations, exhibiting pregnancy duration >20 weeks, maternal ages ranging from 20–35 years, pre-pregnancy body mass index (BMI) >25, a history of hypertension, diabetes mellitus (DM), kidney disorders, pre-eclampsia, chronic hypertension, or family history of chronic high blood pressure and pre-eclampsia among those at risk. PlGF levels were estimated using an ELISA kit, while blood pressure was measured with an Omron brand sphygmomanometer.

Results: Statistical analysis performed with the Wilcoxon sign test and T-test indicated significant differences (p<0.005) in systolic blood pressure, diastolic blood pressure, and MAP between the groups. Furthermore, a significant difference was observed in PlGF levels before and after engaging in prenatal yoga practice (p<0.05).

Conclusions: The results showed that prenatal yoga contributed to the elevation of PlGF levels in women with pre-eclampsia, compared to their healthy counterparts.

Keywords: mean arterial pressure; placental growth factor; pre-eclampsia; pregnancy; yoga.

jppres_pdf_free

Resumen

Contexto: La pre-eclampsia es una afección relacionada con el embarazo caracterizada por hipertensión, proteinuria y edema que se presenta después de las 20 semanas de embarazo o durante el puerperio. A menudo se evalúan varios marcadores para determinar la opción adecuada para confirmar el diagnóstico de pre-eclampsia, uno de los cuales es el examen del factor de crecimiento placentario (PlGF) como indicador de isquemia placentaria.

Objetivos: Evaluar el impacto del yoga prenatal sobre el PlGF y los niveles de presión arterial media (PAM) en la pre-eclampsia dentro de la región de Madura.

Métodos: Se llevó a cabo un ensayo controlado aleatorio en cincuenta sujetos que fueron asignados al azar al grupo experimental con grupos de control pre-post compuesto por 50 participantes, a saber, 25 mujeres embarazadas con pre-eclampsia y 25 individuos sanos. La selección se basó en los siguientes criterios de inclusión: pertenencia a la etnia madura durante tres generaciones, duración del embarazo superior a 20 semanas, edad materna entre 20 y 35 años, índice de masa corporal (IMC) previo al embarazo >25, antecedentes de hipertensión, diabetes mellitus (DM), trastornos renales, pre-eclampsia, hipertensión crónica o antecedentes familiares de hipertensión crónica y pre-eclampsia entre las personas de riesgo. Los niveles de PlGF se estimaron mediante un kit ELISA, mientras que la presión arterial se midió con un esfigmomanómetro de la marca Omron.

Resultados: El análisis estadístico realizado con la prueba de signos de Wilcoxon y la prueba T indicó diferencias significativas (p<0,005) en la presión arterial sistólica, la presión arterial diastólica y la PAM entre los grupos. Además, se observó una diferencia significativa en los niveles de PlGF antes y después de practicar yoga prenatal (p<0,05).

Conclusiones: Los resultados mostraron que el yoga prenatal contribuyó a la elevación de los niveles de PlGF en mujeres con pre-eclampsia, en comparación con sus homólogas sanas.

Palabras Clave: embarazo; factor de crecimiento placentario; pre-eclampsia; presión arterial media; yoga.

jppres_pdf_free
 
Citation Format: Zainiyah Z, Susanti E, Wulandari N (2024) The impact of yoga in pregnancy on placental growth factor levels and mean arterial pressure in pre-eclampsia: A randomized controlled trial. J Pharm Pharmacogn Res 12(3): 414–422. https://doi.org/10.56499/jppres23.1820_12.3.414
References

Ankad RB, Herur A, Patil S, Shashikala GV, Chinagudi S (1995) Effect of short-term pranayama and meditation on cardiovascular functions in healthy individuals. Hear Views 12(2): 58–63. https://doi.org/10.4103/1995-705X.86016

Babbar S, Hill JB, Williams KB, Pinon MM, Chauhan SP, Maulik D (2016) Acute fetal behavioral response to prenatal yoga: A single blinded, randomized controlled trial (TRY Yoga). Am J Obstet Gynecol 214: P399.E1-399.E8. https://doi.org/10.1016/j.ajog.2015.12.032

Babbar S, Shyken J (2016) Yoga in pregnancy. Clin Obstet Gynecol 59: 600–612. https://doi.org/10.1097/GRF.0000000000000210

Bartsch E, Medcalf KE, Park AL, Ray JG; High Risk of Pre-eclampsia Identification Group (2016) Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 19: i1753. https://doi.org/10.1136/bmj.i1753

Basso O, Rasmussen S, Weinberg CR, Wilcox AJ, Irgens LM, Skjaerven R (2006) Trends in fetal and infant survival following preeclampsia. JAMA 296(11): 1357–1362. https://doi.org/10.1001/jama.296.11.1357

Bharshankar JR, Bharshankar RN, Deshpande VN, Kaore SB, Gosavi GB (2003) Effect of yoga on cardiovascular system in subjects above 40 years. Indian J Physiol Pharmacol 47(2): 202–206. https://pubmed.ncbi.nlm.nih.gov/15255625/

Brosens I, Puttemans P, Benagiano G (2019) Placental bed research: 1. The placental bed. From spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol 221(5): 437–456. https://doi.org/10.1016/j.ajog.2019.05.044

Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, VandenDriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Genet 7(5): 575–583. https://doi.org/10.1038/87904

Carty DM, Delles C, Dominiczak AF (2008) Novel biomarkers for predicting pre-eclampsia. Trends Cardiovasc Med 18(5): 186–194. https://doi.org/10.1016/j.tcm.2008.07.002

Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R (2018) Pre-eclampsia part 1: Current understanding of its pathophysiology. Nat Rev Nephrol 10(8): 466–480. https://doi.org/10.1038/nrneph.2014.102

Cnossen JS, Vollebregt KC, de Vrieze N, ter Riet G, Mol BW, Franx A, Khan KS, van der Post JA (2008) Accuracy of mean arterial pressure and blood pressure measurements in predicting pre-eclampsia: Systematic review and meta-analysis. BMJ 336(7653): 1117–1120. https://doi.org/10.1136/bmj.39540.522049.BE

Dangel AR, Demtchouk VO, Prigo CM, Kelly JC (2021) Inpatient prenatal yoga sessions for women with high-risk pregnancies: A feasibility study. Complement Ther Med 48: 102235. https://doi.org/10.1016/j.ctim.2019.102235

Daskalopoulou SS, Cooke AB, Gomez YH, Mutter AF, Filippaios A, Mesfum ET, Mantzoros CS (2014) Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol 171: 343–352. https://doi.org/10.1530/EJE-14-0204

Dinkes Jatim (2021) Profil Kesehatan Dinas Kesehatan Provinsi Jawa Timur 2021. Dinas Kesehat Provinsi Jawa Timur. pp. 1–149.

Douglas KA, Redman CWG (1994) Eclampsia in the United Kingdom. BMJ 309(6966): 1395-1400. https://doi.org/10.1136/bmj.309.6966.1395

Gallo D, Poon LC, Fernandez M, Wright D, Nicolaides KH (2014) Prediction of preeclampsia by mean arterial pressure at 11-13 and 20-24 weeks’ gestation. Fetal Diagn Ther 36(1): 28–37. https://doi.org/10.1159/000360287

Gilbert JS, Ryan MJ, Lamarca BB, Sedeek M, Murphy SR, Granger JP (2008) Pathophysiology of hypertension during pre-eclampsia: Linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol 294(2): H541–H550. https://doi.org/10.1152/ajpheart.01113.2007

Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA (2001) Pathophysiology of hypertension during pre-eclampsia linking placental ischemia with endothelial dysfunction. Hypertension 38(2): 718–722. https://doi.org/10.1161/01.HYP.38.3.718

Grill S, Rusterholz C, Zanetti-Dällenbach R, Tercanli S, Holzgreve W, Hahn S, Lapaire O (2009) Potential markers of pre-eclampsia – a review. Reprod Biol Endocrinol 7: 70. https://doi.org/10.1186/1477-7827-7-70

Lu HQ, Hu R (2019) Lasting effects of intrauterine exposure to pre-eclampsia on offspring and the underlying mechanism. Am J Perinatol Rep 9(3): e275-e291. https://doi.org/10.1055/s-0039-1695004

Lwanga SK, Lemeshow S (1991) Sample size determination in health studies: A practical manual. J Am Stat Assoc 86(416): 1149. https://doi.org/10.2307/2290547

Matsubara K, Matsubara Y, Uchikura Y, Sugiyama T (2021) Pathophysiology of pre-eclampsia: The role of exosomes. Int J Mol Sci 22(5): 2572. https://doi.org/10.3390/ijms22052572

McDermott M, Miller EC, Rundek T, Hurn PD, Bushnell CD (2018) Association with posterior reversible encephalopathy syndrome and stroke. Stroke 49(3): 524–530. https://doi.org/10.1161/STROKEAHA.117.018416

Miller EC (2020) Pre-eclampsia and cerebrovascular disease: The maternal brain at risk. Hypertension. 74(1): 5–13. https://doi.org/10.1161/HYPERTENSIONAHA.118.11513

Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, Gomez-Lopez N (2021) Cellular immune responses in the pathophysiology of pre-eclampsia. J Leukoc Biol 111(1): 237–260. https://doi.org/10.1002/JLB.5RU1120-787RR

Mongraw-Chaffin ML, Cirillo PM, Cohn BA (2011) Pre-eclampsia and cardiovascular disease death: Prospective evidence from the child heatlh and development studies cohort. Hypertension 56(1): 166–171. https://doi.org/10.1161/hypertensionaha.110.150078

Orabona R, Sciatti E, Prefumo F, Vizzardi E, Bonadei I, Valcamonico A, Metra M, Frusca T (2018) Pre-eclampsia and heart failure: a close relationship. Ultrasound Obstet Gynecol 52(3): 297–301. https://doi.org/10.1002/uog.18987

Palei AC, Spradley FT, Warrington JP, George EM, Granger JP (2013) Pathophysiology of hypertension in pre-eclampsia: A lesson in integrative physiology. Acta Physiol 208(3): 224–233. https://doi.org/10.1111/apha.12106

Polis RL, Gussman D, Kuo YH (2015) Yoga in pregnancy. An examination of maternal and fetal responses to 26 yoga postures. Obstet Gynecol 126(6): 1237–1241. https://doi.org/10.1097/AOG.0000000000001137

Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, McAuliffe F, da Silva Costa F, von Dadelszen P, McIntyre HD, Kihara AB, Di Renzo GC, Romero R, D’Alton M, Berghella V, Nicolaides KH, Hod M (2020) The International Federation of Gynecology and Obstetrics (FIGO) Initiative on Pre-eclampsia (PE): A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obs 145(Suppl 1): 1–33. https://doi.org/10.1002/ijgo.12802

Rakhshani A, Nagarathna R, Mhaskar R, Mhaskar A, Thomas A, Gunasheela S (2012) The effects of yoga in prevention of pregnancy complications in high-risk pregnancies: A randomized controlled trial. Prev Med 55(4): 333–340. https://doi.org/10.1016/j.ypmed.2012.07.020

Redman CW, Sargent IL (2012) Latest advances in understanding pre-eclampsia. Science 308(5728): 1592–1594. https://doi.org/10.1126/science.1111726

Robinson CJ, Johnson DD (2007) Soluble endoglin as a second-trimester marker for preeclampsia. Am J Obstet Gynecol 197(2): 174e1–5. https://doi.org/10.1016/j.ajog.2007.03.058

Seely EW, Jeffrey E (2014) Chronic hypertension in pregnancy. Circulation 129: 1254–1261. https://doi.org/10.1161/CIRCULATIONAHA.113.003904

Sibai BM (1990) The HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): Much ado about nothing? Am J Obstet Gynecol 162(2): 311–316. https://doi.org/10.1016/0002-9378(90)90376-i

Spencer K, Cowans NJ, Chefetz I, Tal J, Meiri H (2007) First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia. Ultrasound Obstet Gynecol 29(2): 128–34. https://doi.org/10.1002/uog.3876

Staff AC (2019) Long-term cardiovascular health after stopping pre-eclampsia. Lancet 394(10204): 1120–1121. https://doi.org/10.1016/S0140-6736(19)31993-2

Tessema GA, Tekeste A, Ayele TA (2015) Pre-eclampsia and associated factors among pregnant women attending antenatal care in Dessie referral hospital, Northeast Ethiopia: A hospital-based study. BMC Pregnancy Childbirth 15(1): 73. https://doi.org/10.1186/s12884-015-0502-7

Vaught AJ, Kovell LC, Szymanski LM, Mayer SA, Seifert SM, Vaidya D, Murphy JD, Argani C, O’Kelly A, York S, Ouyang P, Mukherjee M, Zakaria S (2021) Acute cardiac effects of severe pre-eclampsia. J Am Coll Cardiol 72(1): 1–11. https://doi.org/10.1016/j.jacc.2018.04.048

Wang A, Rana S, Karumanchi SA (2009) Pre-eclampsia: The role of angiogenic factors in its pathogenesis. Physiology 24(3): 147–158. https://doi.org/10.1152/physiol.00043.2008

Weed S, Bastek JA, Anton L, Elovitz MA, Parry S, Srinivas SK (2012) Examining the correlation between placental and serum placenta growth factor in pre-eclampsia. Am J Obstet Gynecol 207(2): 140.e1-140.e6. https://doi.org/10.1016/j.ajog.2012.05.003

Wheeler SM, Myers SO, Swamy GK, Myers ER (2022) estimated prevalence of risk factors for pre-eclampsia among individuals giving birth in the US in 2019. JAMA Netw Open 5(1): e2142343. https://doi.org/10.1001/jamanetworkopen.2021.42343

Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennström M, Olovsson M, Brennecke SP, Stepan H, Allegranza D, Dilba P, Schoedl M, Hund M, Verlohren S (2016) Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med 374(1): 13–22. https://doi.org/10.1056/NEJMoa1414838

© 2024 Journal of Pharmacy & Pharmacognosy Research

Efficacy and safety analysis of Morinda citrifolia fruit

J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 391-413, May-Jun 2024.

DOI: https://doi.org/10.56499/jppres23.1832_12.3.391

Review

An evidence-based review of Morinda citrifolia L. (Rubiaceae) fruits on animal models, human studies, and case reports

[Una revisión basada en la evidencia de los frutos de Morinda citrifolia L. (Rubiaceae) en modelos animales, estudios en humanos e informes de casos]

Asman Sadino1,2*, Jutti Levita3*, Nyi Mekar Saptarini4, Adryan Fristiohady5

1Department of Pharmacology and Clinical Pharmacy, Faculty of Mathematics and Natural Sciences, Garut University, Garut 44112, Indonesia.

2Student at the Doctoral Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia.

3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia.

4Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia.

5Faculty of Pharmacy, Halu Oleo University, Kendari 93132, Indonesia.

*E-mail: jutti.levita@unpad.ac.id

Abstract

Context: Morinda citrifolia L. (Rubiaceae), commonly known as noni, is widely used as a complementary and alternative therapy in many countries due to its numerous beneficial effects on health.

Aims: To thoroughly analyze the efficacy and safety of M. citrifolia fruit across all reported areas.

Methods: The articles were explored on the PubMed and Cochrane Library databases using a combination of keywords: Morinda citrifolia AND human studies; Morinda citrifolia AND pharmacological activities using PRISMA guidelines.

Results: Studies in animal models revealed its activity as anti-dyslipidemia, anti-lipogenesis, anti‑fungal, hepatoprotective, hypotensive, immunostimulatory, anti-alopecia, photoprotective, antitumor, antiviral, anticancer, antidopaminergic, and antimicrobial. Based on the clinical and efficacy evidence, it is apparent that M. citrifolia is a potentially valuable medicinal plant whose status should be upgraded from laboratory bench to bedside. The safety of M. citrifolia has been confirmed and proven by no occurrence of AEs or only mild gastrointestinal discomforts. However, five cases of male and female patients aged from 14 to 63 years old reported different symptoms, such as fatigue, headache, vomiting, pigmentation, or acute hepatitis, after a high-dose daily use of this supplement.

Conclusions: Taking everything into consideration, M. citrifolia, despite its mild adverse events, has a beneficial efficacy and safety as an antioxidant; nevertheless, caution and therapy drug monitoring is required if this plant is to be taken in a long-term period.

Keywords: adjunctive therapy; antioxidants; Morinda citrifolia; noni fruit; plant-based therapy.

jppres_pdf_free

Resumen

Contexto: La Morinda citrifolia L. (Rubiaceae), comúnmente conocida como noni, se utiliza ampliamente como terapia complementaria y alternativa en muchos países debido a sus numerosos efectos beneficiosos para la salud.

Objetivos: Analizar exhaustivamente la eficacia y seguridad del fruto de M. citrifolia en todas las áreas reportadas.

Métodos: Los artículos se exploraron en las bases de datos PubMed y Cochrane Library utilizando una combinación de palabras clave: Morinda citrifolia AND human studies; Morinda citrifolia AND pharmacological activities utilizando las guías de PRISMA.

Resultados: Los estudios en modelos animales revelaron su actividad como antidislipidémica, antilipogénica, antifúngica, hepatoprotectora, hipotensora, inmunoestimuladora, antialopecia, fotoprotectora, antitumoral, antiviral, anticancerígena, antidopaminérgica y antimicrobiana. Basándose en las pruebas clínicas y de eficacia, es evidente que la M. citrifolia es una planta medicinal potencialmente valiosa cuyo estatus debería elevarse de la mesa de laboratorio a la cabecera del enfermo. La inocuidad de la M. citrifolia ha sido confirmada y demostrada por la ausencia de EA o por la aparición de molestias gastrointestinales leves. Sin embargo, cinco casos de pacientes de ambos sexos con edades comprendidas entre los 14 y los 63 años informaron de diferentes síntomas, como fatiga, dolor de cabeza, vómitos, pigmentación o hepatitis aguda, tras el uso diario de este suplemento en dosis altas.

Conclusiones: Tomando todo en consideración, la M. citrifolia, a pesar de sus leves efectos adversos, tiene una eficacia y seguridad beneficiosas como antioxidante; no obstante, se requiere precaución y seguimiento farmacológico de la terapia si se va a tomar esta planta a largo plazo.

Palabras Clave: antioxidantes; fruto del noni; Morinda citrifolia; terapia basada en plantas; terapia coadyuvante.

jppres_pdf_free

 

 
 
Citation Format: Sadino A, Levita J, Saptarini NM, Fristiohady A (2024) An evidence-based review of Morinda citrifolia L. (Rubiaceae) fruits on animal models, human studies, and case reports. J Pharm Pharmacogn Res 12(3): 391–413. https://doi.org/10.56499/jppres23.1832_12.3.391
References

Abou Assi R, Darwis Y, Abdulbaqi IM, Khan AA, Vuanghao L, Laghari MH (2017) Morinda citrifolia (noni): A comprehensive review on its industrial uses, pharmacological activities, and clinical trials. Arab J Chem 10(5): 691–707. https://doi.org/10.1016/j.arabjc.2015.06.018

Abu N, Zamberi NR, Yeap SK, Nordin N, Mohamad NE, Romli MF, Rasol NE, Subramani T, Ismail NH, Alitheen NB (2018) Subchronic toxicity, immunoregulation and anti-breast tumor effect of nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L. BMC Complement Alternat Med 18(1): 31. https://doi.org/10.1186/s12906-018-2102-3

Akihisa T, Watanabe K, Yamamoto A, Zhang J, Matsumoto M, Fukatsu M (2012) Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae fructus. Chem Biodivers 9(8): 1490–1499. https://doi.org/10.1002/cbdv.201200030

Ali M, Kenganora M, Manjula SN (2016) Health benefits of Morinda citrifolia (noni): A review. Pharmacogn J 8(4): 321–334. https://doi.org/10.5530/pj.2016.4.4

Ardiansyah E, Siregar MFG, Ganie RA, Putra IB (2020) Controlled clinical trial effect of noni fruit extract (Morinda citrifolia) toward overactive bladder women through observation of high-sensitivity C-reactive protein in urine levels. Open Access Maced J Med Sci 9(B): 706–710. https://doi.org/10.3889/oamjms.2020.4693

Barani K, Manipal S, Prabu D, Ahmed A, Adusumilli P, Jeevika C (2014) Anti-fungal activity of Morinda citrifolia (noni) extracts against Candida albicans: An in vitro study. Indian J Dent Res 25(2): 188–190. https://doi.org/10.4103/0970-9290.135918

Brauch JE, Zapata-Porras SP, Buchweitz M, Aschoff JK, Carle R (2016) Jagua blue derived from Genipa americana L. fruit: A natural alternative to commonly used blue food colorants? Food Res Int 89: 391–398. https://doi.org/10.1016/j.foodres.2016.08.029

Candida T, França JP, Chaves AL, Lopes FA, Gaiba S, Sacramento CK, Ferreira LM, França LP (2014) Evaluation of antitumoral and antimicrobial activity of Morinda lcitrifolia L. grown in Southeast Brazil. Acta Cir Bras 29(2): 10–14. https://doi.org/10.1590/S0102-86502014001400003

Chanthira Kumar H, Lim XY, Mohkiar FH, Suhaimi SN, Mohammad Shafie N, Chin Tan TY (2022) Efficacy and safety of Morinda citrifolia L. (noni) as a potential anticancer agent. Integr Cancer Ther 21: 15347354221132848. https://doi.org/10.1177/15347354221132848

Chen J, Cheng C, Fan L, Xu X, Chen J, Feng Y, Tang Y, Yang C (2023) Assessment of left heart dysfunction to predict doxorubicin cardiotoxicity in children with lymphoma. Front Pediatr 11: 1163664. https://doi.org/10.3389/fped.2023.1163664

Chong CLG, Hussan F, Othman F (2019) Hepatoprotective effects of Morinda citrifolia leaf extract on ovariectomized rats fed with thermoxidized palm oil diet: evidence at histological and ultrastructural level. Oxid Med Cell Longev 2019: 9714302. https://doi.org/10.1155/2019/9714302

Ding Y, Zhang T, Tao JS, Zhang LY, Shi JR, Ji G (2013) Potential hepatotoxicity of geniposide, the major iridoid glycoside in dried ripe fruits of Gardenia jasminoides (Zhi-zi). Nat Prod Res 27(10): 929–933. https://doi.org/http://dx.doi.org/10.1080/14786419.2012.673604

Eriksen MB, Frandsen TF (2018) The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J Med Libr Assoc 106(4): 420–431. https://doi.org/10.5195/jmla.2018.345

Fletcher HM, Dawkins J, Rattray C, Wharfe G, Reid M, Gordon-Strachan G (2013) Morinda citrifolia (noni) as an anti-inflammatory treatment in women with primary dysmenorrhoea: A randomised double-blind placebo-controlled trial. Obstet Gynecol Int 2013: 195454. https://doi.org/10.1155/2013/195454

Ghosh D, Mukherjee PK (2019) Natural Medicines: Clinical Efficacy, Safety and Quality. Boca Raton: CRC Press, Taylor and Francis Group, pp. 650. https://doi.org/10.1201/9781315187853

Haiqing Y, Li S, Huang MT, Ho C-T (2008) Antiinflammatory constituents in noni (Morinda citrifolia) fruits. Dietary Supplements Chapter 12. ACS Symp Ser 987: 179–190. https://doi.org/10.1021/bk-2008-0987.ch012

Hirazumi A, Furusawa E (1999) An immunomodulatory polysaccharide-rich substance from the fruit juice of Morinda citrifolia (noni) with antitumour activity. Phytother Res 13(5): 380–387. https://doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<380::AID-PTR463>3.0.CO;2-M

Inada AC, Silva GT, Silva LPRD, Alves FM, Filiú WFO, Asato MA, Junior WHK, Corsino J, Figueiredo PO, Garcez FR, Garcez WS, Silva RNOD, Santos-Eichler RAD, Guimarães RCA, Freitas KC, Hiane PA (2020) Therapeutic effects of Morinda citrifolia Linn. (noni) aqueous fruit extract on the glucose and lipid metabolism in high-fat/high-fructose-fed Swiss mice. Nutrients 12(11): 3439. https://doi.org/10.3390/nu12113439

National Toxicology Program (2005) NTP Technical Report on the Toxicology and Carcinogenesis Studies of Anthraquinone (Cas No. 84-65-1) in F344/N Rats and B6C3F1 Mice (Feed Studies). Natl Toxicol Program Tech Rep Ser (494): 1–358.

Kang L, Li D, Jiang X, Zhang Y, Pan M, Hu Y, Si L, Zhang Y, Huang J (2022) Hepatotoxicity of the major anthraquinones derived from Polygoni multiflori radix based on bile acid homeostasis. Front Pharmacol 13: 878817. https://doi.org/10.3389/fphar.2022.878817

Kang YC, Chen MH, Lai SL (2015) Potentially unsafe herb-drug interactions between a commercial product of noni juice and phenytoin-a case report. Acta Neurol Taiwan 24(2): 43–46. https://pubmed.ncbi.nlm.nih.gov/26179835/

Kharaeva Z, Shokarova A, Shomakhova Z, Ibragimova G, Trakhtman P, Trakhtman I, Chung J, Mayer W, De Luca C, Korkina L (2022) Fermented Carica papaya and Morinda citrifolia as perspective food supplements for the treatment of post-COVID symptoms: Randomized placebo-controlled clinical laboratory study. Nutrients 14(11): 2203. https://doi.org/10.3390/nu14112203

Kim H, Rahmawati L, Hong YH, Choi SY, Cho JY (2022) NK cell-mediated immunostimulatory effects of ethanol extract of Morinda citrifolia (noni) fruit. BMC Complement Med Ther 22: 222. https://doi.org/10.1186/s12906-022-03700-3

Lan WJ, Wang HY, Lan W, Wang KY (2008) Geniposide enhances melanogenesis by stem cell factor/c-kit signalling in norepinephrine-exposed normal human epidermal melanocyte. Basic Clin Pharmacol Toxicol 103(1): 88–93. https://doi.org/10.1111/j.1742-7843.2008.00251.x

Larramendy M, Soloneski S (2016) Toxicology: New Aspects to This Scientific Conundrum. IntechOpen. https://doi.org/10.5772/62600

Lin YL, Chang YY, Yang DJ, Tzang BS, Chen YC (2013) Beneficial effects of noni (Morinda citrifolia L.) juice on livers of high-fat dietary hamsters. Food Chem 140(1–2): 31–38. https://doi.org/10.1016/j.foodchem.2013.02.035

Lin YL, Lin HW, Chen YC, Yang DJ, Li CC, Chang YY (2017) Hepatoprotective effects of naturally fermented noni juice against thioacetamide-induced liver fibrosis in rats. J Chin Med Assoc 80(4): 212–221. https://doi.org/10.1016/j.jcma.2016.10.014

Mizuno Y, Watanabe Y, Aihara M, Yamaguchi Y (2022) Case of hyperpigmentation associated with the use of Morinda citrifolia (noni). Journal of Cutan Immunol Allergy 5(4): 148–149. https://doi.org/10.1002/cia2.12233

Mohd Zin, Z, Abdul Hamid A, Osman A, Saari N, Misran A (2007) Isolation and identification of antioxidative compound from fruit of mengkudu (Morinda citrifolia L.). Int J Food Prop 10(2): 363–373. https://doi.org/10.1080/10942910601052723

Motshakeri M, Ghazali HM (2015) Nutritional, phytochemical and commercial quality of noni fruit: A multi-beneficial gift from nature. Trends Food Sci Technol 45(1): 118–129. https://doi.org/10.1016/j.tifs.2015.06.004

Mrzljak A, Kosuta I, Skrtic A, Kanizaj TF, Vrhovac R (2013) Drug-induced liver injury associated with noni (Morinda citrifolia) juice and phenobarbital. Case Rep Gastroenterol 7(1): 19–24. https://doi.org/10.1159/000343651

Mukherjee PK, Banerjee S, Gupta BD, Kar A (2022) Evidence-based validation of herbal medicine: Translational approach. In: Evidence-Based Validation of Herbal Medicine (Second Edition). Translational Research in Botanical. Mukherjee PK (ed.) Elsevier, pp. 1-41. https://doi.org/10.1016/B978-0-323-85542-6.00025-1

Nima S, Kasiwong S, Ridtitid W, Thaenmanee N, Mahattanadul S (2012) Gastrokinetic activity of Morinda citrifolia aqueous fruit extract and its possible mechanism of action in human and rat models. J Ethnopharmacol 142(2): 354–361. https://doi.org/10.1016/j.jep.2012.04.044

Page MJ, Higgins JP, Sterne JA (2019) Assessing risk of bias due to missing results in a synthesis. Cochrane Handbook for Systematic Reviews of Interventions, Second Edition, Wiley Editorial, pp. 349–374. https://doi.org/10.1002/9781119536604.ch13

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372: n71. https://doi.org/10.1136/bmj.n71

Palleschi G, Carbone A, Zanello PP, Mele R, Leto A, Fuschi A, Al Salhi Y, Velotti G, Al Rawashdah S, Coppola G, Maurizi A, Maruccia S, Pastore AL (2017) Prospective study to compare antibiosis versus the association of N-acetylcysteine, D-mannose and Morinda citrifolia fruit extract in preventing urinary tract infections in patients submitted to urodynamic investigation. Arch Ital Urol Androl 89(1): 45–50. https://doi.org/10.4081/aiua.2017.1.45

Pandy V, Narasingam M, Kunasegaran T, Murugan DD, Mohamed Z (2014) Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: An ex vivo study. ScientificWorldJournal 2014: 909586. https://doi.org/10.1155/2014/909586

Pandy V, Narasingam M, Vijeepallam K, Mohan S, Mani V, Mohamed Z (2017) The ethyl acetate fraction of a methanolic extract of unripe noni (Morinda citrifolia Linn.) fruit exhibits a biphasic effect on the dopaminergic system in mice. Exp Anim 66(3): 283–291. https://doi.org/10.1538/expanim.16-0105

Pandy V, Vijeepallam K (2017) Antipsychotic-like activity of scopoletin and rutin against the positive symptoms of schizophrenia in mouse models. Exp Anim 66(4): 417–423. https://doi.org/10.1538/expanim.17-0050

Pawlus AD, Kinghorn AD (2010) Review of the ethnobotany, chemistry, biological activity and safety of the botanical dietary supplement Morinda citrifolia (noni). J Pharm Pharmacol 59(12): 1587–1609. https://doi.org/10.1211/jpp.59.12.0001

Prapaitrakool S, Itharat A (2010) Morinda citrifolia Linn. for prevention of postoperative nausea and vomiting. J Med Assoc Thai 93(Suppl. 7): S204–S209. https://pubmed.ncbi.nlm.nih.gov/21294416/

Pratap UP, Hima L, Priyanka HP, ThyagaRajan S (2017) Noni (Morinda citrifolia L.) fruit juice reverses age-related decline in neural-immune interactions in the spleens of old F344 rats. J Ethnopharmacol 198: 363-371. https://doi.org/10.1016/j.jep.2017.01.034

Qu K, Shen NY, Xu XS, Su HB, Wei JC, Tai MH, Meng FD, Zhou L, Zhang YL, Liu C (2013) Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Acta Pharmacol Sin 34(9): 1217–1228. https://doi.org/10.1038/aps.2013.58

Ratnoglik SL, Aoki C, Sudarmono P, Komoto M, Deng L, Shoji I, Fuchino H, Kawahara N, Hotta H (2014) Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide A, against hepatitis C virus. Microbiol Immunol 58(3): 188–194. https://doi.org/10.1111/1348-0421.12133

Sabu BS, Chandrashekar KT, Mishra R, Tripathi VD, Khatri H, Deo A (2021) Evaluation of Morinda citrifolia (noni) fruit extract as a bone regenerative material in the treatment of periodontal intrabony osseous defects: Clinical and cone‑beam computed tomography assessment. J Indian Soc Periodontol 15(2): 144–149. https://doi.org/10.4103/jisp.jisp_58_20

Saminathan M, Rai RB, Dharma K, Tiwari R, Chakraborty S, Amarpal, Ranganath GJ, Kandasamy K (2013) Systematic review on anticancer potential and other health beneficial pharmacological activities of novel medicinal plant Morinda citrifolia (noni). Int J Pharmacol 9(8): 462–492. https://doi.org/10.3923/ijp.2013.462.492

Sasnan GS, Hanani E, Kristianto J (2014) Effect of Morinda citrifolia fruit extract capsule on total cholesterol levels in patients with hypercholesterolemia. Trop J Pharm Res 13(8): 1319–1326. https://doi.org/10.4314/tjpr.v13i8.17

Serafini MR, Detoni CB, Menezes Pdos P, Pereira Filho RN, Fortes VS, Vieira MJ, Guterres SS, Cavalcanti de Albuquerque Junior RL, Araújo AA (2014) UVA-UVB photoprotective activity of topical formulations containing Morinda citrifolia extract. Biomed Res Int 2014: 587819. https://doi.org/10.1155/2014/587819

Shashikumar P, Nisha S, Das D, Debanth K, Kanta L, Kanthal, Suman P (2022) Effect of Morinda citrifolia L. mouthwash on periodontal health in type 2 diabetes mellitus patients − A randomized controlled trial. Int J Nutr Pharmacol Neurol Dis 12:(1): 7–13.

Shoeb A, Alwar MC, Shenoy PJ, Gokul P (2016) Effect of Morinda citrifolia (noni) fruit juice on high fat diet induced dyslipidemia in rats. J Clin Diagn Res 10(4): FF06–FF10. https://doi.org/10.7860/JCDR/2016/17900.7650

Sina H, Dramane G, Tchekounou P, Assogba MF, Chabi-Sika K, Boya B, Socohou A, Adjanohoun A, Baba-Moussa L (2021) Phytochemical composition and in vitro biological activities of Morinda citrifolia fruit juice. Saudi J Biol Sci 28(2): 1331–1335. https://doi.org/10.1016/j.sjbs.2020.11.059

Sohn YA, Hwang IY, Lee SY, Cho HS, Jeong CS (2017) Protective effects of genipin on gastrointestinal disorders. Biol Pharm Bull 40(2): 151–154. https://doi.org/10.1248/bpb.b16-00545

Stadlbauer V, Fickert P, Lackner C, Schmerlaib J, Krisper P, Trauner M, Stauber RE (2005) Hepatotoxicity of noni juice: Report of two cases. World J Gastroenterol 11(30): 4758–4760. https://doi.org/10.3748/wjg.v11.i30.4758

Sumarya IM, Suarda IW, Sudaryati NLG, Sitepu I (2020) Benefits of biopharmaca products towards healthy Indonesia. J Phys: Conf Ser 1469: 012133. https://doi.org/10.1088/1742-6596/1469/1/012133

Susanti L, Mustarichie R, Halimah E, Kurnia D, Setiawan A, Maladan Y (2022) Anti-alopecia activity of alkaloids group from noni fruit against dihydrotestosterone-induced male rabbits and its molecular mechanism: In vivo and in silico studies. Pharmaceuticals 15(12): 1557. https://doi.org/10.3390/ph15121557

Tian J, Yi Y, Zhao Y, Li C, Zhang Y, Wang L, Pan C, Han J, Li G, Li X, Liu J, Deng N, Gao Y, Liang A (2018) Oral chronic toxicity study of geniposide in rats. J Ethnopharmacol 213: 166–175. https://doi.org/10.1016/j.jep.2017.11.008

Wang MY, West BJ, Jensen CJ, Nowicki D, Su C, Palu AK, Anderson G (2002a) Morinda citrifolia (noni): A literature review and recent advances in noni research. Acta Pharmacol Sin 23(12): 1127–1141. https://pubmed.ncbi.nlm.nih.gov/12466051/

Wang S, Kong X, Chen N, Hu P, Boucetta H, Hu Z, Xu X, Zhang P, Zhan X, Chang M, Cheng R, Wu W, Song M, Lu Y, Hang T (2022b) Hepatotoxic metabolites in Polygoni multiflori radix— Comparative toxicology in mice. Front Pharmacol 13: 1007284. https://doi.org/10.3389/fphar.2022.1007284

Wei J, Zhang F, Zhang Y, Cao C, Li X, Li D, Liu X, Yang H, Huang L (2014) Proteomic investigation of signatures for geniposide-induced hepatotoxicity. J Proteome Res 13(12): 5724–5733. https://doi.org/10.1021/pr5007119

West BJ, White LD, Jensen CJ, Palu AK (2009) A double-blind clinical safety study of noni fruit juice. Pac Health Dialog 15(2): 21–32. https://pubmed.ncbi.nlm.nih.gov/20443518/

Wigati D, Anwar K, Sudarsono, Nugroho AE (2017) Hypotensive activity of ethanolic extracts of Morinda citrifolia L. leaves and fruit in dexamethasone-induced hypertensive rat. J Evid Based Complementary Altern Med 22(1): 107–113. https://doi.org/10.1177/2156587216653660

Wu Y, Girmay S, da Silva VM, Perry B, Hu X, Tan GT (2015) The role of endophytic fungi in the anticancer activity of Morinda citrifolia Linn. (noni). Evid Based Complement Alternat Med 2015: 393960. https://doi.org/10.1155/2015/393960

Yilmaz MI, Romano M, Basarali MK, Elzagallaai A, Karaman M, Demir Z, Demir MF, Akcay F, Seyrek M, Haksever N, Piskin D, Cimaz R, Rieder MJ, Demirkaya E (2020) The effect of corrected inflammation, oxidative stress and endothelial dysfunction on fmd levels in patients with selected chronic diseases: A quasi-experimental study. Sci Rep 10(1): 9018. https://doi.org/10.1038/s41598-020-65528-6

Yu EL, Sivagnanam M, Ellis L, Huang JS (2011) Acute hepatotoxicity after ingestion of Morinda citrifolia (noni berry) juice in a 14-year-old boy. J Pediatr Gastroenterol Nutr 52(2): 222–224. https://doi.org/10.1097/MPG.0b013e3181eb69f0

Zhou YX, Zhang RQ, Rahman K, Cao ZX, Zhang H, Peng C (2019) Diverse pharmacological activities and potential medicinal benefits of geniposide. Evid Based Complement Alternat Med 2019: 4925682. https://doi.org/10.1155/2019/4925682

© 2024 Journal of Pharmacy & Pharmacognosy Research

Artocarpus altilis and antiarthritic efficacy

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 382-390, Mar-Apr 2024.

DOI: https://doi.org/10.56499/jppres23.1821_12.2.382

Original Article

Effectiveness of Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg ethanol extract in suppressing inflammation and cartilage degeneration in animal models of osteoarthritis

[Eficacia del extracto etanólico de Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg en la supresión de la inflamación y la degeneración del cartílago en modelos animales de osteoartritis]

Fitrya1,2*, Muharni3, Fatma Sri Wahyuni4, Annisa Amriani1,2

1Doctoral Program, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, South Sumatera, Indonesia.

2Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, South Sumatera, Indonesia.

3Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, South Sumatera, Indonesia.

4Faculty of Pharmacy, Universitas Andalas, West Sumatera, Indonesia.

*E-mail: fitrya@unsri.ac.id

Abstract

Context: Osteoarthritis (OA) is a degenerative joint disease characterized by an inflammatory reaction and cartilage degradation. Artocarpus altilis is a well-known traditional medicine with various phenolic and flavonoid content. Several pharmacological properties of A. altilis extract (AAE) have been reported, but its effectiveness in osteoarthritis is unknown.

Aims: To investigate the potential of AAE as an anti-osteoarthritis.

Methods: The Wistar rats induced OA with mono-iodoacetate (MIA). The OA model rats were treated with AAE with three dose levels (100, 200, and 400 mg/kg) for 28 days. As a positive control used Na-diclofenac (20 mg/kg). Serum IL-1β, IL-10, MMP-3, and MMP-13 levels and histopathological profiles were compared to the MIA group and normal control (5% Na-CMC).

Results: The experimental results showed that AAE could significantly suppress the production of inflammatory mediator factor IL-1β, matrix-degrading proteinase MMP-3, MMP-13, and cartilage degeneration. In addition, AAE increased the production of the anti-inflammatory mediator IL-10, improved synovial inflammation, and increased cartilage thickness.

Conclusions: A. altilis extract has the potential to be developed as an anti-osteoarthritis therapeutic agent from natural medicine.

Keywords: Artocarpus altilis; cartilage degeneration; inflammatory; mono-iodoacetate; osteoarthritis.

jppres_pdf_free

Resumen

Contexto: La osteoartritis (OA) es una enfermedad degenerativa de las articulaciones caracterizada por una reacción inflamatoria y la degradación del cartílago. El Artocarpus altilis es una medicina tradicional muy conocida por su contenido en diversos fenoles y flavonoides. Se han descrito varias propiedades farmacológicas del extracto de A. altilis (AAE), pero se desconoce su eficacia en la osteoartritis.

Objetivos: Investigar el potencial del AAE como antiosteoartrítico.

Métodos: A las ratas Wistar se les indujo OA con mono-iodoacetato (MIA). Las ratas modelo de OA fueron tratadas con AAE con tres niveles de dosis (100, 200 y 400 mg/kg) durante 28 días. Como control positivo se utilizó Na-diclofenaco (20 mg/kg). Se compararon los niveles séricos de IL-1β, IL-10, MMP-3 y MMP-13 y los perfiles histopatológicos con el grupo MIA y el control normal (5% Na-CMC).

Resultados: Los resultados experimentales mostraron que AAE podría suprimir significativamente la producción del factor mediador inflamatorio IL-1β, la proteinasa degradadora de la matriz MMP-3, MMP-13, y la degeneración del cartílago. Además, la AAE aumentó la producción del mediador anti-inflamatorio IL-10, mejoró la inflamación sinovial y aumentó el grosor del cartílago.

Conclusiones: El extracto de A. altilis tiene potencial para ser desarrollado como agente terapéutico anti-osteoartritis desde la medicina natural.

Palabras Clave: Artocarpus altilis; degeneración del cartílago; inflamatorio; monoyodoacetato; osteoartritis.

jppres_pdf_free

 

 
 
Citation Format: Fitrya, Muharni, Wahyuni FS, Amriani A (2024) Effectiveness of Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg ethanol extract in suppressing inflammation and cartilage degeneration in animal models of osteoarthritis. J Pharm Pharmacogn Res 12(2): 382–390. https://doi.org/10.56499/jppres23.1821_12.2.382
References

Ansari MY, Ahmad N, Haqqi TM (2020) Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother 129: 110452. https://doi.org/10.1016/j.biopha.2020.110452

Asante-Kwatia E, Mensah AY, Baidoo MF (2020) Analgesic and anti-inflammatory effect of Ghanaian medicinal plants. In: Medicinal Plants – Use in prevention and treatment of diseases. Hassan BAR. Ghana: Licensee IntechOpen. pp. 1–23. http://dx.doi.org/10.5772/intechopen.90154

Cadet C, Maheu E, Breville P, Cailleaux PE, Jeandel C, Le Quintrec JL (2021) Non-steroidal anti-inflammatory drugs in the pharmacological management of osteoarthritis in the very old: Prescribe or proscribe? Ther Adv Musculoskelet Dis 13: 1–13. https://doi.org/10.1177/1759720X211022149

Choi B, Kang S, Kim J, Lee Y, Ku Sae-Kwang (2020) Anti-osteoarthritic effects of a mixture of dried pomegranate concentrate powder, Eucommiae cortex, and Achyranthis radix 5:4:1 (g/g) in a surgically induced osteoarthritic rabbit model. Nutriens 12(3): 852. https://doi.org/doi:10.3390/nu12030852

Chun JM, Kim HS, Lee AY, Kim SH, Kim HK (2016) Anti-inflammatory and antiosteoarthritis effects of Saposhnikovia divaricata ethanol extract: In vitro and in vivo studies. Evid Based Complement Altern Med 2016: 1984238. https://doi.org/10.1155/2016/1984238

Endrinaldi E, Ali H, Tofrizal T, Asterina A, Elmatris E, Yarni SD (2022) Optimization of the duration of the administration of mesenchymal stem cells Wharton’s Jelly to the level of matrix metalloproteinase-1 and transforming growth factor-Β in osteoarthritis rat model. Maced J Med Sci 10: 563–571. https://doi.org/10.3889/oamjms.2022.8838

Fakhrudin N, Hastuti S, Andriani A, Widyarini S, Nurrochmad A (2015) Study on the antiinflammatory activity of Artocarpus altilis leaves extract in mice. Int J Pharmacogn Phytochem Res 7(6): 1080–1085.

Fitrya, Muharni, Wahyuni FS, Amriani A (2023a) Cytotoxicity and anti-inflammatory activity of ethanol extract of Artocarpus altilis (Parkinson ex F.A. Zorn) Fosberg leaf in lipopolysaccharide-stimulated RAW 264.7 cells. J Pharm Pharmacogn Res 11(3): 517–522. https://doi.org/10.56499/jppres23.1623_11.3.517

Fitrya F, Amriani A, Novita RP, Salsabila A, Siregar SM, Anafisya Y (2022) Evaluation of ethanol extracts from three species of Artocarpus as natural gastroprotective agents: In vivo and histopathological studies. J Complement Integr Med 19(4):  967–974. https://doi.org/10.1515/jcim-2022-0105

Fitrya F, Amriani A, Novita RP, Gabriella R, Lestari SV, Agustina A (2023b) The diuretic effect of ethyl acetate fractions of Artocarpus altilis, Artocarpus champeden, and Artocarpus heterophyllus leaves in normotensive Wistar rats. J Ayurveda Integr Med 14(4): 100746. https://doi.org/10.1016/j.jaim.2023.100746

Glasson SS, Chambers MG, Van Den Berg WB, Little CB (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil 18: S17–S23. https://doi.org/10.1016/j.joca.2010.05.025

Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K (2003) Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: An animal model of osteoarthritis. Toxicol Pathol 31(6): 619–624. https://doi.org/10.1080/01926230390241800

Ho Y, Lu J, Ho L, Lai J, Huang H, Lee C (2019) Anti-inflammatory and anti-osteoarthritis effects of Cm-02 and Ck 02. Biochem Biophys Res 517: 155–163. https://doi.org/10.1016/j.bbrc.2019.07.036

Huang T Le, Yang SH, Chen YR, Liao JY, Tang Y, Yang KC (2019) The therapeutic effect of aucubin-supplemented hyaluronic acid on interleukin-1beta-stimulated human articular chondrocytes. Phytomedicine 53: 1–8. https://doi.org/10.1016/j.phymed.2018.09.233

Imbawan IE, Putra TR, Kambayana G (2011) Korelasi Kadar Matrix Metalloproteinases 3 (MMP-3) Dengan Derajat Beratnya Oteoartritis Lutut. J Penyakit Dalam 12(3): 181–192.

Inoue M, Hitora Y, Kato H, Losung F, Remy EP, Mangindaan REP, Tsukamoto S (2018) New geranyl avonoids from the leaves of Artocarpus communis. J Nat Med 72(3): 632-640. https://doi.org/10.1007/s11418-018-1192-z

Ji X, Du W, Che W, Wang L, Zhao L (2023) Apigenin inhibits the progression of osteoarthritis by mediating macrophage polarization. Molecules 28(7): 2915. https://doi.org/10.3390/molecules28072915

Kakatum N, Pinsornsak P, Kanokkangsadal P, Ooraikul B, Itharat A (2021) Efficacy and safety of sahastara remedy extract capsule in primary knee osteoarthritis: A randomized double-blinded active-controlled trial. Evid Based Complement Altern Med 2021: 6635148. https://doi.org/10.1155/2021/6635148

Lee YM, Son E, Kim SH, Kim DS, Kim DS (2019a) Anti-inflammatory and anti-osteoarthritis effect of Mollugo pentaphylla extract. Pharm Biol 57(1): 73–80. https://doi.org/10.1080/13880209.2018.1557700

Lee YM, Son E, Kim SH, Kim DS (2019b) Effect of Alpinia oxyphylla extract in vitro and in a monosodium iodoacetate-induced osteoarthritis rat model. Phytomedicine 65: 153095. https://doi.org/10.1016/j.phymed.2019.153095

Li X, Zhang S (2020) Recent advance in treatment of osteoarthritis by bioactive components from herbal medicine. Chin Med 15: 80. https://doi.org/10.1186/s13020-020-00363-5

Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y (2022) Cartilage tissue engineering: From proinflammatory and anti-inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 25: 99. https://doi.org/10.3892/MMR.2022.12615

Mohammadifar M, Aarabi MH, Aghighi F, Kazemi M, Vakili Z, Memarzadeh MR (2021) Anti-osteoarthritis potential of peppermint and rosemary essential oils in a nanoemulsion form: Behavioral, biochemical, and histopathological evidence. BMC Complement Med Ther 21: 57. https://doi.org/10.1186/s12906-021-03236-y

Nguyen MTH, Nguyen NT, Nguyen KDH, Dau HTT, Nguyen HX, Dang PH, Le TM, Phan THN, Tran AH, Nguyen BD, Ueda J, Awale S (2014) Geranyl dihydrochalcones from Artocarpus altilis and their antiausteric activity. Planta Med 80: 193–200. http://dx.doi.org/10.1055/s-0033-1360181

Pal S, Dhobi M (2019) A comprehensive review: biomarker in the field of osteoartritis & potential of herbal medicinal plants used in the treatment. Sch Acad J Pharm 8(7): 313–326. https://doi.org/10.21276/sajp.2019.8.7.1

Palupi DHS, Retnoningrum DS, Iwo MI, Soemardji AA (2020) Leaf extract of Artocarpus altilis [Park.] Fosberg has potency as antiinflammatory, antioxidant, and immunosuppressant. Rasayan J Chem 13(1): 636–646. https://doi.org/10.31788/RJC.2020.1315519

Park JG, Yi YS, Hong YH, Yoo S, Han SY, Kim E (2017) TabetriTM (Tabebuia avellanedae ethanol extract) ameliorates osteoarthritis symptoms induced by monoiodoacetate through its anti-inflammatory and chondroprotective activities. Mediators Inflamm 2017: 3619879. https://doi.org/10.1155/2017/3619879

Park JS, Kim DK, Shin H, Lee HJ, Jo HS, Jeong JH (2016) Apigenin regulates interleukin-1β-induced production of matrix metalloproteinase both in the knee joint of rat and in primary cultured articular chondrocytes. Biomol Ther 24(2). 163–170. http://dx.doi.org/10.4062/biomolther.2015.217

Park MH, Jung JC, Hill S, Cartwright E, Dohnalek MH, Yu M, Jun HJ, Han SB, Hong JT, Son DJ (2020) FlexPro MD®, a combination of krill oil, astaxanthin and hyaluronic acid, reduces pain behavior and inhibits inflammatory response in monosodium iodoacetate-induced osteoarthritis in rats. Nutriens 12(4): 956. https://doi.org/doi:10.3390/nu12040956

Pérez-Lozano ML, Cesaro A, Mazor M, Esteve E, Berteina-Raboin S, Best TM, Lespessailles E, Toumi H (2021) Emerging natural-product-based treatments for the management of osteoarthritis. Antioxidants 10(2): 265. https://doi.org/10.3390/antiox10020265

Riasari H, Nurlalela S, Gumilang GC. (2019) Anti-Inflammatory activity of Artocarpus altilis (Parkinson) Fosberg in Wistar male rats. Pharmacol Clin Pharm Res 4(1): 22–26. https://doi.org/10.15416/pcpr.v4i1.21397

Seo BB, Kwon Y, Kim J, Hong KH, Kim SE, Song HR, Kim YM, Song SC (2022) Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis. Bioact Mater 7: 14–25. https://doi.org/10.1016/j.bioactmat.2021.05.028

Shao Y, He J, Zhang X, Xie P, Lian H, Zhang M (2022) Mechanism of Astragali Radix for the treatment of osteoarthritis: A study based on network pharmacology and molecular docking. Medicine 101(28): e29885. http://dx.doi.org/10.1097/MD.0000000000029885

Shiomi T, Lemaître V, D’Armiento J, Okada Y (2010) Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int 60(7): 477–496. https://doi.org/10.1111/j.1440-1827.2010.02547.x

Sofia V, Bachri MS, Endrinaldi E (2019) The influence of mesenchymal stem cell wharton jelly toward prostaglandin E2 gene expression on synoviocyte cell osteoarthritis. Maced J Med Sci 7(5): 1252–1258. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514332/

Takahashi I, Matsuzaki T, Kuroki H, Hoso M (2018) Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One 13(4): e0196625. https://doi.org/10.1371/journal.pone.0196625

Teng L, Shen Y, Qu Y, Yang L, Yang Y, Jian X (2023) Cyasterone inhibits IL-1β-mediated apoptosis and inflammation via the NF-kB and MAPK signaling pathways in rat chondrocytes and ameliorates osteoarthritis in vivo. Chin J Nat Med 21(2): 99–112. https://doi.org/10.1016/S1875-5364(23)60388-7

Wang Y, Xu K, Lin L, Pan Y, Zheng X (2007) Geranyl flavonoids from the leaves of Artocarpus altilis. Phytochemistry 68: 1300–1306. https://doi.org/10.1016/j.phytochem.2007.01.009

Xu J, Yan L, Yan B, Zhou L, Tong P, Shan L (2020) Osteoarthritis pain model induced by intra-articular injection of mono-iodoacetate in rats. J Vis Exp (159): e60649. https://doi.org/10.3791/60649

Yagi H, Ulici V, Tuan RS (2020) Polyphenols suppress inducible oxidative stress in human osteoarthritic and bovine chondrocytes. Osteoarthr Cartil Open 2(3): 100064. https://doi.org/10.1016/j.ocarto.2020.100064

Zhang W, Ouyang H, Dass CR, Xu J (2016) Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 4: 15040. https://doi.org/10.1038/boneres.2015.40

Zhao P, Cheng J, Geng J, Yang M, Zhang Y, Zhang Q (2018) Curcumin protects rabbit articular chondrocytes against sodium nitroprusside-induced apoptosis in vitro. Eur J Pharmacol 828: 146–153. https://doi.org/10.1016/j.ejphar.2018.03.038

© 2024 Journal of Pharmacy & Pharmacognosy Research