Category Archives: Pharmaceutical Science

Polyether ionophores as potential antimalarial

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1139-1148, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1478_10.6.1139

Original Article

Potential of polyether ionophore compounds as antimalarials through inhibition on Plasmodium falciparum glutathione S-transferase by molecular docking studies

[Potencial de los compuestos ionóforos de poliéter como antimaláricos mediante la inhibición de glutatión S-transferasa de Plasmodium falciparum a través de estudios de acoplamiento molecular]

Alfian Wika Cahyono1,2, Icha Farihah Deniyati Faratisha1, Nabila Erina Erwan1,3, Rivo Yudhinata Brian Nugraha1,4, Ajeng Maharani Putri1,3, Loeki Enggar Fitri1,4*

1Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

2Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

3Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

4Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.

*E-mail: lukief@ub.ac.id

Abstract

Context: Malaria is still a serious global health problem due to the development of drug resistance. It is necessary to find new drugs with renewable mechanisms that are effective in killing parasites. Our previous research has analyzed more than one compound of polyether ionophore group in ethyl acetate Streptomyces hygroscopicus subsp. hygroscopicus extract. Polyether ionophore is known to have a similar mechanism of action to chloroquine which is potent in inhibiting Plasmodium falciparum glutathione S-transferase (PfGST).

Aims: To evaluate the potential effect of polyether ionophore toward PfGST as a target protein through molecular docking.

Methods: PfGST was obtained from Protein Data Bank. Test ligands (polyether ionophore) and control ligands (chloroquine) were obtained from PubChem. Pharmacokinetic analysis was done using SwissADME, molecular docking using PyRx 0.9, visualization using LigPlot and PyMOL, and molecular dynamics using YASARA for the best ligand activity.

Results: Lenoremycin had the highest binding affinity to PfGST (-8.53 kcal/mol) among other polyether ionophores, and nigericin had the best residue bonding with hydrophobic and hydrogen with a binding affinity of -8.25 kcal/mol compared to chloroquine complex in molecular docking and molecular dynamic simulation.

Conclusions: Polyether ionophore could serve as an antimalarial agent better than chloroquine, with nigericin as the best compound candidate in inhibiting PfGST compared to other polyether ionophores.

Keywords: malaria; molecular docking; PfGST; polyether ionophore; Streptomyces hygroscopicus.

jppres_pdf_free

Resumen

Contexto: La malaria sigue siendo un grave problema sanitario mundial debido al desarrollo de resistencia a los fármacos. Es necesario encontrar nuevos fármacos con mecanismos renovables que sean eficaces para matar a los parásitos. Nuestra investigación anterior ha analizado más de un compuesto del grupo ionóforo poliéter en el extracto de acetato de etilo de Streptomyces hygroscopicus subsp. hygroscopicus. Se sabe que el poliéter ionóforo tiene un mecanismo de acción similar al de la cloroquina, que es potente inhibidor de la gutatión S-transferasa de Plasmodiun falciparum (PfGST).

Objetivos: Evaluar el efecto potencial del poliéter ionóforo hacia la PfGST como proteína diana a través del acoplamiento molecular.

Métodos: PfGST se obtuvo del Banco de Datos de Proteínas. Los ligandos de prueba (poliéter ionóforo) y los ligandos de control (cloroquina) se obtuvieron de PubChem. El análisis farmacocinético se realizó con SwissADME, el docking molecular con PyRx 0.9, la visualización con LigPlot y PyMOL, y la dinámica molecular con YASARA para la mejor actividad del ligando.

Resultados: La lenoremycina tuvo la mayor afinidad de unión a PfGST (-8,53 kcal/mol) entre otros poliéteres ionóforos, y la nigericina tuvo la mejor unión de residuos con hidrófobos e hidrógenos con una afinidad de unión de -8,25 kcal/mol en comparación con el complejo de cloroquina en el docking molecular y la simulación dinámica molecular.

Conclusiones: El ionóforo poliéter podría servir como agente antimalárico mejor que la cloroquina, siendo la nigericina el mejor candidato para inhibir el PfGST en comparación con otros ionóforos poliéter.

Palabras Clave: acoplamiento molecular; ionóforo poliéter; malaria; PfGST; Streptomyces hygroscopicus.

jppres_pdf_free
Citation Format: Cahyono AW, Faratisha IFD, Erwan NE, Nugraha RYB, Putri AM, Fitri LE (2022) Potential of polyether ionophore compounds as antimalarials through inhibition on Plasmodium falciparum glutathione S-transferase by molecular docking studies. J Pharm Pharmacogn Res 10(6): 1139–1148. https://doi.org/10.56499/jppres22.1478_10.6.1139
References

Abkar AH, Djati MS, Widodo W (2021) In silico study to predict the potential of beta asarone, methyl piperonylketone, coumaric acid in Piper crocatum as anticancer agents. J Exp Life Sci 11: 89–99. https://doi.org/10.21776/ub.jels.2021.011.03.04

Adovelande J, Schrével J (1996) Carboxylic ionophores in malaria chemotherapy: The effects of monensin and nigericin on Plasmodium falciparum in vitro and Plasmodium vinckei petteri in vivo. Life Sci 59: 309-315. https://doi.org/10.1016/s0024-3205(96)00514-0

Fitri LE, Alkarimah A, Cahyono AW, Lady WN, Endharti AT, Nugraha RYB (2019) Effect of metabolite extract of Streptomyces hygroscopicus subsp. hygroscopicus on Plasmodium falciparum 3D7 in vitro. Iran J Parasitol 14: 444–452.

Gumila C, Ancelin ML, Delort AM, Jeminet G, Vial HJ (1997) Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrob Agents Chemother 41: 523–529. https://doi.org/10.1128/AAC.41.3.523

Hartuti ED, Inaoka DK, Komatsuya K, Miyazaki Y, Miller RJ, Xinying W, Sadikin M, Prabandari EE, Waluyo D, Kuroda M, Amalia E, Matsuo Y, Nugroho NB, Saimoto H, Pramisandi A, Watanabe YI, Mori M, Shiomi K, Balogun EO, Shiba T, Harada S, Nozaki T, Kita K (2018) Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target. Biochim Biophys Acta Bioenerg 1859: 191–200. https://doi.org/10.1016/j.bbabio.2017.12.004

Harwaldt P, Rahlfs S, Becker K (2002) Glutathione S-transferase of the malarial parasite Plasmodium falciparum: Characterization of a potential drug target. Biol Chem 383: 821–830. https://doi.org/10.1515/BC.2002.086

Hiller N, Fritz-Wolf K, Deponte M, Wende W, Zimmermann H, Becker K (2006) Plasmodium falciparum glutathione S-transferase–structural and mechanistic studies on ligand binding and enzyme inhibition. Protein Sci 15: 281–289. https://doi.org/10.1110/ps.051891106

Huczyński A (2012) Polyether ionophores—promising bioactive molecules for cancer therapy. Bioorg Med Chem Lett 22: 7002–7010. https://doi.org/10.1016/j.bmcl.2012.09.046

Kevin II DA, Meujo DA, Hamann MT (2009) Polyether ionophores: Broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Discov 4: 109–146. https://doi.org/10.1517/17460440802661443

Liebau E, Bergmann B, Campbell AM, Teesdale-Spittle P, Brophy PM, Lüersen K, Walter RD (2002) The glutathione S-transferase from Plasmodium falciparum. Mol Biochem Parasitol 124: 85–90. https://doi.org/10.1016/s0166-6851(02)00160-3

Na M, Meujo DAF, Kevin D, Hamann MT, Anderson M, Hill RT (2008) A new antimalarial polyether from a marine Streptomyces sp. H668. Tetrahedron Lett 49: 6282–6285. https://doi.org/10.1016/j.tetlet.2008.08.052

Novilla MN, McClary D, Laudert SB (2017) Chapter 29 – Ionophores, in: Gupta, R.C. (Ed.), Reproductive and Developmental Toxicology (2th Edition). Academic Press, pp. 503–518. https://doi.org/10.1016/B978-0-12-804239-7.00029-9

Otoguro K, Kohana A, Manabe C, Ishiyama A, Ui H, Shiomi K, Yamada H, Omura S (2001) Potent antimalarial activities of polyether antibiotic, X-206. J Antibiot (Tokyo) 54: 658–663. https://doi.org/10.7164/antibiotics.54.658

Perbandt M, Eberle R, Fischer-Riepe L, Cang H, Liebau E, Betzel C (2015) High resolution structures of Plasmodium falciparum GST complexes provide novel insights into the dimer–tetramer transition and a novel ligand-binding site. J Struct Biol 191: 365–375. https://doi.org/10.1016/j.jsb.2015.06.008

PubChem (2008) Sodium carriomycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/23698022 [Accessed 24 August 2021].

PubChem (2007) Septamycin sodium salt. Available: https://pubchem.ncbi.nlm.nih.gov/compound/23693333 [Accessed 24 August 2021].

PubChem (2006) Lenoremycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/6441669 [Accessed 24 August 2021].

PubChem (2005a) Nigericin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/34230 [Accessed 24 August 2021].

PubChem (2005b) Dianemycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/5475287 [Accessed 24 August 2021].

PubChem (2005c) Etheromycin. Available: https://pubchem.ncbi.nlm.nih.gov/compound/3042207 [Accessed 24 August 2021].

Rajendran V, Rohra S, Raza M, Hasan GM, Dutt S, Ghosh PC (2015) Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother 60: 1304–1318. https://doi.org/10.1128/AAC.01796-15

Raphemot R, Posfai D, Derbyshire ER (2016) Current therapies and future possibilities for drug development against liver-stage malaria. J Clin Invest 126: 2013–2020. https://doi.org/10.1172/JCI82981

Rivo YB, Alkarimah A, Ramadhani NN, Cahyono AW, Laksmi DA, Winarsih S, Fitri LE (2013) Metabolite extract of Streptomyces hygroscopicus Hygroscopicus inhibit the growth of Plasmodium berghei through inhibition of ubiquitin-proteasome system. Trop Biomed 30: 291–300.

Rutkowski J, Brzezinski B (2013) Structures and properties of naturally occurring polyether antibiotics. Biomed Res Int 2013: 162513. https://doi.org/10.1155/2013/162513

World Health Organization (2020) World malaria report: 20 years of global progress and challenges. Available: https://www.who.int/publications/i/item/9789240015791 [Accessed 25 August 2021].

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Sonchus arvensis L. against SARS-CoV-2 infection

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1126-1138, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1489_10.6.1126

Original Article

Molecular simulation of compounds from n-hexane fraction of Sonchus arvensis L. leaves as SARS-CoV-2 antiviral through inhibitor activity targeting strategic viral protein

[Simulación molecular de compuestos de la fracción de n-hexano de las hojas de Sonchus arvensis L. como antivirales del SARS-CoV-2 a través de la actividad inhibidora dirigida a la proteína viral estratégica]

Dwi Kusuma Wahyuni1,2*, Sumrit Wacharasindhu3, Wichanee Bankeeree2, Hunsa Punnapayak2, Hery Purnobasuki1, Junairiah1, Arif NM Ansori4, Viol Dhea Kharisma1,5, Arli Aditya Parikesit6, Listyani Suhargo1*, Sehanat Prasongsuk1,2*

1Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115, Indonesia.

2Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.

3Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok,10330, Thailand.

4Professor Nidom Foundation, Surabaya, East Java, 60115, Indonesia.

5Computational Virology Research Unit, Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, East Java, 61171, Indonesia.

6Department of Bioinformatics, School of Life Science, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia.

*E-mail: dwi-k-w@fst.unair.ac.id (DKW), listyani-s@fst.unair.ac.id (LS), sehanat.p@chula.ac.th (SP)

Abstract

Context: COVID-19 was caused by the spread and transmission of SARS-CoV-2 at the end of 2019 until now. The problem comes when antiviral drugs have not yet been found and patients infected with SARS-CoV-2 can trigger a cytokine storm condition due to the effects of viral replication. Indonesia has various kinds of medicinal plants, such as Sonchus arvensis L., which are used as medicinal plants.

Aims: To analyze the activity of the inhibitor as SARS-CoV-2 antiviral agents from n-hexane fractions of S. arvensis leaves.

Methods: The sample was collected from GC-MS analysis, PubChem, and Protein Databank database, then drug-likeness identification using Lipinski Rule of Five server and bioactive prediction of bioactive compounds as inhibitor activity was conducted by Molinspiration server. Furthermore, the docking simulation was performed using PyRx 0.9.9 software to determine the binding activity, molecular interaction by Discovery Studio software to identify position and interaction type, 3D molecular visualization by PyMol 2.5. software, and dynamic by CABS-flex 2.0 server to predict interaction stability.

Results: α-Amyrin and β-amyrin from n-hexane fractions of S. arvensis leaves had activity as SARS-CoV-2 inhibitors through interactions on helicase, RdRp, Mpro, and RBD-Spike, both compounds had more negative binding affinity than control drug and can produce stable chemical bond interactions in the ligand-protein complexes. However, the results were merely computational, so they must be validated through an in vivo and in vitro research approach.

Conclusions: Sonchus arvensis L. leaves were predicted to have SARS-CoV-2 antiviral through inhibitor activity by α-amyrin and β-amyrin.

Keywords: antiviral; bioinformatics; SARS-CoV-2; Sonchus arvensis L.

jppres_pdf_free

Resumen

Contexto: La propagación y la transmisión del SARS-CoV-2 han sido causadas por el COVID-19 desde finales de 2019 hasta ahora. El problema surge cuando aún no se han encontrado medicamentos antivirales y los pacientes infectados por el SARS-CoV-2 pueden desencadenar una condición de tormenta de citocinas debido a los efectos de la replicación viral. Indonesia tiene varios tipos de plantas medicinales, como Sonchus arvensis L., que se utilizan como plantas medicinales.

Objetivos: Analizar la actividad inhibidora de SARS-CoV-2 de fracciones de n-hexano de las hojas de S. arvensis.

Métodos: La muestra se recogió del análisis GC-MS, PubChem y la base de datos Protein Databank, luego se identificó la similitud de los fármacos utilizando el servidor Lipinski Rule of Five y se realizó la predicción de los compuestos bioactivos como actividad inhibidora mediante el servidor Molinspiration. Además, se realizó la simulación de acoplamiento mediante el software PyRx 0.9.9 para determinar la actividad de unión, la interacción molecular mediante el software Discovery Studio para identificar la posición y el tipo de interacción, la visualización molecular 3D mediante el software PyMol 2.5. y la dinámica mediante el servidor CABS-flex 2.0 para predecir la estabilidad de la interacción.

Resultados: La α-amirina y la β-amirina de las fracciones de n-hexano de las hojas de S. arvensis tuvieron actividad como inhibidores del SARS-CoV-2 a través de las interacciones en la helicasa, RdRp, Mpro y RBD-Spike, ambos compuestos tuvieron más afinidad de unión negativa que el fármaco de control y pueden producir interacciones de enlace químico estables en los complejos ligando-proteína. Sin embargo, los resultados fueron meramente computacionales, por lo que deben ser validados mediante un enfoque de investigación in vivo e in vitro.

Conclusiones: Se predijo que las hojas de S. arvensis tienen actividad antiviral contra el SARS-CoV-2 a través de la actividad inhibidora de la α-amirina y la β-amirina.

Palabras Clave: antiviral; bioinformática; SARS-CoV-2; Sonchus arvensis L.

jppres_pdf_free
Citation Format: Wahyuni DK, Wacharasindhu S, Bankeeree W, Punnapayak H, Parikesit AA, Kharisma VD, Ansori ANM, Suhargo L, Prasongsuk S (2022) Molecular simulation of compounds from n-hexane fraction of Sonchus arvensis L. leaves as SARS-CoV-2 antiviral through inhibitor activity targeting strategic viral protein. J Pharm Pharmacogn Res 10(6): 1126–1138. https://doi.org/10.56499/jppres22.1489_10.6.1126
References

Ahamed T, Rahman SKM, Shohae AM (2017) Thin layer chromatographic profiling and phytochemical screening of six medicinal plants in Bangladesh. Int J Biosci 11(1): 131-140. https://doi.org/10.12692/ijb/11.1.131-140

Ahmad B, Batool M, Ain QU, Kim MS, Choi S (2021) Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int J Mol Sci 22(17): 9124. https://doi.org/10.3390/ijms22179124

Aldakheel RK, Rehman S, Almessiere MA, Khan FA, Gondal MA, Mostafa A, Baykal A (2020) Bactericidal and in vitro cytotoxicity of Moringa oleifera seed extract and its elemental analysis using laser-induced breakdown spectroscopy. Pharmaceuticals 13(8): 193. https://doi.org/10.1101/2020.04.15.042663

Ali KS, Mohammed ASA, Munayem RT (2017) Phytochemical screening and thin layer chromatography of Acacia etbaica ssp. uncinata leaves. World J Pharm Res 6(12): 1278-1283. https://doi.org/10.20959/wjpr201712-9772

Ansori ANM, Fadholly A, Proboningrat A, Hayaza S, Susilo RJK, Naw SW, Posa GAV, Yusrizal YF, Sibero MT, Sucipto TH, Soegijanto S (2021a) In vitro antiviral activity of Pinus merkusii (Pinaceae) stem bark and cone against dengue virus type-2 (DENV-2). Res J Pharm Technol 14(7): 3705-3708. http://dx.doi.org/10.52711/0974-360X.2021.00641

Ansori ANM, Kharisma VD, Fadholly A, Tacharina MR, Antonius Y, Parikesit AA (2021b) Severe acute respiratory syndrome coronavirus-2 emergence and its treatment with alternative medicines: A review. Res J Pharm Technol 14(10): 5551-5557. https://doi.org/10.52711/0974-360X.2021.00967

Ansori ANM, Susilo RJK, Hayaza S (2021c) Biological activity investigation of phytocomponents in mangosteen (Garcinia mangostana L.): in silico study. Indian J Forensic Med Toxicol 15(1): 847-851. https://doi.org/10.37506/ijfmt.v15i1.13522

Benet LZ, Hosey CM, Ursu O, Oprea TI (2016) BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 101:89-98. https://doi.org/10.1016/j.addr.2016.05.007

Biskup E, Golebiowski R, Stepnowski P, Lojkowska E (2012) Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage. Acta Biochim Pol 59(2): 255–260.

Borg J, Toazara J, Hietter H, Henry M, Schmitt G, Luu B (1987) Neurotrophic effect of naturally occurring long-chain fatty alcohols on cultured CNS. Neurons 213(2): 406-410. https://doi.org/10.1016/0014-5793(87)81531-4

Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, van der Voort PH, Mulder DJ, van Goor H (2020) Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 251(3): 228-248. https://doi.org/10.1002/path.5471

Delyan E (2016) Analysis of composition of volatile compounds of field sow thistle (Sonchus arvensis L.) leaves using the method of gas chromatography with mass-detection. J Pharm Innov 5: 118-121.

Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) Coronavirus disease 2019-COVID-19. Clin Microbiol Rev 33(4): e00028-20. https://doi.org/10.1128/CMR.00028-20

Dibha AF, Wahyuningsih S, Ansori ANM, Kharisma VD, Widyananda MH, Parikesit AA, Sibero MT, Probojati RT, Murtadlo AAA, Trinugroho JP, Sucipto TH, Turista DDR, Rosadi I, Ullah ME, Jakhmola V, Zainul R (2022) Utilization of secondary metabolites in algae Kappaphycus alvarezii as a breast cancer drug with a computational method. Pharmacog J 14(3): 536-543. https://doi.org/10.5530/pj.2022.14.68

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016). Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2): 144. https://doi.org/10.3390/ijms17020144

Duke JA (1992) Handbook of phytochemical constituents of GRAS herbs and other economic plants, CRC Press, Boca Raton, FL, USA.

Ekalu A, Ayo RGO, Habila JD, Hamisu (2019) Bioactivities of phaeophytin a, α-amyrin, and lupeol from Brachystelma togoense Schltr. J Turk Chem Soc 6(3): 411-418. https://doi.org/10.18596/jotcsa.571770

Elnakady YA, Rushdi AI, Franke R, Abutaha N, Ebaid H, Baabbad M, Omar MOM, Al Ghamdi AA (2017) Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. Sci Rep 7: 41453. https://doi.org/10.1038/srep41453

Gade S, Rajamanikyam M, Vadlapudi V, Nukala MK, Aluvala R, Giddigari C, Karanam NJ, Barua NC, Pandey R, Upadhayayula VSV, Srpadi P, Amanchy R, Upadhyayula SM (2017) Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim Biophys Acta 1861(3): 541-550. https://doi.org/10.1016/j.bbagen.2016.11.044

Hassan NM, Alhossary AA, Mu Y, Kwoh CK (2017) Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Scie Rep 7(1): 15451. https://doi.org/10.1038/s41598-017-15571-7

Hendriani R, Sukandar EY, Anggadiredja K. Sukrasno (2015) In vitro evaluation of xanthine oxidase inhibitory activity of selected medicinal plants. Int J Pharm Clin 8: 235-238.

Imelda I, Azaria C, Lucretia T (2017) Protective effect of ethanol extract tempuyung leaf (Sonchus arvensis L.) against gentamicin induced renal injury viewed from blood ureum level. Med Health 1: 575-82. https://doi.org/10.28932/jmh.v1i6.555

Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P (2021) Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 28(9): 740-746. https://doi.org/10.1038/s41594-021-00651-0

Khan RA (2012) Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis. Chem Cent J6(1): 126. https://doi.org/10.1186/1752-153X-6-126

Kharisma VD, Agatha A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Kharisma VD, Ansori ANM, Nugraha AP (2020) Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus type 16 (HPV-16) infection. Biochem Cell Arch 20 (Suppl 1): 3155-3159. https://doi.org/10.35124/bca.2020.20.S1.3155

Listiyani P, Kharisma VD, Ansori AN, Widyananda MH, Probojati RT, Murtadlo AA (2022) In silico phytochemical compounds screening of Allium sativum targeting the Mpro of SARS-CoV-2. Pharmacog J 14(3): 604-609. https://10.5530/pj.2022.14.78

Maio N, Lafont BAP, Sil D, Li Y, Bollinger JM Jr, Krebs C, Pierson TC, Linehan WM, Rouault TA (2021) Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 373(6551): 236-241. https://doi.org/10.1126/science.abi5224

Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, Lieberman LA, Adam GC, Flynn J, McKenna P, Swaminathan G, Hazuda DJ, Olsen DB (2021) SARS-CoV-2 tropism, entry, replication, and propagation: considerations for drug discovery and development. PLoS Pathog 17(2): e1009225. https://doi.org/10.1371/journal.ppat.1009225

Niewolik D, Bednarczyk-Cwynar B, Ruszkowsk P, Sosnowski TR, Jaszcz K (2021) Bioactive betulin and PEG based polyanhydrides for use in drug delivery systems. Int J Mol Sci 22(3): 1090. https://doi.org/10.3390/ijms22031090

Ogwuche CE, Amupitan JO, Ayo RG (2014) Isolation and biological activity of the triterpene ß-amyrin from the aerial plant parts of Maesobotrya barteri (Baill). Med Chem 4: 729–733. https://doi.org/10.4172/2161-0444.1000221

Okoye NN, Ajaghaku DL, Okeke HN, Ilodigwe EE, Nworu CS, Okoye FBC (2014) Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm Biol 52: 1478–1486. https://doi.org/10.3109/13880209.2014.898078

Prahasanti C, Nugraha AP, Kharisma VD, Ansori ANM, Devijanti R, Ridwan TPSP, Ramadhani NF, Narmada IB, Ardani IGAW, Noor TNEBA (2021) A bioinformatic approach of hydroxyapatite and polymethylmethacrylate composite exploration as dental implant biomaterial. J Pharm Pharmacog Res 9(5): 746-754. https://doi.org/10.56499/jppres21.1078_9.5.746

Proboningrat A, Kharisma VD, Ansori ANM, Rahmawati R, Fadholly A, Posa GAV, Sudjarwo SA, Rantam FA, Achmad AB (2022) In silico study of natural inhibitors for human papillomavirus-18 E6 protein. Res J Pharm Technol 15(3): 1251-1256. https://doi.org/10.52711/0974-360X.2022.00209

Putra WE, Kharisma VD, Susanto H (2020) Potential of Zingiber officinale bioactive compounds as inhibitory agent against the IKK-B. AIP Conf Proc 2231(1): 040048. https://doi.org/10.1063/5.0002478

Ramos RS, Borges RS, de Souza JSN, Araujo IF, Chaves MH, Santos CBR (2022) Identification of potential antiviral inhibitors from hydroxychloroquine and 1,2,4,5-tetraoxanes analogues and investigation of the mechanism of action in SARS-CoV-2. Int J Mol Sci 23(3): 1781. https://doi.org/10.3390/ijms23031781

Rumondang M, Kusrini D, Fachriyah E (2013) Isolation, identification and antibacterial test of triterpenoid compounds from n-hexane extract of tempuyung leaves (Sonchus arvensis L.). Pharm Sci 05: 506-507.

Saito M, Kinoshita Y, Satoh I, Bex A, Bertaccini A (2006) Ability of cyclohexenonic long-chain fatty alcohol to reverse diabetes-induced cystopathy in the rat. Eur Urol 51(2): 479-488. https://doi.org/10.1016/j.eururo.2006.06.024

Shaheen U, Akka J, Hinore JS, Girdhar A, Bandaru S, Sumithnath TG, Nayarisseri A, Munshi A (2015) Computer aided identification of sodium channel blockers in the clinical treatment of epilepsy using molecular docking tools. Bioinformation 11(3): 131-137. https://doi.org/10.6026/97320630011131

Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI (2021) Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol 177: 1-9. https://doi.org/10.1016/j.ijbiomac.2021.02.071

Sharma K, Zafar R (2015) Occurrence of taraxerol and taraxasterol in medicinal plants. Pharmacog Rev 9(17): 19-23. https://doi.org/10.4103/0973-7847.156317

Shivanika C, Deepak KS, Venkataraghavan R, Pawan T, Sumitha A, Brindha DP (2022) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 40(2): 585-611. https://doi.org/10.1080/07391102.2020.1815584

Singh AK, Singh A, Singh R, Misra A (2021) Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab Syndr 15(6): 102329. https://doi.org/10.1016/j.dsx.2021.102329

Sunil C, Irudayaraj SS, Duraipandiyan V, AlDhabi NA, Agastian P, Ignacimuthu S (2014) Antioxidant and free radical scavenging effects of ß-amyrin isolated from S. cochinchinensis Moore. leaves. Ind Crops Prod 61: 510–516. https://doi.org/10.1016/j.indcrop.2014.07.005

Tolstikov GA, Flekhter OB, Shultz EE, Baltina LA, Tolstikov AG (2005) Betulin and its derivatives. Chemistry and biological activity. Chem Sustainable Dev 13: 1-29.

Wahyuni DK, Lestari S, Kuncoro EP, Purnobasuki H (2020b) Callus induction and its metabolite profiles of Sonchus arvensis L. under temperature treatment. Ann Biol 36(2): 299–303.

Wahyuni DK, Purnobasuki H, Kuncoro EP, Ekasari W (2020a) Callus induction of Sonchus arvensis L. and its antiplasmodial activity. Afr J Infect 14: 1-7. https://doi.org/10.21010/ajid.v14i1.1

Wahyuni DK, Rahayu S, Purnama PR, Saputro TB, Suharyanto, Wijayanti N (2019) Morpho-anatomical structure and DNA barcode of Sonchus arvensis L. Biodiversitas 20(24): 17-26. https://doi.org/10.13057/biodiv/d200841

Wahyuni DK, Rahayu S, Zaidan AH, Ekasari W, Prasongsuk S, Purnobasuki H (2021) Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. PLoS One 16: e0254804. https://doi.org/10.1371/journal.pone.0254804

Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Antonius Y (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacog Res 9(4): 484-496. https://doi.org/10.56499/jppres21.1047_9.4.484

Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori ANM, Parikesit AA (2021) COVID-19 in silico drug with Zingiber officinale natural product compound library targeting the Mpro protein. Makara J Sci 25(3): 162-171. https://doi.org/10.7454/mss.v25i3.1244

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Valproic acid concentrations in people with epilepsy

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1117-1125, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1500_10.6.1117

Original Article

Serum concentrations of valproic acid in people with epilepsy: Clinical implication

[Concentraciones séricas de ácido valproico en personas con epilepsia: Implicación clínica]

Angel T. Alvarado1*, Juan Cotuá2, Maryori Delgado2, Alexis Morales3, Ana María Muñoz4, César Li Amenero5, María R. Bendezú6, Jorge A. García6, Doris Laos-Anchante6, Felipe Surco-Laos6, Berta Loja7, Mario Bolarte-Arteaga8, Mario Pineda-Pérez9

1International Research Network of Pharmacology and Precision Medicine (REDIFMEP), Human Medicine, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

2Neurology and Neurosurgery of the Sabana Neurosabana, Sincelejo 700001, Colombia.

3Department of Toxicology and Pharmacology, Faculty of Pharmacy and Bioanalysis, Universidad Los Andes, 5101, Merida, Venezuela.

4Institute of Food Science and Nutrition, ICAN, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

5Outpatient Clinic, Victor Larco Herrera Hospital, 15076, Lima, Peru.

6Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, 11004, Ica, Peru.

7Environmental Engineering, Faculty of Engineering, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

8Human Medicine, Continental University, Los Olivos 15304, Lima, Peru.

9Pharmacy and Biochemistry, Faculty of Health Sciences, Scientific University of the South, UCSUR, 15067, Lima, Peru.

*E-mail: angel.alvarado@usil.pe

Abstract

Context: Therapeutic drug monitoring (TDM) allows personalizing the dose of valproic acid in patients with epilepsy to optimize drug therapy, minimize adverse effects and detect interactions.

Aims: To determine valproic acid concentrations in serum samples from people with epilepsy and to analyze its clinical implications.

Methods: Cloned donor enzyme immunoassay; descriptive, cross-sectional, non-randomized, convenience recruitment study of 57 voluntary patients with epilepsy (n = 39 male, 68.42%; n = 18 female, 31.58%) aged between 19 and 62 years. After three months of treatment with valproic acid, a single blood sample was collected from each volunteer at a minimal concentration.

Results: Serum drug concentrations 51.30-100.10 mg/L (SD 5.94) and level/dose 2.17-5.31 (SD 1.14) were observed. Association was shown between the dose ratio/dose of valproic acid (R2 = 0.8693; p<0.05) and the Mann-Whitney U test (p<0.05). Valproic acid monotherapy and association with carbamazepine and phenytoin are not different between treatment groups (Mann-Whitney U test: p = 0.391 > α = 0.05).

Conclusions: Serum valproic acid concentrations are within the therapeutic range, and there is a significant inverse linear correlation between dose ratio/dose, which must be considered to personalize the dose and optimize the pharmacotherapeutic result.

Keywords: dose-dose relationship; epilepsy; serum concentration; therapeutic monitoring; valproic acid.

jppres_pdf_free

Resumen

Contexto: La monitorización terapéutica del fármaco (TDM) permite personalizar la dosis de ácido valproico en pacientes con epilepsia, para optimizar la terapia farmacológica, minimizar los efectos adversos y detectar interacciones.

Objetivos: Determinar las concentraciones de ácido valproico en muestras de suero de personas con epilepsia, y analizar su implicancia clínica.

Métodos: Inmunoensayo de enzima donante clonada; estudio descriptivo, transversal, reclutamiento por conveniencia y no aleatorizado de 57 pacientes voluntarios con epilepsia (n = 39 masculinos, 68,42%; n =18 femenino, 31,58%) edad entre 19 y 62 años. Después de tres meses de tratamiento con ácido valproico, se colectó una sola muestra de sangre de cada voluntario a concentración mínima.

Resultados: Se observó concentraciones de fármaco en suero 51,30-100,10 mg/L (SD 5,94), nivel/dosis 2,17-5,31 (SD 1,14). Se mostró asociación entre relación dosis/dosis de ácido valproico (R2 = 0,8693; p<0,05), y Prueba U de Mann-Whitney (p<0,05). Monoterapia de ácido valproico y asociación con carbamazepina y fenitoína no son diferentes entre los grupos de tratamiento (Prueba U de Mann-Whitney: p = 0,391 > α = 0,05).

Conclusiones: Las concentraciones de ácido valproico en suero se encuentra dentro del intervalo terapéutico y existe una correlación lineal inversa significativa entre relación dosis/dosis, que se deben considerar para personalizar la dosis, y optimizar el resultado farmacoterapéutico.

Palabras Clave: ácido valproico; concentración sérica; relación dosis-dosis; epilepsia; seguimiento terapéutico.

jppres_pdf_free
Citation Format: Alvarado AT, Cotuá J, Delgado M, Morales A, Muñoz AM, Li C, Bendezú MR, García JA, Laos-Anchante D, Surco-Laos F, Loja B, Bolarte-Arteaga M, Pineda-Pérez M (2022) Serum concentrations of valproic acid in people with epilepsy: Clinical implication. J Pharm Pharmacogn Res 10(6): 1117–1125. https://doi.org/10.56499/jppres22.1500_10.6.1117
References

Alvarado A, Sullón L, Salazar-Granara A, Loja B, Miyasato J, Li-Amenero C, Miguel-Ato R, Quiñones L, Varela N, Espinoza O (2018) Estudio de las variantes alélicas del gen CYP2C9 y monitorización clínica del valproato en plasma como fundamento de la medicina personalizada. Diagnóstico 57(2): 73-78. https://doi.org/10.33734/diagnostico.v57i2.79

Alvarado AT, Muñoz AM, Loja B, Miyasato JM, García JA, Cerro RA, Quiñones LA, Varela NM (2019) Study of the allelic variants CYP2C9*2 and CYP2C9*3 in samples of the Peruvian mestizo population. Biomedica 39(3): 601-610. https://doi.org/10.7705/biomedica.4636

Alvarado AT, Pineda M, Cervantes L, Villanueva L, Morales A, Di Bernardo ML, Mora M, Bendezú M, García J, Li C, Alvarado E, Roldán A (2020) Estudio del índice nivel/dosis de la fenitoína en pacientes epilépticos voluntarios de Mérida. Rev Med Clin Condes 31(2): 197-203. https://doi.org/10.1016/j.rmclc.2020.02.008

Alvarado AT, Ybañez-Julca R, Muñoz AM, Tejada-Bechi C, Cerro R, Quiñones LA, Varela N, Alvarado CA, Alvarado E, Bendezú MR, García JA (2021a) Frequency of CYP2D6*3 and *4 and metabolizer phenotypes in three mestizo Peruvian populations. Pharmacia 68(4): 891-898. https://doi.org/10.3897/pharmacia.68.e75165

Alvarado AT, Muñoz AM, Bartra MS, Valderrama-Wong M, González D, Quiñones LA, Varela N, Bendezú MR, García JA, Loja-Herrera B (2021b) Frequency of CYP1A1*2A polymorphisms and deletion of the GSMT1 gene in a Peruvian mestizo population. Pharmacia 68(4): 747–754. https://doi.org/10.3897/pharmacia.68.e71621

Alvarado AT, Paredes G, García G, Morales A, Muñoz AM, Saravia M, Losno R, Bendezú MR, Chávez H, García JA, Pineda M, Sullón-Dextre L (2022a) Serum monitoring of carbamazepine in patients with epilepsy and clinical implications. Pharmacia 69(2): 401-406. https://doi.org/10.3897/pharmacia.69.e82425

Alvarado A, García G, Morales A, Paredes G, Mora M, Muñoz AM, Pariona R, Bendezú MR, Chávez H, García JA, Laos-Anchante D, Loja-Herrera B, Bolarte-Arteaga M, Pineda M (2022b) Phenytoin concentration in people with epilepsy: a comparative study in serum and saliva. Pharmacia 69(3): 809-814. https://doi.org/10.3897/pharmacia.69.e87168

Bartra M, Losno R, Valderrama-Wong M, Muñoz AM, Bendezú M, García J, Surco F, Basurto P, Pineda-Pérez M, Alvarado AT (2021) Pharmacokinetic interactions of azithromycin and clinical implication. Rev Cubana Med Militar 50(3): e02101284.

Ben Mahmoud L, Hakim A, Ghozzi H, Atheymen R, Sahnoun Z, Zeghal K (2017) Influence of age and co-medication on the steady-state pharmacokinetics of valproic acid in Tunisian patients with epilepsy. Rev Neurol 173(3): 159-163. https://doi.org/10.1016/j.neurol.2017.02.004

Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshé SL, Nordli D, Plouin P, Scheffer IE (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51(4): 676-685. https://doi.org/10.1111/j.1528-1167.2010.02522.x

Bonalde R, Morales A, Vicuña-Fernández N, Colmenares S, Saravia M, Losno R, Valderrama-Wong M, Muñoz AM, Alvarado AT (2021) Ketoprofeno como causa de falso positivo en la detección de Δ9-tetrahidrocannabinol en orina. Rev Cubana Farm 54(4): e716.

Buoli M, Serati M, Botturi A, Altamura AC (2018) The risk of thrombocytopenia during valproic acid therapy: A critical summary of available clinical aata. Drugs R D 18(1): 1-5. https://doi.org/10.1007/s40268-017-0224-6

Canisius T, Soons J, Verschuure P, Wammes-van der Heijden EA, Rouhl R, Majoie H (2020) Therapeutic drug monitoring of anti-epileptic drugs – a clinical verification of volumetric absorptive micro sampling. Clin Chem Lab Med 58(5): 828-835. https://doi.org/10.1515/cclm-2019-0784

Carmona-Vázquez CR, Ruiz-García M, Peña-Landín DM, Díaz-García L, Greenawalt SR (2015) Prevalencia de obesidad y síndrome metabólico en pacientes pediátricos con epilepsia tratados en monoterapia con ácido valproico. Rev Neurol 61: 193-201. https://doi.org/10.33588/rn.6105.2015134

Cotuá J, Morales A, Delgado M, Muñoz A, Quiñones L, Salazar A, Alvarado A (2017) Determinación del nivel de dosis del ácido valproico e influencia de los fármacos inductores y no inductores enzimáticos en pacientes voluntarios de la ciudad de Mérida, Venezuela. Horiz Med 17(3): 29-34. http://dx.doi.org/10.24265/horizmed.2017.v17n3.06

Doré M, San Juan AE, Frenette AJ, Williamson D (2017) Clinical Importance of monitoring unbound valproic acid concentration in patients with hypoalbuminemia. Pharmacotherapy 37(8): 900-907. https://doi.org/10.1002/phar.1965

Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, Altman RB, Klein TE (2013) Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 23(4): 236-241. https://doi.org/10.1097/FPC.0b013e32835ea0b2

Guk J, Lee SG, Chae D, Kim JH, Park K (2019) Optimal dosing regimen of phenytoin for Korean epilepsy patients: from premature babies to the elderly. J Pharm Sci 108(8): 2765-2773. https://doi.org/10.1016/j.xphs.2019.03.022

Hernández-Jerónimo MDR, Chehue-Romero A, Olvera-Hernández EG, Robles-Piedras AL (2022) Appropriateness of valproic acid-level monitoring at a childrens’ hospital in Mexico. Ars Pharm 63(1): 11-18. https://doi.org/10.30827/ars.v63i1.20820

Hernández-Ramos JA, Caro-Telle JM, Bruni-Montero MÁ, Canales-Siguero D, Ferrari-Piquero JM (2021) Interaction between valproic acid and meropenem or ertapenem in patients with epilepsy: clinical relevance and results from pharmaceutical intervention. Farm Hosp 45(6): 335-339.

Lampón N, Tutor JC (2013) Valproic acid serum through concentrations estimated from 12 hours post-dose concentrations in patients treated with Depakine® Crono. Farm Hosp 37(1):74-84. https://dx.doi.org/10.7399/FH.2013.37.1.168

Lan X, Mo K, Nong L, He Y, Sun Y (2021) Factors influencing sodium valproate serum concentrations in patients with ppilepsy based on logistic regression analysis. Med Sci Monit 27: e934275. https://doi.org/10.12659/MSM.934275

Li Y, Jiang Y, Cao H, Lin H, Ren W, Huang J, Zhang J (2021) Therapeutic drug monitoring of valproic acid using a dried plasma spot sampling device. J Mass Spectrometry 56(4): e4603. https://doi.org/10.1002/jms.4603

Patsalos PN, Spencer EP, Berry DJ (2018) Therapeutic drug monitoring of anti-epileptic drugs in apilepsy: A 2018 update. Ther Drug Monit 40(5): 526-548. https://doi.org/10.1097/FTD.0000000000000546

Shaikh AS, Liu H, Li Y, Cao L, Guo R (2018) Therapeutic drug monitoring of valproic acid. Pak J Pharm Sci 31(4 Sl): 1773-1776.

Song C, Li X, Mao P, Song W, Liu L, Zhang Y (2022) Impact of CYP2C19 and CYP2C9 gene polymorphisms on sodium valproate plasma concentration in patients with epilepsy. Eur J Hosp Pharm 29(4): 198-201. https://doi.org/10.1136/ejhpharm-2020-002367

Taylor DM, Barnes T, Young A (2019) The Maudsley prescribing guidelines in psychiatry. 13th edition. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, 2019: 214-218.

Tseng YJ, Huang SY, Kuo CH, Wang CY, Wang KC, Wu CC (2020) Safety range of free valproic acid serum concentration in adult patients. PloS One 15(9): e0238201. https://doi.org/10.1371/journal.pone.0238201

Wallenburg E, Klok B, de Jong K, de Maat M, van Erp N, Stalpers-Konijnenburg S, Essink G, van Luin M (2017) Monitoring protein-unbound valproic acid serum concentrations in clinical practice. Ther Drug Monit 39(3): 269-272. https://doi.org/10.1097/FTD.0000000000000405

Wu X, Dong W, Li H, Yang X, Jin Y, Zhang Z, Jiang Y (2021) CYP2C9*3/*3 gene expression affects the total and free concentrations of valproic acid in pediatric patients with epilepsy. Pharmgenomics Pers Med 14: 417-430. https://doi.org/10.2147/PGPM.S301893

Zhao M, Chen Y, Wang M, Li G, Zhao L (2020) Impact of age and genotype on serum concentrations of valproic acid and its hepatotoxic metabolites in Chinese pediatric patients with epilepsy. Ther Drug Monit 42(5): 760-765. https://doi.org/10.1097/FTD.0000000000000751

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Phyllanthus tenellus and Kaempferia parviflora compounds inhibit SARS-CoV-2

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1103-1116, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1485_10.6.1103

Original Article

Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study

[Compuestos de Phyllanthus tenellus Roxb. y Kaempferia parviflora Wall. ex Baker como inhibidores de la proteasa principal del SARS-CoV-2 y de la ARN polimerasa dependiente de ARN: Un estudio de acoplamiento molecular]

Suhaina Supian*, Muhamad Aizuddin Ahmad, Lina Rozano, Machap Chandradevan, Zuraida Ab Rahman

Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia.

*E-mail: suhaina@mardi.gov.my

Abstract

Context: The outbreak of a novel coronavirus, SARS-CoV-2 has caused an unprecedented COVID-19 pandemic. To put an end to this pandemic, effective antivirals should be identified or developed for COVID-19 treatment. However, specific and effective antivirals or inhibitors against SARS-CoV-2 are still lacking.

Aims: To evaluate bioactive compounds from Phyllanthus tenellus and Kaempferia parviflora as inhibitorsagainst two essential SARS-CoV-2 proteins, main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), through molecular docking studies and to predict the drug-likeness properties of the compounds.

Methods: The inhibition potential and interaction of P. tenellus and K. parviflora compounds against Mpro and RdRp were assessed through molecular docking. The drug-likeness properties of the compounds were predicted using SwissADME and AdmetSAR tools.

Results: Rutin and ellagic acid glucoside from P. tenellus and 4-hydroxy-6-methoxyflavone and 5-hydroxy-3,7,4’-trimethoxyflavone from K. parviflora exhibited the highest binding conformations to Mpro by interacting with its substrate binding site that was predicted to halt the Mpro activity. As for RdRp, ellagitannin and rutin from P. tenellus and peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were the best-docked compounds that bound to the RdRp catalytic domain (Asp760 and Asp761) and NTP-entry channel that were anticipated to stop RNA polymerization. However, in the context of drug developability, 4-hydroxy-6-methoxyflavone, 5-hydroxy-3,7,4’-trimethoxyflavone, peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were highly potential to be oral active drugs compared to rutin, ellagic acid glucoside and ellagitannin from P. tenellus.

Conclusions: P. tenellus and K. parviflora compounds, particularly the aforementioned compounds, were suggested as potential inhibitors of SARS-CoV-2 Mpro and RdRp.

Keywords: antiviral; compounds; COVID-19; in silico; Kaempferia parviflora; Phyllanthus tenellus.

jppres_pdf_free

Resumen

Contexto: El brote de un nuevo coronavirus, el SARS-CoV-2, ha provocado una pandemia de COVID-19 sin precedentes. Para poner fin a esta pandemia, es necesario identificar o desarrollar antivirales eficaces para el tratamiento del COVID-19. Sin embargo, aún se carece de antivirales o inhibidores específicos y eficaces contra el SARS-CoV-2.

Objetivos: Evaluar compuestos bioactivos de Phyllanthus tenellus y Kaempferia parviflora como inhibidores contra dos proteínas esenciales del SARS-CoV-2, la proteasa principal (Mpro) y la ARN polimerasa dependiente del ARN (RdRp), mediante estudios de acoplamiento molecular y predecir las propiedades de similitud con los fármacos de los compuestos.

Métodos: El potencial de inhibición y la interacción de los compuestos de P. tenellus y K. parviflora contra la Mpro y la RdRp fueron evaluados mediante docking molecular. Las propiedades de semejanza de los compuestos se predijeron mediante las herramientas SwissADME y AdmetSAR.

Resultados: La rutina y el glucósido del ácido elágico de P. tenellus y la 4-hidroxi-6-metoxiflavona y la 5-hidroxi-3,7,4′-trimetoxiflavona de K. parviflora mostraron las conformaciones de unión más altas a Mpro al interactuar con su sitio de unión al sustrato que se predijo para detener la actividad de Mpro. En cuanto a la RdRp, la elagitanina y la rutina de P. tenellus y la peonidina y la 5,3′-dihidroxi-3,7,4′-trimetoxiflavona de K. parviflora fueron los compuestos mejor acoplados que se unieron al dominio catalítico de la RdRp (Asp760 y Asp761) y al canal de entrada NTP que se anticipó que detendría la polimerización del ARN. Sin embargo, en el contexto del desarrollo de fármacos, la 4-hidroxi-6-metoxiflavona, la 5-hidroxi-3,7,4′-trimetoxiflavona, la peonidina y la 5,3′-dihidroxi-3,7,4′-trimetoxiflavona de K. parviflora tendrían un gran potencial para ser fármacos activos por vía oral en comparación con la rutina, el glucósido de ácido elágico y la elagitanina de P. tenellus.

Conclusiones: Los compuestos de P. tenellus y K. parviflora, en particular los mencionados, fueron sugeridos como potenciales inhibidores de Mpro y RdRp del SARS-CoV-2.

Palabras Clave: antiviral; compuestos; COVID-19; in silico; Kaempferia parviflora; Phyllanthus tenellus.

jppres_pdf_free
Citation Format: Supian S, Ahmad MA, Rozano L, Chandradevan M, Ab Rahman Z (2022) Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study. J Pharm Pharmacogn Res 10(6): 1103–1116. https://doi.org/10.56499/jppres22.1485_10.6.1103
References

Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N (2020)Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 18(1): 275. https://doi.org/10.1186/s12967-020-02439-0

Amin ML (2013) P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7: 27–34. https://doi.org/10.33393/dti.2013.1349

Babar M, Najam‑Us‑Sahar SZ, Ashraf M, Kazi AG (2013) Antiviral drug therapy – Exploiting medicinal plants. J Antivir Antiretrovir 5: 28–36. https://doi.org/10.4172/2155-6113.1000215

Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 10(2): 354–367. https://doi.org/10.1007/s13346-019-00691-6

Chen D, Li H, Li W, Feng S, Deng D (2018) Kaempferia parviflora and its methoxyflavones: Chemistry and biological activities. Evid Based Complement Alternat Med 2018: 4057456. https://doi.org/10.1155/2018/4057456

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11): 3099–3105. https://doi.org/10.1021/ci300367a

Cheng PW, Ng LT, Chiang LC, Lin CC (2006) Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 33(7): 612–616. https://doi.org/10.1111/j.1440-1681.2006.04415.x

Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11: 1117–1121. https://doi.org/10.1002/cmdc.201600182

Eweas AF, Alhossary AA, Abdel-Moneim AS (2021) Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Front Microbiol 11: 592908. https://doi.org/10.3389/fmicb.2020.592908

Farouk F, Shamma R (2019) Chemical structure modifications and nano-technology applications for improving ADME-Tox properties, a review. Arch Pharm Chem Life Sci 352(2): e1800213. https://doi.org/10.1002/ardp.201800213

Jin Z, Wang H, Duan Y, Yang H (2020) The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun 538: 63–71. https://doi.org/10.1016/j.bbrc.2020.10.091

Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368: 779–782. https://doi.org/10.1126/science.abb7498

Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar Drugs 18(4): 225. https://doi.org/10.3390/md18040225

Ghanimi R, Ouhammou A, El Atki Y, Cherkaoui M (2022) Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. J Pharm Pharmacogn Res 10(2): 227–238. https://doi.org/10.56499/jppres21.1200_10.2.227

Goyal B, Goyal D (2020) Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci 22(6): 297–305. https://doi.org/10.1021/acscombsci.0c00058

Kharisma VD, Aghata A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Lamb YN (2022) Nirmatrelvir plus ritonavir: first approval. Drugs 82:585–591. https://doi.org/10.1007/s40265-022-01692-5  

Long C, Romero ME, La Rocco D, Yu J (2021) Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 19: 3339–3348. https://doi.org/10.1016/j.csbj.2021.06.005

Martin R, Li J, Parvangada A, Perry J, Cihlar T, Mo H, Porter D, Svarovskaia E (2021) Genetic conservation of SARS-CoV-2 RNA replication complex in globally circulating isolates and recently emerged variants from humans and minks suggests minimal pre-existing resistance to remdesivir. Antiviral Res 188: 105033. https://doi.org/10.1016/j.antiviral.2021.105033

Mehrbod P, Hudy D, Shyntum D, Markowski J, Łos MJ, Ghavami S (2021) Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomol 11(1): 10. https://doi.org/10.3390/biom11010010

Mohammad Zadeh N, Mashinchi Asl NS, Forouharnejad K, Ghadimi K, Parsa S, Mohammadi S, Omidi A (2021) Mechanism and adverse effects of COVID-19 drugs: a basic review. Int J Physiol Pathophysiol Pharmacol 13(4): 102–109.

Mohd Jusoh NH, Subki A, Yeap SK, Yap KC, Jaganath IB (2019) Pressurized hot water extraction of hydrosable tannins from Phyllanthus tenellus Roxb. BMC Chem 13(1): 134. https://doi.org/10.1186/s13065-019-0653-0

Nutan MM, Goel T, Das T, Malik S, Suri S, Rawat AKS, Srivastava SK, Tuli R, Malhotra S, Gupta SK (2013) Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J Med Res 137: 540–548.

Oh C, Price J, Brindley MA, Widrlechner MP, Qu L, McCoy JA, Murphy P, Hauck C, Maury W (2011) Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virol J 8: 188. https://doi.org/10.1186/1743-422X-8-188

Ortega JT, Suárez AI, Serrano ML, Baptista J, Pujol FH, Rangel HR (2017) The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res Ther 14(1): 57. https://doi.org/10.1186/s12981-017-0183-6

Pitts J, Li J, Perry JK, Du Pont V, Riola N, Rodriguez L, Lu X, Kurhade C, Xie X, Camus G, Manhas S, Martin R, Shi PY, Cihlar T, Porter DP, Mo H, Maiorova E, Bilello JP (2022) Remdesivir and GS-441524 retain antiviral activity against delta, omicron, and other emergent SARS-CoV-2 variants. Antimicrob Agents Chemother 66(6): e0022222. https://doi.org/10.1128/aac.00222-22

Ritchie TJ, Macdonald SJ (2009) The impact of aromatic ring count on compound developability–are too many aromatic rings a liability in drug design? Drug Discovery Today 14(21/22): 1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014

Shivanika C, Deepak Kumar S, Venkataraghavan R, Pawan T, Sumitha A, Brindha Devi P (2020) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 40(2): 585–611. https://doi.org/10.1080/07391102.2020.1815584

Silva T, Veras Filho J, Lúcia CDAE, Antonia DSI, Albuquerque U, Cavalcante de Araújo E (2012) Acute toxicity study of stone-breaker (Phyllanthus tenellus Roxb.). Rev Cienc Farm 33: 205–210.

Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A, Danielson UH (2006) Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 61(8): 717–721.

Sornpet B, Potha T, Tragoolpua Y, Pringproa K (2017) Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med 10(9): 871–876. https://doi.org/10.1016/j.apjtm.2017.08.010

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L (2020) Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 17(6): 613–620. https://doi.org/10.1038/s41423-020-0400-4

Tan WC, Jaganath IB, Manikam R, Sekaran SD (2013) Evaluation of antiviral activities of four local Malaysian Phyllanthus species against herpes simplex viruses and possible antiviral target. Int J Med Sci 10(13): 1817–1829. https://doi.org/10.7150/ijms.6902

Tao J, Hu Q, Yang J, Li R, Li X, Lu C, Chen C, Wang L, Shattock R, Ben K (2007) In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral Res75(3): 227–233. https://doi.org/10.1016/j.antiviral.2007.03.008

te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ (2010) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38(1): 203–214. https://doi.org/10.1093/nar/gkp904

te Velthuis AJ, van den Worm SH, Snijder EJ (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40(4): 1737–1747. https://doi.org/10.1093/nar/gkr893

Vangeel L, Chiu W, De Jonghe S, Maes P, Slechten B, Raymenants J, André E, Leyssen P, Neyts J, Jochmans D (2022) Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 198: 105252. https://doi.org/10.1016/j.antiviral.2022.105252

Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S (2014) Structural disorder in viral proteins. Chem Rev 114(13): 6880–6911. https://doi.org/10.1021/cr4005692

Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75(1): 89–92. https://doi.org/10.1016/j.fitote.2003.08.017

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 368: 409–412. https://doi.org/10.1126/science.abb3405

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 588(7836): E6. https://doi.org/10.1038/s41586-020-2951-z

Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y (2020) From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21(1): 224. https://doi.org/10.1186/s12931-020-01479-w

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Stachytarpheta jamaicensis antibacterial activity

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1087-1102, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1474_10.6.1087

Original Article

Antibacterial activity of Stachytarpheta jamaicensis (L.) Vahl roots extract on some bacteria proteins: An in silico and in vitro study

[Actividad antibacteriana del extracto de raíces de Stachytarpheta jamaicensis (L.) Vahl sobre algunas proteínas bacterianas: un estudio in silico e in vitro]

Juliyatin Putri Utami1*, Sherli Diana2, Rahmad Arifin3, Irham Taufiqurrahman4, Kholifa Aulia Nugraha5, Milka Widya Sari5, Rizky Yoga Wardana5

1Department of Biomedicine, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

 2Department of Conservative Dentistry, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

3Department of Prosthodontic, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

4Departement of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

5Undergraduate of Dentistry Program, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

*E-mail: juliyatin.utami@ulm.ac.id

Abstract

Context: Stachytarpheta jamaicensis (L.) Vahlplant is used for traditional therapy because of its content, including flavonoids, alkaloids, tannins, saponins, terpenoids, and coumarins.

Aims: To determine the antibacterial ability of S. jamaicensis roots extract (SJRE) on some selected mouth bacteria through in vitro and in silico studies.

Methods: Phytochemical analysis and liquid chromatography-high resolution mass spectrometry (LC-HRMS) were done to explore the active compounds on SJRE. Absorption, distribution, metabolism, excretion and toxicity prediction, molecular docking simulation and visualization of luvangetin, and xanthyletin as anti-inflammatory and antibacterial were investigated in silico. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of SJRE against Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, and Actinomyces spp. were calculated.

Results: Luvangetin and xanthyletin are good candidate drug molecules with low toxicity. Xanthyletin has higher binding activity than luvangetin to TNF-α, IL-6, IL-10, peptidoglycan, flagellin, and dectin protein. SJRE exhibited a high antibacterial ability, and MIC. This extract inhibits the growth of A. actinomycetemcomitans, E. faecalis and Actinomyces spp. at various concentrations 2000, 8000, and 8000 µg/mL, respectively, with statistically significant differences (p = 0.0001; p<0.05).

Conclusions: SJRE has an antibacterial ability, and 2000 µg/mL SJRE may act as an antibacterial agent in vitro. In addition, xanthyletin in SJRE has a potential role as an antibacterial and anti-inflammatory in silico.

Keywords: communicable disease; dentistry; infectious disease; medicine; periodontal disease.

jppres_pdf_free

Resumen

Contexto: La planta de Stachytarpheta jamaicensis (L.) Vahl se utiliza para la terapia tradicional por su contenido, que incluye flavonoides, alcaloides, taninos, saponinas, terpenoides y cumarinas.

Objetivos: Determinar la capacidad antibacteriana del extracto de raíces de S. jamaicensis (SJRE) sobre algunas bacterias bucales seleccionadas mediante estudios in vitro e in silico.

Métodos: Se realizaron análisis fitoquímico y cromatografía líquida-espectrometría de masas de alta resolución (LC-HRMS) para explorar los compuestos activos en SJRE. Se investigaron in silico la absorción, la distribución, el metabolismo, la excreción y la predicción de la toxicidad, la simulación de acoplamiento molecular y la visualización de la luvangetina y la xantiletina como antiinflamatorios y antibacterianos. Se calcularon la concentración inhibitoria mínima (MIC) y la concentración bactericida mínima (MBC) de SJRE contra Aggregatibacter actinomycetemcomitans, Enterococcus faecalis y Actinomyces spp.

Resultados: Luvangetin y xanthyletin son buenas moléculas candidatos a fármacos y tienen baja toxicidad. La xantiletina tiene una mayor actividad de unión que la luvangetina a TNF-α, IL-6, IL-10, peptidoglicano, flagelina y proteína dectina. SJRE exhibió una alta capacidad antibacteriana y MIC. Este extracto inhibe el crecimiento de A. actinomycetemcomitans, E. faecalis y Actinomyces spp. a varias concentraciones 2000, 8000 y 8000 µg/mL, respectivamente, con diferencias estadísticamente significativas (p = 0,0001; p<0,05).

Conclusiones: SJRE tiene una capacidad antibacteriana y a 2000 µg/mL SJRE puede actuar como un agente antibacteriano in vitro. Además, la xantiletina en SJRE tiene un papel potencial como antibacteriano y antiinflamatorio in silico.

Palabras Clave: enfermedad infecciosa; enfermedad periodontal; enfermedad transmisible; odontología; medicamento.

jppres_pdf_free
Citation Format: Utami JP, Diana S, Arifin R, Taufiqurrahman I, Nugraha KA, Sari MW, Wardana RY (2022) Antibacterial activity of Stachytarpheta jamaicensis (L.) Vahl roots extract on some bacteria proteins: An in silico and in vitro study. J Pharm Pharmacogn Res 10(6): 1087–1102. https://doi.org/10.56499/jppres22.1474_10.6.1087
References

Aberg CH, Kelk P, Johansson A (2015) Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence, 6(3): 188–195. https://doi.org/10.4161/21505594.2014.982428.

Ardani IGAW, Nugraha AP, Suryani NM, Pamungkas RH, Vitamamy DG, Susanto RA, Sarno R, Fajar A, Kharisma VD, Nugraha AP, Noor TNEBTA (2022) Molecular docking of polyether ether ketone and nano-hydroxyapatite as biomaterial candidates for orthodontic mini-implant fabrication. J Pharm Pharmacogn Res 10(4): 676–686. https://doi.org/10.56499/jppres22.1371_10.4.676

Asmah N (2020) Pathogenicity biofilm formation of Enterococcus faecalis. J Syiah Kuala Dent Soc 5(1): 11. https://doi.org/10.24815/jds.v5i1.20011

Babii C, Mihalache G, Bahrin LG, Neagu AN, Gostin I, Mihai CT, Sârbu LG, Birsa LM, Stefan (2018) A novel synthetic flavonoid with potent antibacterial properties: In vitro activity and proposed mode of action. PLoS ONE 13(4): e0194898. https://doi.org/10.1371/journal.pone.0194898

Berniyanti T, Nugraha AP, Hidayati NN, Kharisma VD, Nugraha AP, Tengku NEBTAN (2022) Computational study of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ binding sites identification on cytokines to predict dental metal allergy: An in silico study. J Pharm Pharmacogn Res 10(4): 687–694. https://doi.org/10.56499/jppres22.1372_10.4.687

Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, Bordes C (2019) Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front Microbiol 10: 829. https://doi.org/10.3389/fmicb.2019.00829

Chinonye I, Uchenna LO, Adanna UA, Rita ON (2019) Phytochemical, antimicrobial and GC/MS analysis of the root of Stachytarpheta cayennensis (L.Vahl) grown in Eastern Nigeria. Int Res J Nat Sci 7(2): 20–32.

Cook L, Lisko DJ, Wong MQ, Garcia RV, Himmel ME, Seidman EG, Bressler B, Levings MK, Steiner TS (2020) Analysis of flagellin-specific adaptive immunity reveals links to dysbiosis in patients with inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 9(3): 485–506. https://doi.org/10.1016/j.jcmgh.2019.11.012

de Souza GA, Leversen NA, Målen H, Wiker HG (2011) Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 75(2): 502–510. https://doi.org/10.1016/j.jprot.2011.08.016

Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Lo Muzio L, Troiano G (2020) Prevalence of bacteria of genus Actinomyces in persistent extraradicular lesions-systematic review. J Cin Med 9(2): 457. https://doi.org/10.3390/jcm9020457

Elashiry M, Tian F, Elashiry M, Zeitoun R, Elsayed R, Andrews ML, Bergeon BE, Cutler, Tay F (2021) Enterococcus faecalis shifts macrophage polarization toward M1-like phenotype with an altered cytokine profile. J Oral Microbiol 13: 1868152. https://doi.org/10.1080/20002297.2020.1868152

Erst AS, Chernonosov AA, Petrova NV, Kulikovskiy MS, Maltseva SY, Wang W, Kostikova VA (2022) Investigation of chemical constituents of Eranthis longistipitata (Ranunculaceae): Coumarins and furochromones. Int J Mol Sci 23: 406. https://doi.org/10.3390/ijms23010406

Fahmi M, Kharisma VD, Ansori AN, Ito M (2021) Retrieval and investigation of data on SARS-CoV-2 and COVID-19 using bioinformatics approach. In Coronavirus Disease-COVID-19 1318: 839–857. https://doi.org/10.1007/978-3-030-63761-3_47

Guimarães AC, Meireles LM, Lemos MF, Guimarães M, Endringer DC, Fronza M, Scherer R (2019) Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24(13): 2471. https://doi.org/10.3390/molecules24132471

Irazoki O, Hernandez SB, Cava F (2019) Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front Microbiol 10: 500. https://doi.org/10.3389/fmicb.2019.00500

Kharisma VD, Agatha A, Ansori AN, Widyananda MH, Rizky WC, Dings TG, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2021) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Kharisma VD, Widyananda MH, Ansori ANM, Nege AS, Naw SW, Nugraha AP (2021) Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res 9(4): 435–445. https://doi.org/10.56499/jppres21.1009_9.4.435

Krueger E, Brown AC (2020) Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol. 35(3): 85–105. https://doi.org/10.1111/omi.12284

Kumar A, Kaur H, Jain A, Nair DT, Salunke DM (2018) Docking, thermodynamics and molecular dynamics (MD) studies of a non-canonical protease inhibitor, MP-4, from Mucuna pruriens. Sci Rep 8: 689. https://doi.org/10.1038/s41598-017-18733-9

Liew PM, Yong YK (2016) Stachytarpheta jamaicensis (L.) Vahl: From traditional usage to pharmacological evidence. Evid Based Complement Alternat Med 2016: 7842340. https://doi.org/10.1155/2016/7842340

Luqman A, Kharisma VD, Ruiz RA, Götz F (2020) In silico and in vitro study of trace amines (TA) and dopamine (DOP) interaction with human alpha 1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cell Physiol Biochem 54: 888–898. https://doi.org/10.33594/000000276

Maisetta G, Batoni G, Caboni P, Esin S, Rinaldi AC, Zucca P (2019) Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement Altern Med 19(1): 82. https://doi.org/10.1186/s12906-019-2487-7

Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C (2022) Dectin-1 signaling update: New perspectives for trained immunity. Front Immunol 13: 812148. https://doi.org/10.3390/cells11182879

Mehrotra N, Singh S (2022) Periodontitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

Mingga M, Oramahi HA, Tavita GE (2019) Utilization of medicinal plants by the community of Raba Village in Menjalin subdistict of Landak Regency [Indonesian]. Jurnal Hutan Lestari 7(1): 97–105.

Nice JB, Balashova NV, Kachlany SC, Koufos E, Krueger E, Lally ET, Brown AC (2018) Aggregatibacter actinomycetemcomitans leukotoxin is delivered to host cells in an LFA-1-indepdendent manner when associated with outer membrane vesicles. Toxins 10(10): 414. https://doi.org/10.3390/toxins10100414

Nugraha AP, Sibero MT, Nugraha AP, Puspitaningrum MS, Rizqianti Y, Rahmadhani D, Kharisma VD, Ramadhani NF, Ridwan RD, Noor TNEBTA, Ernawati DS (2022a) Anti-periodontopathogenic ability of mangrove leaves (Aegiceras corniculatum) ethanol extract: In silico and in vitro study. Eur J Dent. https://doi.org/10.1055/s-0041-1741374

Nugraha AP, Kitaura H, Ohori F, Pramusita A, Ogawa S, Noguchi T, Marahleh A, Nara Y, Kinjo R, Mizoguchi I (2022b) C‑X‑C receptor 7 agonist acts as a C‑X‑C motif chemokine ligand 12 inhibitor to ameliorate osteoclastogenesis and bone resorption. Mol Med Rep 25(3): 78. https://doi.org/10.3892/mmr.2022.12594

Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Nugraha AP, Joestandari F (2022c) Gingival mesenchymal stem cells metabolite decreasing TRAP, NFATc1, and sclerostin expression in LPS-Associated inflammatory osteolysis in vivo. Eur J Dent. https://doi.org/10.1055/s-0042-1748529

Ololade Zs, Oo O, Se K, Oo A (2017) Stachytarpheta jamaicensis leaf extract: Chemical composition, antioxidant, anti-arthritic, anti-inflammatory and bactericidal potentials. J Sci Innov Res 6(4): 119–125.

Onofre SB, Santos ZMQ, Kagimura FY, Mattiello SP (2015) Antioxidant activity, total phenolic and flavonoids contents in Stachytarpheta cayennensis (Rich.) Vahl. (Verbenaceae). J Med Plants Res 9(17): 569–575. https://doi.org/10.5897/JMPR2014.5751

Ozok AR, Persoon IF, Huse SM, Keijser BJF, Wesselink PR, Crielaard W (2012) Ecology of the microbiome of the infected root canal system: A comparison between apical and coronal root segments. Int Endod J 45: 530–541. https://doi.org/10.1111/j.1365-2591.2011.02006.x

Pinzi L, Rastelli G (2019) Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 20(18): 4331. https://doi.org/10.3390/ijms20184331

Prada I, Micó-Muñoz P, Giner-Lluesma T, Micó-Martínez P, Colla-do-Castellano N, Manzano-Saiz A (2019) Influence of microbiology on endodontic failure. Literature review. Med Oral Patol Oral Cir Bucal 24(3): e364-72. https://doi.org/10.4317/medoral.22907

Prahasanti C, Nugraha AP, Kharisma VD, Ansori AN, Devijanti R, Ridwan TP, Ramadhani NF, Narmada IB, Ardani IG, Noor TN (2021) A bioinformatic approach of hydroxyapatite and polymethylmethacrylate composite exploration as dental implant biomaterial. J Pharm Pharmacogn Res 9(5): 746–754. https://doi.org/10.56499/jppres21.1078_9.5.746

Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I (2020) Cytokines and chemokines in periodontitis. Eur J Dent 14(3): 483–495. https://doi.org/10.1055/s-0040-1712718

Ramadhani NF, Nugraha AP, Gofur NRP, Hakiki D, Ridwan RD (2020a) Elevation of c-reactive protein in chronic periodontitis patient as cardiovascular disease risk factor. Biochem Cell Arch 20: 2875–2878.

Ramadhani NF, Nugraha AP, Putra Gofur NR, Permatasari RI, Ridwan RD (2020b) Increased levels of malondialdehyde and cathepsin C by Aggregatibacter actinomycetemcomitans in saliva as aggressive periodontitis biomarkers: A review. Biochem Cell Arch 20: 2895–2901. https://doi.org/10.35124/bca.2020.20.S1.2895

Ramadhani NF, Nugraha AP, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Noor TNEBTA, Ridwan RD, Ernawati DS, Nugraha AP (2022) Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach. J Pharm Pharmacogn Res 10(3): 418–428. http://doi.org/10.56499/jppres21.1316_10.3.418

Ridwan RD (2012) The role of Actinobacillus actinomycetemcomitans fimbrial adhesin on MMP-8 activity in aggressive periodontitis pathogenesis. Dent J (Majalah Kedokteran Gigi) 45(4): 181–186. https://doi.org/10.20473/j.djmkg.v45.i4.p181-186

Ridwan RD, Juliastuti WS, Setijanto RD (2017) Effect of electrolyzed reduced water on Wistar rats with chronic periodontitis on malondialdehyde levels. Dent J (Majalah Kedokteran Gigi) 50(1): 10–13. https://doi.org/10.20473/j.djmkg.v50.i1.p10-13

Ruksakiet K, Hanák L, Farkas N, Hegyi P, Sadaeng W, Czumbel LM, Sang-Ngoen T, Garami A, Mikó A, Varga G, Lohinai Z (2020) Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: A systematic review and meta-analysis of randomized controlled trials. J Endod 46(8): 1032–1041.e7. https://doi.org/10.1016/j.joen.2020.05.002

Shafquat Y, Jabeen K, Farooqi J, Mehmood K, Irfan S, Hasan R, Zafar A (2019) Antimicrobial susceptibility against metronidazole and carbapenem in clinical anaerobic isolates from Pakistan. Antimicrob Resist Infect Control 8: 99. https://doi.org/10.1186/s13756-019-0549-8

Strickertsson JA, Desler C, Martin-Bertelsen T, Machado AM, Wadstrøm T, Winther O, Rasmussen LJ, Friis-Hansen L (2013) Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells. PLoS One 8(4): e63147. https://doi.org/10.1371/journal.pone.0063147

Suhirman S (2015) Phytochemicals screening of several types of blue porterweed (Stachytarpheta jamaicensis L. Vahl). Prosiding Seminar Nasional Swasembada Pangan Polinela 29 April 2015, pp. 93–97. https://doi.org/10.25181/prosemnas.v0i0.516

Tagousop CN, Tamokou JD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L (2018) Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18(1): 252. https://doi.org/10.1186/s12906-018-2321-7

Tatsimo TJDD, Lamshöft M (2015) LC-MS guided isolation of antibacterial and cytotoxic constituents from Clausena anisata. Med Chem Res 24: 1468–1479. https://doi.org/10.1007/s00044-014-1233-4

Ticoalu JP, Kepel BJ, Mintjelungan CN (2016) Hubungan periodontitis dengan penyakit jantung koroner pada pasien di RSUP Prof. Dr. R. D. Kandou Manado. e-GiGi 4(2): 277–281. https://doi.org/10.35790/eg.4.2.2016.14222

Tuan Anh HL, Kim DC, Ko W, Ha TM, Nhiem NX, Yen PH, Tai BH, Truong LH, Long VN, Gioi T, Hong Quang T, Minh CV, Oh H, Kim YC, Kiem PV (2017) Anti-inflammatory coumarins from Paramignya trimera. Pharm Biol 55(1): 1195–1201. https://doi.org/10.1080/13880209.2017.1296001

Utami JK, Kurnianingsih N, Faisal MR (2022) An in silico study of the cathepsin L inhibitory activity of bioactive compounds in Stachytarpheta jamaicensis as a Covid-19 drug therapy. Makara J Sci 26(1): 3. https://doi.org/10.7454/mss.v26i1.1269

Utami JP, WasiaturrahmahY, Putri KTD (2021) Hydroxyl radical scavenging activity of Stachytarpheta jamaicensis root extract using in vitro deoxyribose degradation assay. Trad Med J 26(2): 103–112. https://doi.org/10.22146/mot.61746

Utami K, Sari I, Nurhafidhah (2019) Pengaruh Pemberian Topikal Ekstrak Etanol Daun Pecut Kuda (Stachytarpheta jamaicensis (L.) Vahl) Terhadap Penyembuhan Luka Terbuka Pada Punggung Mencit (Mus musculus). J Ilm Pendidik Kim Indones 2(1): 21–27.

Vu TT, Kim H, Tran VK, Vu HD, Hoang TX, Han JW, Choi YH, Jang KS, Choi GJ, Kim JC (2017) Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS One 12(7): e0181499. https://doi.org/10.1371/journal.pone.0181499

Wahyudi VA, Seqip P, Sahirah N, Resya N (2019) Formulation of throat relief candy from Stacytarpheta jamaicensis leaf as a functional food. J Pangan Agroind 7(4): 31–41. https://doi.org/10.21776/ub.jpa.2019.007.04.4

Wang CY, Chen YW, Hou CY (2019) Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop 22(1): 230–238. https://doi.org/10.1080/10942912.2019.1582541

Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori AN, Parikesit AA (2021) Covid-19 in silico drug with Zingiber officinale natural product compound library targeting the mpro protein. Makara J Sci 25(3): 5. https://doi.org/10.7454/mss.v25i3.1244

Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X (2020) Advances in pharmacological activities of terpenoids. Nat Prod Comm 15(3). 1–13. https://doi.org/10.1177/1934578X20903555

Yuliana Y, Auwaliyah F, Fatmawati S (2019) 6β-hydroxyipolamiide of Stachytarpheta jamaicensis leaves. J Technol Sci 30(3): 68–72. http://dx.doi.org/10.12962/j20882033.v30i3.5408

Zhang W, Wang J, Chen Y, Zheng H, Xie B, Sun Z (2020) Flavonoid compounds and antibacterial mechanisms of different parts of white guava (Psidium guajava L. cv. Pearl). Nat Prod Res 34(11): 1621–1625. https://doi.org/10.1080/14786419.2018.1522313

Zhou X, Nanayakkara S (2021) Chlorhexidine and sodium hypochlorite provide similar antimicrobial effect in root canal disinfection. J Evid Based Dent Pract 21(3): 101577. https://doi.org/10.1016/j.jebdp.2021.101577

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Rhodomyrtus tomentosa and HIF1α-VEGF expressions in placental

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1076-1086, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1517_10.6.1076

Original Article

Effect of Rhodomyrtus tomentosa Hassk. on HIF1α and VEGF expressions on hypertension placental

[Efecto de Rhodomyrtus tomentosa Hassk. sobre las expresiones de HIF1α y VEGF sobre la hipertensión placentaria]

Putri Cahaya Situmorang1*, Syafruddin Ilyas1, Doni Aldo Samuel Siahaan1, Martina Restuati2, Endang Ratna Sari1, Chairunisa Chairunisa1, Muhammad Faldhy Maliki1

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia.

2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia.

*E-mail: putri.cahaya@usu.ac.id

Abstract

Context: HIF1α and VEGF are proteins marker oxidative stress and a decrease in placental growth factor (PlGF). Decreasing of HIF1α and VEGF in rats displayed poor trophoblast differentiation, placental abnormalities, and fetal mortality. Rhodomyrtus tomentosa is a flowering plant in the Myrtaceae family that has the potential to be a source of health-promoting chemicals.

Aims: To analyze HIF1α and VEGF in serum and hypertension placental tissue after giving Rhodomyrtus tomentosa (RHO) leaves extract.

Methods: Six treatments were given to the rats that were identified as being pregnant and pregnant rats with hypertension were given RHO with three doses: (a) normal pregnant rats (control); (b) hypertensive rats; (c) hypertensive rats + 100 mg/kg BW of RHO; (d) hypertensive rats +200 mg/kg BW of RHO; and (e) hypertensive rats + 400 mg/kg BW of RHO and (f) hypertensive rats + nifedipine. Under ketamine anesthesia, pregnant rats were removed on their 20th day of gestation. Immunohistochemistry and ELISA were used to assess HIF1α and VEGF protein expression.

Results: There was a significant difference (p<0.01) in the expression of HIF1α and VEGF in the labyrinthine zone and yolk sac of the rat placenta between the normal (C-) and hypertensive (C+) groups. HIF1α and VEGF expression decreased when RHO was administered at doses ranging from 100 to 400 mg/kg BW. However, there was no significant change (p>0.05) in VEGF expression in the basal zone of the rat placenta across all groups.

Conclusions: Rhodomyrtus tomentosa leaves extract decreases HIF1α and VEGF expressions in serum and repairs the tissue of the placenta’s labyrinth, basal, and yolk sacs.

Keywords: basal zone; HIF1α; hypertension; labyrinth zone; plant extract; VEGF; yolk sac.

jppres_pdf_free

Resumen

Contexto: HIF1α y VEGF son proteínas marcadoras de estrés oxidativo y disminución del factor de crecimiento placentario (PlGF). La disminución de HIF1α y VEGF en ratas mostró una pobre diferenciación del trofoblasto, anomalías placentarias y mortalidad fetal. Rhodomyrtus tomentosa es una planta con flores de la familia Myrtaceae que tiene el potencial de ser una fuente de productos químicos que promueven la salud.

Objetivos: Analizar HIF1α y VEGF en suero y tejido placentario hipertenso después de administrar extracto de hojas de Rhodomyrtus tomentosa (RHO).

Métodos: Se administraron seis tratamientos a las ratas que se identificaron como preñadas ya las ratas preñadas con hipertensión se les administró RHO con tres dosis: (a) ratas preñadas normales (control); (b) ratas hipertensas; (c) ratas hipertensas + 100 mg/kg de peso corporal de RHO; (d) ratas hipertensas +200 mg/kg de peso corporal de RHO; y (e) ratas hipertensas + 400 mg/kg de peso corporal de RHO y (f) ratas hipertensas + nifedipina. Bajo anestesia con ketamina, las ratas preñadas se extrajeron en su día 20 de gestación. Se usaron inmunohistoquímica y ELISA para evaluar la expresión de proteínas HIF1α y VEGF.

Resultados: Hubo diferencia significativa (p<0.01) en la expresión de HIF1α y VEGF en la zona laberíntica y saco vitelino de la placenta de rata entre los grupos normal (C-) e hipertenso (C+). La expresión de HIF1α y VEGF disminuyó cuando se administró RHO en dosis que oscilaron entre 100 y 400 mg/kg de peso corporal. Sin embargo, no hubo cambios significativos (p>0,05) en la expresión de VEGF en la zona basal de la placenta de rata en todos los grupos.

Conclusiones: El extracto de hojas de Rhodomyrtus tomentosa disminuye las expresiones de HIF1α y VEGF en suero y repara el tejido del laberinto, basal y saco vitelino de la placenta.

Palabras Clave: extracto de plantas; HIF1α; hipertensión; saco vitelino; VEGF; zona basal; zona laberinto.

jppres_pdf_free
Citation Format: Situmorang PC, Ilyas S, Siahaan DAS, Restuati M, Sari ER, Chairunisa C, Maliki MF (2022) Effect of Rhodomyrtus tomentosa Hassk. on HIF1α and VEGF expressions on hypertension placental. J Pharm Pharmacogn Res 10(6): 1076–1086. https://doi.org/10.56499/jppres22.1517_10.6.1076
References

Belkacemi L, Desai M, Nelson DM, Ross MG (2011) Altered mitochondrial apoptotic pathway in placentas from undernourished rat gestations. Am J Physiol Regul Integr Comp Physiol 301(6): R1599-R1615. https://doi.org/10.1152/ajpregu.00100.2011

Braunthal S, Brateanu A (2019) Hypertension in pregnancy: Pathophysiology and treatment. SAGE Open Med 7: 2050312119843700. https://doi.org/10.1177/2050312119843700

Fan X, Rai A, Kambham N, Sung JF, Singh N, Petitt M, Dhal S, Agrawal R, Sutton RE, Druzin ML, Gambhir SS, Ambati BK, Cross JC, Nayak NR (2014) Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest 124(11): 4941-4952. https://doi.org/10.1172/JCI76864

Fan X, Muruganandan S, Shallie PD, Dhal S, Petitt M, Nayak NR (2021) VEGF maintains maternal vascular space homeostasis in the mouse placenta through modulation of trophoblast giant cell functions. Biomolecules 11(7): 1062. https://doi.org/10.3390/biom11071062

Furukawa S, Tsuji N, Sugiyama A (2019) Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol 32(1): 1–17. https://doi.org/10.1293/tox.2018-0042

Furukawa S, Kuroda Y, Sugiyama A (2014) A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 27(1): 11–18. https://doi.org/10.1293/tox.2013-0060

Hemberger M (2012) Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med44: 325–337. https://doi.org/10.3109/07853890.2012.663930

Hutagaol JM, Bintang, Hidayat B (2021) Identification of highland peat vegetation in the sub-district of Lintong Nihuta, Humbang Hasundutan Regency, North Sumatera, Indonesia. IOP Conf Series: Earth Environ Sci 912: 012027 https://doi.org/10.1088/1755-1315/912/1/012027

Ilyas S, Murdela F, Hutahaean S, Situmorang PC (2019) The effect of haramounting leaf ethanol extract (Rhodomyrtus tomentosa (Aiton) Hassk.) on the number of leukocyte type and histology of mice pulmo (Mus musculus L.) exposed to electronic cigarette. Open Access Maced J Med Sci 7(11): 1750-1756. https://doi.org/10.3889/oamjms.2019.467

Ilyas S, Situmorang PC (2021) Role of heat shock protein 70 (HSP-70) after giving nanoherbal haramonting (Rhodomyrtus tomentosa) in preeclamptic rats. Pak J Biol Sci 24: 139-145. https://doi.org/10.3923/pjbs.2021.139.145

Irianti E, Ilyas S, Hutahaean S, Rosidah R, Situmorang PC (2020) Placental histological on preeclamptic rats (Rattus norvegicus) after administration of nanoherbal haramonting (Rhodomyrtus tomentosa). Res J Pharm Technol 13(8): 3879-3882. https://doi.org/10.5958/0974-360X.2020.00686.1

Kametas NA, Nzelu D, Nicolaides KH (2022) Chronic hypertension and superimposed preeclampsia: Screening and diagnosis. Am J Obstet Gynecol 226(2S): S1182-S1195. https://doi.org/10.1016/j.ajog.2020.11.029

Kubo T, Fujie K, Yamashita M, Misu Y (1981) Antihypertensive effects of nifedipine on conscious normotensive and hypertensive rats. J Pharmacobiodyn 4(4): 294-300. https://doi.org/10.1248/bpb1978.4.294

Kurnianto A, Kurniadi Sunjaya D, Ruluwedrata Rinawan F, Hilmanto D (2020) Prevalence of hypertension and its associated factors among Indonesian adolescents. Int J Hypertens 2020: 4262034. https://doi.org/10.1155/2020/4262034

Li Q, Yao B, Endler L, Chen L, Shibasaki F, Cheng H (2018) Int6/eIF3e silencing promotes placenta angiogenesis in a rat model of pre-eclampsia. Sci Rep 8(1): 8944. https://doi.org/10.1038/s41598-018-27296-2

Malnou EC, Umlauf D, Mouysset M, Cavaillé J (2019) Imprinted microRNA gene clusters in the evolution, development, and functions of mammalian placenta.Front Genet 9: 706. https://doi.org/10.3389/fgene.2018.00706

Maria JM, Warrington JP (2019) Cerebral blood flow regulation in pregnancy, hypertension, and hypertensive disorders of pregnancy. Brain Sci 9(9): 224. https://doi.org/10.3390/brainsci9090224

Morfoisse F, Renaud E, Hantelys F, Prats AC, Garmy-Susini B (2014) Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis. Mol Cell Oncol 1(1): e29907. https://doi.org/10.4161/mco.29907

Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ (2021) Vascular dysfunction in preeclampsia. Cells 10(11): 3055. https://doi.org/10.3390/cells10113055

Pandey AK, Singhi EK, Arroyo JP, Ikizler TA, Gould ER, Brown J, Beckman JA, Harrison DG, Moslehi J (2018) Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension 71(2): e1-e8. https://doi.org/10.1161/HYPERTENSIONAHA.117.10271

Phipps EA, Benzing TR, Thandani TR, Karumanchi SA (2019) Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15(5): 275–289. https://doi.org/10.1038/s41581-019-0119-6

Reshef T (2012) The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod 87(6): 134. https://doi.org/10.1095/biolreprod.112.102723

Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD (2010) Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol 30(6): 591-601. https://doi.org/10.1016/j.semnephrol.2010.09.007

Ross C, Boroviak TE (2020) Origin and function of the yolk sac in primate embryogenesis. Nature Comm 11: 3760. https://doi.org/10.1038/s41467-020-17575-w

Salles AMR, Galvao TF, Silva MT, Motta LCD, Pereira MG (2012) Antioxidants for preventing preeclampsia: A systematic review. ScientificWorldJournal 2012: 243476. https://doi.org/10.1100/2012/243476

Sarkar AA, Sabatino JA, Sugrue KF, Zohn IE (2016) Abnormal labyrinthine zone in the Hectd1-null placenta. Placenta 38: 16-23. https://doi.org/10.1016/j.placenta.2015.12.002

Siragher E, Sferruzzi-Perri AN (2021) Placental hypoxia: What have we learnt from small animal models. Placenta113: 29-47. https://doi.org/10.1016/j.placenta.2021.03.01

Situmorang PC, Ilyas S (2018) Description of testis histology of Mus musculus after giving nano herbal Rhodomyrtus tomentosa (haramonting). Asian J Pharm Clin Res 11: 461-463. https://doi.org/10.22159/ajpcr.2018.v11i11.29042

Situmorang PC, Ilyas S, Hutahaean S, Rosidah R (2020) Components and acute toxicity of nanoherbal haramonting (Rhodomyrtus tomentosa). J Herbmed Pharmacol 10: 139-148. https://doi.org/10.34172/jhp.2021.15

Situmorang PC, Ilyas S, Hutahaean S, Rosidah R (2021) Histological changes in placental rat apoptosis via FasL and cytochrome c by the nano-herbal Zanthoxylum acanthopodium. Saudi J Bio Sci 28(5): 3060–3068. https://doi.org/10.1016/j.sjbs.2021.02.047

Situmorang PC, Syahputra RA, Simanullang RH (2022) EGFL7 and HIF-1a expression on human trophoblast placental by Rhodomyrtus tomentosa and Zanthoxylum acanthopodium. Pak J Biol Sci 25(2): 123-130. https://doi.org/10.3923/pjbs.2022.123.130

Strowitzki C, Taylor (2019) Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: Unique or ubiquitous? Cells 8(5): 384. https://doi.org/10.3390/cells8050384

Villanueva-Toledo JR, Chale-Dzul J, Castillo-Bautista C, Olivera-Castillo LA, Rangel-Méndez LA, Graniel-Sabido MJ, Moo-Puc RE (2020) Hepatoprotective effect of an ethanol extract of Tradescantia pallida against CCl4-induced liver damage in rats. S Afr J Bot 13: 444–450. https://doi.org/10.1016/j.sajb.2020.09.031

Vo T, Ngo D (2019) The health beneficial properties of Rhodomyrtus tomentosa as potential functional food. Biomolecules 9(2): 76. https://doi.org/10.3390/biom9020076

Wang HJ, Lu CK, Chen WC, Chen AC, Ueng YF (2019) Shenmai-Yin decreased the clearance of nifedipine in rats: The involvement of time-dependent inhibition of nifedipine oxidation. J Food Drug Anal 27(1): 284-294. https://doi.org/10.1016/j.jfda.2018.10.005

Zhang B, Kim MY, Elliot G, Zhou Y, Zhao G, Li D, Lowdon RF, Gormley M, Kapidzic M, Robinson JF, McMaster MT, Hong C, Mazor T, Hamilton E, Sears RL, Pehrsson EC, Marra MA, Jones SJM, Bilenky M, Hirst M, Wang T, Costello JF, Fisher SJ (2021) Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. Dev Cell 56(9): 1238–1252.e5. https://doi.org/10.1016/j.devcel.2021.04.001

Zhang YB, Li W, Jiang L, Yang L, Chen NH, Wu ZN, Li YL, Wang GC (2018) Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 153: 111–119. https://doi.org/10.1016/j.phytochem.2018.05.018.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Validation of questionnaires to measure educational needs about medications

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1058-1075, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1515_10.6.1058

Original Article

Design and validation of questionnaires to measure educational needs about medications in students, parents, and teachers in an elementary school

[Diseño y validación de cuestionarios para medir necesidades educativas sobre medicamentos en alumnos, padres y profesores en una escuela primaria]

Ana M. Téllez-López1, Brenda Y. Márquez Castro2, Isis Beatriz Bermudez-Camps2, Ivette Reyes Hernández2, Maricela López Orozco2, Leobardo Manuel Gómez-Oliván1*

1Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México.

2Área Académica de Farmacia. Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Circuito Ex Hacienda La Concepción S/N Carretera Pachuca-Actopan. CP 42160, San Agustín Tlaxiaca, Hidalgo. México.

*E-mail: lmgomezo@uaemex.mx

Abstract

Context: To achieve a health literacy program aimed at improving the use of medicines, it is necessary to have tools that identify educational needs through valid and reliable instruments.

Aims: To validate instruments designed to evaluate the correct use of medicines in an elementary school in the state of Hidalgo, Mexico, applying the Delphi method.

Methods: A descriptive, mixed study was carried out. Three questionnaires were designed based on a documentary analysis and the identification of influential variables expressed in dimensions and items, such as sociodemographic, pharmacotherapeutic, and clinical characteristics. The content validity was determined by applying the Delphi method, the mathematical model of Torgerson (MMT), and Aiken’s v coefficient, while the internal reliability was determined by Cronbach’s alpha value and the interobserver concordance by the Kappa index.

Results: Three questionnaires were designed with 33, 48, and 44 items addressed to students, parents, and teachers respectively. The content was valid meeting the MMT criteria and Aiken’s v values above 0.9. Reliability was moderate with Cronbach’s alpha values of 0.6 and inter-observer agreement was moderate with Kappa index values of 0.4. Reliability and concordance values are accepted when considering the literature review and rigorous expert input.

Conclusions: The designed questionnaires contain valid and reliable items that will allow obtaining the necessary information to build an education program of medication use in an elementary school considering the integration of students, parents, and teachers.

Keywords: health literacy; knowledge; medicines; questionnaires; rational use medicines; validation.

jppres_pdf_free

Resumen

Contexto: Para lograr un programa de alfabetización en salud dirigido a mejorar el uso de los medicamentos es necesario disponer de herramientas que identifiquen las necesidades educativas a través de instrumentos válidos y fiables.

Objetivos: Validar instrumentos diseñados para evaluar el uso correcto de los medicamentos en una escuela primaria del estado de Hidalgo, México, aplicando el método Delphi.

Métodos: Se realizó un estudio descriptivo, mixto. Se diseñaron tres cuestionarios a partir de un análisis documental y la identificación de variables de influencia expresadas en dimensiones e ítems, tales como características sociodemográficas, farmacoterapéuticas y clínicas. La validez de contenido se determinó aplicando el método Delphi, el modelo matemático de Tórgerson (MMT) y el coeficiente v de Aiken; en tanto que la confiabilidad interna a través del valor de alfa de Cronbach y la concordancia interobservadores por el índice Kappa.

Resultados: Se diseñaron tres cuestionarios con 33, 48 y 44 ítems dirigidos a alumnos, padres y profesores respectivamente. El contenido fue válido cumpliendo los criterios del MMT y valores de v de Aiken superiores a 0.9. La fiabilidad fue moderada con valores de alfa de Cronbach de 0.6 y la concordancia entre observadores moderada con valores de índice Kappa de 0.4. Se aceptan los valores de fiabilidad y concordancia al considerar la revisión bibliográfica y las aportaciones rigurosas de los expertos.

Conclusiones: Los cuestionarios diseñados contienen ítems válidos y fiables que permitirán obtener la información necesaria para construir un programa de educación del uso de medicamentos en una escuela primaria considerando la integración de alumnos, padres y profesores.

Palabras Clave: alfabetización en salud; conocimiento; cuestionarios; uso racional de medicamentos; validación.

jppres_pdf_free
Citation Format: Téllez AM, Márquez BY, Bermúdez IB, Reyes I, López M, Gómez LM (2022) Design and validation of questionnaires to measure educational needs about medications in students, parents, and teachers in an elementary school. J Pharm Pharmacogn Res 10(6): 1058–1075. https://doi.org/10.56499/jppres22.1515_10.6.1058
References

Aramburuzabala P (1995) Percepción y consumo de medicamentos en la infancia: estudio exploratorio previo a un programa de educación para la salud. PhD thesis, Universidad Complutense, Madrid.

Bazarganipour F, Ziaei S, Montazeri A, Faghihzadeh S, Frozanfard F (2012) Psychometric properties of the Iranian version of modified polycystic ovary syndrome health-related quality-of-life questionnaire. Hum Reprod 27(9): 2729–2736. https://doi.org/10.1093/humrep/des199

Benson J, Clark F (1982) A guide for instrument development and validation. Am J Occup Ther 36(12): 789–800. https://doi.org/10.5014/ajot.36.12.789

Burrows L (2017) Children as change agents for family health. Health Educ 117(5): 498–510. https://doi.org/10.1108/HE-10-2016-0044

Charry K, Parguel B (2019) Educating children to environmental behaviours with nudges: The effectiveness of social labelling and moderating role of age. Environ Educ Res 25(10): 1495-1509. https://doi.org/10.1080/13504622.2018.1551518

DeVellis R (2005) Inter-rater reliability. Encyclopedia of Social Measurement 2: 317-322. https://doi.org/10.1016/B0-12-369398-5/00095-5

Ekeh H, Adeniyi J (1985) Using teachers as change agents in the control of tropical diseases-an extra-curricular approach. Int Q Community Health Educ 6(4): 323–333. https://doi.org/10.2190/RY6Y-5ER3-FYU9-QH9F

Fleiss J, Levin B, Paik M (2003) Statistical methods for rates and proportions, 3er edition. New York: Wiley.

García-Delgado P, Gastelurrutia M, Baena M, Fisac F, Martínez F (2009) Validation of a questionnaire to assess patient knowledge of their medicines. Aten Primaria 41(12): 661-668. https://doi.org/10.1016/j.aprim.2009.03.011

 García-Ruiz E, Lena-Acebo F (2018) Aplicación del metodo delphi en el diseño de una investigación cuantitativa sobre el fenómeno FABLAB. Empiria (40): 129–166. https://doi.org/10.5944/empiria.40.2018.22014

Halim M, Vincent H, Saini B, Hämeen-Anttila K, Vainio K, Moles R (2009) Validating the children’s medicines use questionnaire (CMUQ) in Australia. Pharm World Sci 32(1): 81–89. https://doi.org/10.1007/s11096-009-9346-4

Hämeen-Anttila K, Bush P (2008) Healthy children’s perceptions of medicines: A review. Res Social Adm Pharm 4(2): 98–114. https://doi.org/10.1016/j.sapharm.2007.05.002

Huancahuire S, White M, Campos J, Castillo M, Carranza R, Rodriguez J, Mejia C (2021) Translation into Spanish and validation of feedback in medical education questionnaire (FEEDME-Culture) during clinical rotations. Educ Medica 22(3): 144–148. https://doi.org/10.1016/j.edumed.2020.09.013

Jaam M, Awaisu A, El-Awaisi A, Stewart, D, El Hajj M (2022). Use of the Delphi technique in pharmacy practice research. Res Social Adm Pharm 18(1): 2237–2248. https://doi.org/10.1016/j.sapharm.2021.06.028

Keszei A, Novak M, Streiner D (2010) Introduction to health measurement scales. J Psychosom Res 68(4): 319–323. https://doi.org/10.1016/j.jpsychores.2010.01.006

Kumar A, Rajendran A, Usman M, Ahuja J, Samad S, Mittal A, Garg P, Baitha U, Ranjan P, Wig N (2022) Development and validation of a questionnaire to evaluate the knowledge, attitude, and practices regarding travel medicine amongst physicians in an apex tertiary hospital in Northern India. Trop Dis Travel Med Vaccines 8(1): 13. https://doi.org/10.1186/s40794-022-00170-w

Kumari A, Ranjan P, Chopra S, Kaur D, Upadhyay A, Kaur T, Bhattacharyya A, Arora M, Gupta H, Thrinath A, Prakash B, Vikram (2021) Development and validation of a questionnaire to assess knowledge, attitude, practices, and concerns regarding COVID-19 vaccination among the general population. Diabetes Metab Syndr 15(3): 919–925. https://doi.org/10.1016/j.dsx.2021.04.004

Lorente LM (2013) Health education at school as social intervention. Int Social Sci 2(1): 45–60.

Makivić I, Klemenc-Ketiš Z (2022) Development and validation of the scale for measuring biopsychosocial approach of family physicians to their patients. Fam Med Community Health 10(2): e001407. https://doi.org/10.1136/fmch-2021-001407

Makki M, Hassali M, Awaisu A, Chemaitelly H (2021) Development, translation, and validation of a bilingual questionnaire on unused medications in homes. Saudi Pharm J 29(7): 648–655. https://doi.org/10.1016/j.jsps.2021.04.026

Mallah N, Rodríguez-Cano R, Figueiras A, Takkouche B (2020) Design, reliability and construct validity of a knowledge, attitude and practice questionnaire on personal use of antibiotics in Spain. Sci Rep 10(1): 20668. https://doi.org/10.1038/s41598-020-77769-6

Mamani E, Pelayo I, Guevara A, Sosa J, Carranza R, Huancahuire S (2022) Validation of a questionnaire that measures perceptions of the role of community nursing professionals in Peru. Aten Primaria 54(2): 102194. https://doi.org/10.1016/j.aprim.2021.102194

Mirković S, Janković S, Džudović J, Gužvić V (2017) Development and validation of the questionnaire for the evaluation of knowledge about herbal preparations (QEK-HP). Acta Fac Medicae Naissensis 34(2): 107–118. https://doi.org/10.1515/afmnai-2017-0012

Moriyama IM (1968) Problems in Measurement of Health Status. In: Sheldon EB, Moore WE, eds. Indicators of Social Change: Concepts and Measurements. Russell Sage.

Orive G, Domingo-Echaburu S, Lertxundi U (2021) Redefining the “rational use of medicines”. Sustain Chem Pharm 20: 100381. https://doi.org/10.1016/j.scp.2021.100381

Park D (2021) Development and validation of a knowledge, attitudes and practices questionnaire on COVID-19 (KAP COVID-19). Int J Environ Res Public Health 18(14): 7493. https://doi.org/10.3390/ijerph18147493

Poudel A, Nissen LM (2018) Rational and Responsible Medicines Use. In: Social and Administrative Aspects of Pharmacy in Low-and Middle-Income Countries: Present Challenges and Future Solutions. Elsevier Inc., pp. 263–277. https://doi.org/10.1016/B978-0-12-811228-1.00016-9

Ramzan S, Hansen E, Nørgaard L, Arevalo L, Jacobsen R (2014) Validation of the Danish translation of the medicine knowledge questionnaire among elementary school children. Res Social Adm Pharm 10(6): 918–922. https://doi.org/10.1016/j.sapharm.2014.02.004

Tavakol M, Dennick R (2011) Making sense of Cronbach’s alpha. Int J Med Educ 2: 53-55. https://doi.org/10.5116/ijme.4dfb.8dfd

WHO (2006) World Health Organization. Rational Use of Medicines: Progress in Implementing the WHO Medicines Strategy.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Epitope prediction of candoxin protein from Malayan krait

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1046-1057, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1469_10.6.1046

Original Article

Virtual prediction of potential immunogenic epitope of candoxin protein from Malayan krait (Bungarus candidus) venom

[Predicción virtual del epítopo inmunogénico potencial de la proteína candoxina del veneno de krait malayo (Bungarus candidus)]

Rahmat Grahadi1,2, Fatchiyah Fatchiyah1,2, Nia Kurniawan1*

1Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, 65145, Malang, Indonesia.

2Research Center of Smart Molecules of Natural Genetic Resources (SMONAGENES), Brawijaya University, Malang, Indonesia.

*E-mail: wawan@ub.ac.id

Abstract

Context: Malayan krait (Bungarus candidus) is a snake that is considered highly venomous snake and widely distributed across Southeast Asia. Envenomation by this snake is characterized by facial weakness, paralysis, respiratory muscle weakness, and in most cases, it renders the victim dead. Unfortunately, there is only one antivenom for neutralizing venom that is only available from the Thai Red Cross Society.

Aims: To predict the epitopes from candoxin protein of B. candidus venom that could be a candidate for vaccine-based antivenom.

Methods: :  In this study, IEDB and SYFPHEITHI databases were utilized to predict candoxin epitope sequences and determine their immunogenicity, conservancy, and population coverage. Next, the epitopes were modeled, and the binding interactions between epitopes and MHC-II were analyzed. The epitope that binds into the active site of human and murine MHC-II proceeded to the next step. Then, the allergenic properties of the chosen epitope were assessed to ensure its safety. Lastly, the physicochemical characteristics prediction and molecular dynamics simulation were conducted to verify the epitope’s stability when produced in vivo.

Results: The results showed that epitope 47-CFKESWREARGTRIE-61 has the best binding interaction when compared to others. This epitope was confirmed that did not show potential allergenic properties. The physicochemical properties and molecular dynamics simulation demonstrated that this epitope was stable.

Conclusions: The results of this study will be useful in developing a novel antivenom for Bungarus candidus using a vaccine-based method.

Keywords: animal toxin; antivenom; neurotoxin; vaccine.

jppres_pdf_free

Resumen

Contexto: La krait malaya (Bungarus candidus) es una serpiente que se considera altamente venenosa y está ampliamente distribuida en el sudeste asiático. El envenenamiento por esta serpiente se caracteriza por debilidad facial, parálisis, debilidad de los músculos respiratorios y, en la mayoría de los casos, provoca la muerte de la víctima. Desafortunadamente, solo hay un antiveneno para neutralizar el veneno que solo está disponible en la Sociedad de la Cruz Roja Tailandesa.

Objetivos: Predecir los epítopos de la proteína candoxina del veneno de B. candidus que podrían ser candidatos a antiveneno vacunal.

Métodos: En este estudio, se utilizaron las bases de datos IEDB y SYFPHEITHI para predecir las secuencias de epítopos de candoxina y determinar su inmunogenicidad, conservación y cobertura poblacional. A continuación, se modelaron los epítopos y se analizaron las interacciones de unión entre los epítopos y el MHC-II. El epítopo que se une al sitio activo del MHC-II humano y murino pasó al siguiente paso. Luego, se evaluaron las propiedades alergénicas del epítopo elegido para garantizar su seguridad. Por último, se realizó la predicción de las características fisicoquímicas y la simulación de la dinámica molecular para verificar la estabilidad del epítopo cuando se produce in vivo.

Resultados: Los resultados mostraron que el epítopo 47-CFKESWREARGTRIE-61 tiene la mejor interacción de unión en comparación con otros. Se confirmó que este epítopo no presentaba propiedades alergénicas potenciales. La simulación de propiedades fisicoquímicas y dinámica molecular demostró que este epítopo era estable.

Conclusiones: Los resultados de este estudio serán útiles para desarrollar un nuevo antiveneno para Bungarus candidus utilizando un método basado en vacunas.

Palabras Clave: antiveneno; neurotoxina; toxina animal; vacuna.

jppres_pdf_free
Citation Format: Grahadi R, Fatchiyah F, Kurniawan N (2022) Virtual prediction of potential immunogenic epitope of candoxin protein from Malayan krait (Bungarus candidus) venom. J Pharm Pharmacogn Res 10(6): 1046–1057. https://doi.org/10.56499/jppres22.1469_10.6.1046
References

Adiwinata R, Nelwan EJ (2015) Snakebite in Indonesia. Acta Med Indones 47(4): 358–365.

Ahmad RMR, Yee TT, Mustafa MR, Othman I, Hodgson WC (2014) In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: Neutralization by monovalent and polyvalent antivenoms from Thailand. Toxins 6(3): 1036–1048. https://doi.org/10.3390/toxins6031036

Ahmad S, Shahid F, Tahir UlQM, Ur RH, Abbasi SW, Sajjad W, Ismail S, Alrumaihi F, Allemailem KS, Almatroudi A, Saeed HFU (2021) Immuno-informatics analysis of Pakistan-based HCV subtype-3a for chimeric polypeptide vaccine design. Vaccines 9(3): 293. https://doi.org/10.3390/vaccines9030293

Ashraf KUM, Barua P, Saha A, Mahammad N, Ferdoush J, Das D, Hussain MH, Alam MJ (2014) An immunoinformatics approach toward epitope-based vaccine design through computational tools from Bungarus caeruleus’s neurotoxin. J Young Pharm 6(2): 35–43. https://doi.org/10.5530/jyp.2014.2.6

BIOVIA DS (2019) Discovery Studio 2019 (No. 2019). Dassault Systèmes.

Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7: 153. https://doi.org/10.1186/1471-2105-7-153

Bui HH, Sidney J, Li W, Fusseder N, Sette A (2007) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics 8: 361. https://doi.org/10.1186/1471-2105-8-361

Calmette A (1894) Contribution à l’étude du venin des serpents. Immunisation des animaux et traitement de l’envenimation. Ann Inst Pasteur 8: 275–291.

Calmette A (1896) The treatment of animals poisoned with snake venom by the injection of antivenomous serum. Br Med J 2(1859): 399–400. https://doi.org/10.1136/bmj.2.1859.399

Cao YL, Guo GN, Zhu GY, Tian Z, Gou YJ, Chen C, Liu M H (2016) Bioinformatics-based design of novel antigenic B-cell linear epitopes of Deinagkistrodon acutus venom. Eur Rev Med Pharmacol Sci 20(4): 781–787.

Castro KL, Duarte CG, Ramos HR, Machado De Avila RA, Schneider FS, Oliveira D, Freitas CF, Kalapothakis E, Ho PL, Chávez-Olortegui C (2015) Identification and characterization of B-cell epitopes of 3FTx and PLA2 toxins from Micrurus corallinus snake venom. Toxicon 93: 51–60. https://doi.org/10.1016/j.toxicon.2014.10.015

Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC (2016) Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv 2(3): e1501240. https://doi.org/10.1126/sciadv.1501240

Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263: 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

De Silva HA, Ryan NM, De Silva HJ (2016) Adverse reactions to snake antivenom, and their prevention and treatment. Br J Clin Pharmacol 81(3): 446–452. https://doi.org/10.1111/bcp.12739

Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, Weiskopf D, Sidney J, Nielsen M, Peters B, Sette A (2018) Predicting HLA CD4 immunogenicity in human populations. Front Immunol 9: 1369. https://doi.org/10.3389/fimmu.2018.01369

Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C (2021) Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res 49(W1): W216–W227. https://doi.org/10.1093/nar/gkab225

Fremont DH, Monnaie D, Nelson CA, Hendrickson WA, Unanue ER (1998) Crystal structure of I-A(k) in complex with a dominant epitope of lysozyme. Immunity 8(3): 305–317. https://doi.org/10.1016/s1074-7613(00)80536-1

Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A (2011) Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 63(6): 325–335. https://doi.org/10.1007/s00251-011-0513-0

Gutiérrez JM (2019) Global availability of antivenoms: The relevance of public manufacturing laboratories. Toxins 11(1): 5. https://doi.org/10.3390/toxins11010005

Jespersen MC, Peter B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1): W24–W29. https://doi.org/10.1093/nar/gkx346

Jiang W, Birtley JR, Hung SC, Wang W, Chiou SH, Macaubas C, Kornum B, Tian L, Huang H, Adler L, Weaver G, Lu L, Ilstad-Minnihan A, Somasundaram S, Ayyangar S, Davis MM, Stern LJ, Mellins ED (2019) In vivo clonal expansion and phenotypes of hypocretin-specific CD4+ T cells in narcolepsy patients and controls. Nat Comm 10(1): 5247. https://doi.org/10.1038/s41467-019-13234-x

Jinam TA, Saitou N, Edo J, Mahmood A, Phipps ME (2010) Molecular analysis of HLA Class I and Class II genes in four indigenous Malaysian populations. Tissue Antigens 75(2): 151–158. https://doi.org/10.1111/j.1399-0039.2009.01417.x

Khow O, Chanhome L, Omori-Satoh T, Ogawa Y, Yanoshita R, Samejima Y, Kuch U, Mebs D, Sitprija V (2003) Isolation, toxicity and amino terminal sequences of three major neurotoxins in the venom of Malayan krait (Bungarus candidus) from Thailand. J Biochem 134(6): 799–804. https://doi.org/10.1093/jb/mvg187

Ko JH, Chung WH (2013) Serum sickness. The Lancet 381(9862): e1. https://doi.org/10.1016/S0140-6736(11)60314-0

Krieger E, Vriend G (2014) YASARA View – molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30(20): 2981–2982. https://doi.org/10.1093/bioinformatics/btu426

Kurniawan N, Kurniasari CA, Fatchiyah (2020) In silico prediction of Malayan krait (Bungarus candidus) PLA2 epitope. Syst Rev Pharm 11(10): 537–547.

Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P (2016) PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1): W449–W454. https://doi.org/10.1093/nar/gkw329

Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK (2014) Peptide vaccine: Progress and challenges. Vaccines 2(3): 515–536. https://doi.org/10.3390/vaccines2030515

Machado De Avila RA, Stransky S, Velloso M, Castanheira P, Schneider FS, Kalapothakis E, Sanchez EF, Nguyen C, Molina F, Granier C, Chávez-Olórtegui C (2011) Mimotopes of mutalysin-II from Lachesis muta snake venom induce hemorrhage inhibitory antibodies upon vaccination of rabbits. Peptides 32(8): 1640–1646. https://doi.org/10.1016/j.peptides.2011.06.028

Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MCE, Khoo HE, Cheah LS, Bertrand D, Manjunatha KR (2002) Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (αβγδ) but a poorly reversible antagonist of neuronal α7 nicotinic acetylcholine receptors. J Biol Chem 277(20): 17811–17820. https://doi.org/10.1074/jbc.M111152200

Ortega-Tirado D, Niño-Padilla EI, Arvizu-Flores AA, Velazquez C, Espitia C, Serrano CJ, Enciso-Moreno JA, Sumoza-Toledo A, Garibay-Escobar A (2020) Identification of immunogenic T-cell peptides of Mycobacterium tuberculosis PE_PGRS33 protein. Mol Immunol 125: 123–130. https://doi.org/10.1016/j.molimm.2020.06.026

Pradana KA, Widjaya MA, Wahjudi M (2020) Indonesians human leukocyte antigen (HLA) distributions and correlations with global diseases. Immunol Invest 49(3): 333–363. https://doi.org/10.1080/08820139.2019.1673771

Ramos HR, Ho PL (2015) Developing Snake Antivenom Sera by Genetic Immunization: A Review. In: Gopalakrishnakone P, Faiz A, Fernando R, Gnanathasan C, Habib A, Yang CC (eds). Clinical Toxinology in Asia Pacific and Africa. Toxinology, vol 2. Dordrecht: Springer, pp. 401–414. https://doi.org/10.1007/978-94-007-6386-9_36  

Rusdi M, Rusmili A, Othman I, Asnawi S, Abidin Z, Yusof A, Ratanabanangkoon K, Chanhome L, Hodgson WC, Id JC (2019) Variations in neurotoxicity and proteome profile of Malayan krait (Bungarus candidus) venoms. PLoS One 14(12): e0227122. https://doi.org/10.1371/journal.pone.0227122

Rusmili MRA, Yee TT, Mustafa MR, Hodgson WC, Othman I (2014) Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms. J Proteomics 110: 129–144. https://doi.org/10.1016/j.jprot.2014.08.001

Saha S, Raghava GPS (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34(Web Server issue): W202–W209. https://doi.org/10.1093/nar/gkl343

Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA (2017) Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res 2017: 2680160. https://doi.org/10.1155/2017/2680160

Satapornpong P, Jinda P, Jantararoungtong T, Koomdee N, Chaichan C, Pratoomwun J, Na Nakorn C, Aekplakorn W, Wilantho A, Ngamphiw C, Tongsima S, Sukasem C (2020) Genetic diversity of HLA class I and class II alleles in Thai populations: Contribution to genotype-guided therapeutics. Front Pharmacol 11: 78. https://doi.org/10.3389/fphar.2020.00078

Schrodinger (2022) PyMOL. pymol.org. https://pymol.org/2/

Schuler MM, Nastke MD, Stevanovikć S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409: 75–93. https://doi.org/10.1007/978-1-60327-118-9_5

Sethu S, Govindappa K, Alhaidari M, Pirmohamed M, Park K, Sathish J (2012) Immunogenicity to biologics: Mechanisms, prediction and reduction. Arch Immunol Ther Exp 60(5): 331–344. https://doi.org/10.1007/s00005-012-0189-7

Shah P, Mistry J, Reche PA, Gatherer D, Flower DR (2018) In silico design of Mycobacterium tuberculosis epitope ensemble vaccines. Mol Immunol 97: 56–62. https://doi.org/10.1016/j.molimm.2018.03.007

Uetz P, Hallermann J, Hosek J (2022) Bungarus candidus (LINNAEUS, 1758). The Reptile Database. https://reptile-database.reptarium.cz/species?genus=Bungarus&species=candidus [Consulted 2 April 2022].

Wagstaff SC, Laing GD, Theakston RDG, Papaspyridis C, Harrison R A (2006) Bioinformatics and multiepitope DNA immunization to design rational snake antivenom. PLoS Med 3(6): e184. https://doi.org/10.1371/journal.pmed.0030184

Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4): e1000048. https://doi.org/10.1371/journal.pcbi.1000048

Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11: 568. https://doi.org/10.1186/1471-2105-11-568

Warrell DA (2010) WHO/SEARO Guidelines for the clinical management of snake bites in the Southeast Asian region. Southeast Asian J Trop Med Public Health 30(suppl. 1): 1–85.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1): W296–W303. https://doi.org/10.1093/nar/gky427

Wibowo S, Widyarti S, Sabarudin A, Soeatmadji DW, Sumitro SB (2021) DFT and molecular dynamics studies of astaxanthin-metal ions (Cu2+ and Zn2+) complex to prevent glycated human serum albumin from possible unfolding. Heliyon 7(3): e06548. https://doi.org/10.1016/j.heliyon.2021.e06548.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

TNF-alpha and NF-kB expressions during OTM post-administration of CAPE

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1037-1045, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1479_10.6.1037

Original Article

Anti-inflammatory effect of caffeic acid phenethyl ester supplementation on TNF-α and NF-κB expressions throughout experimental tooth movement in vivo

[Efecto antiinflamatorio de la suplementación con éster fenetílico de ácido cafeico en las expresiones de TNF-α y NF-κB a través del movimiento dental experimental in vivo]

Kirana Salikha1, Ida Bagus Narmada1*, Alida1, Alexander Patera Nugraha1,2, Annisa Fitria Sari2, Wibi Riawan3, Tengku Natasha Eleena Binti Tengku Ahmad Noor4

1Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

2Graduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.

4Membership of Faculty of Dental Surgery, Royal College of Surgeon, Edinburgh University, United Kingdom.

*E-mail: ida-b-n@fkg.unair.ac.id

Abstract

Context: Orthodontic tooth movement (OTM) changes the periodontal tissue and increases the incidence of root resorption (OIRR). Caffeic acid phenethyl ester (CAPE), an antioxidant and anti-inflammatory chemical generated from honey propolis, might be useful in controlling inflammation during OTM and so reducing the risk of OIRR.

Aims: To evaluate if CAPE supplementation has an anti-inflammatory impact on tumor necrosis factor-α (TNF-α) and nuclear transcription factor κB (NF-κB) during experimental OTM in male Wistar rats (Rattus novergicus).

Methods: Forty-eight healthy male Wistar rats were divided into positive control group (OTM 10 g/mm2 force application) and experimental group (OTM application and CAPE administration). Each groups were observed for 3, 7, 14 days. A nickel-titanium closed coil spring that was 8.0 mm long, thick was inserted between the upper left first molar and upper central incisor in order to move the molar mesially. A 20 mg/kg body weight dose of CAPE was taken orally. Using immunohistochemistry, the expression of TNF-α and NF-κB was examined on the compression side of the OTM. Both the Tukey’s honest significant difference test and the one-way analysis of variance test were applied (p<0.05).

Results: TNF-α and NF-κB expression in the compression side differed considerably across groups (p<0.05). Daily administration of CAPE significantly downregulates TNF-α and NF-κB expression on the compression side.

Conclusions: Administration of CAPE throughout OTM can successfully reduce the number of TNF-α and NF-κB expressions in the compression side in vivo.

Keywords: caffeic acid phenethyl ester; experimental tooth movement; medicine; nuclear transcription factor-κB; tumor necrosis factor-α.

jppres_pdf_free

Resumen

Contexto: El movimiento dental ortodóncico (OTM) cambia el tejido periodontal y aumenta la incidencia de reabsorción radicular (OIRR). El éster fenetílico del ácido cafeico (CAPE), un químico antioxidante y antiinflamatorio generado a partir del propóleo de la miel, podría ser útil para controlar la inflamación durante la OTM y así reducir el riesgo de OIRR.

Objetivos: Evaluar si la suplementación con CAPE tiene un impacto antiinflamatorio sobre el factor de necrosis tumoral-α (TNF-α) y el factor de transcripción nuclear κB (NF-κB) durante OTM experimental en ratas Wistar macho (Rattus novergicus).

Métodos: Cuarenta y ocho ratas Wistar macho sanas se dividieron en un grupo de control positivo (aplicación de fuerza de 10 g/mm2 de OTM) y un grupo experimental (aplicación de OTM y administración de CAPE). Cada grupo se observó durante 3, 7, 14 días. Se insertó un resorte helicoidal cerrado de níquel-titanio de 8,0 mm de largo y espesor entre el primer molar superior izquierdo y el incisivo central superior para mover el molar mesialmente. Se tomó por vía oral una dosis de 20 mg/kg de peso corporal de CAPE. Usando inmunohistoquímica, se examinó la expresión de TNF-α y NF-κB en el lado de compresión del OTM. Se aplicaron tanto la prueba de diferencia significativa honesta de Tukey como la prueba de análisis de varianza de una vía (p<0,05).

Resultados: La expresión de TNF-α y NF-κB en el lado de compresión difirió considerablemente entre los grupos (p<0,05). La administración diaria de CAPE reguló significativamente a la baja la expresión de TNF-α y NF-κB en el lado de la compresión.

Conclusiones: La administración de CAPE a través de OTM puede reducir con éxito las expresiones de TNF-α y NF-κB en el lado de compresión in vivo.

Palabras Clave: éster fenetílico del ácido cafeico; factor de necrosis tumoral-α; factor de transcripción nuclear-κB; medicamento; movimiento dental experimental.

jppres_pdf_free
Citation Format: Salikha K, Narmada IB, Alida, Nugraha AP, Sari AF, Riawan W, Noor TNEBTA (2022) Anti-inflammatory effect of caffeic acid phenethyl ester supplementation on TNF-α and NF-κB expressions throughout experimental tooth movement in vivo. J Pharm Pharmacogn Res 10(6): 1037–1045. https://doi.org/10.56499/jppres22.1479_10.6.1037
References

Al-Hariri M, Alsunni A, Shaikh MH (2021) Caffeic acid phenethyl ester reduces pro inflammatory cytokines in moderate swimming test in growing rats model. J Inflamm Res 14: 5653–5657. https://doi.org/10.2147/JIR.S338973

Armutcu F, Akyol S, Ustunsoy S, Turan FF (2015) Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp Ther Med 9(5): 1582–1588. https://doi.org/10.3892/etm.2015.2346

Arqub SA, Gandhi V, Iverson MG (2021) The effect of the local administration of biological substances on the rate of orthodontic tooth movement: a systematic review of human studies. Prog Orthod 22(1): 5. https://doi.org/10.1186/s40510-021-00349-5

Günay A, Arpağ OF, Atilgan S, Yaman F, Atalay Y, Acikan İz (2014) Effects of caffeic acid phenethyl ester on palatal mucosal defects and tooth extraction sockets. Drug Des Devel Ther 8: 2069–2074. https://doi.org/10.2147/DDDT.S67623

Hermawan RW, Narmada IB, Djaharu’ddin I, Nugraha AP, Rahmawati D (2020) The influence of epigallocatechin gallate on the nuclear factor associated T cell-1 and sclerostin expression in Wistar rats (Rattus novergicus) during the orthodontic tooth movement. Res J Pharm Tech 13(4): 1730–1734. https://doi.org/10.5958/0974-360X.2020.00312.1

Hisham PBBM, Narmada IB, Alida A, Rahmawati D, Nugraha AP, Putranti NA (2019) Effects of vitamin D in alveolar bone remodeling on osteoblast numbers and bone alkaline phosphatase expression in pregnant rats during orthodontic tooth movement. J Orofac Sci 11: 79–83. https://doi.org/10.4103/jofs.jofs_10_19

Inayati F, Narmada IB, Ardani IGAW, Nugraha AP, Rahmawati D (2020) Post oral administration of epigallocatechin gallate from Camelia sinensis extract enhances vascular endothelial growth factor and fibroblast growth factor expression during orthodontic tooth movement in Wistar rats. J Krishna Inst Medical Sci Univ 9(1): 58–65.

Kızıldağ A, Arabacı T, Albayrak M (2019) Therapeutic effects of caffeic acid phenethyl ester on alveolar bone loss in rats with endotoxin-induced periodontitis. J Dent Sci 14(4): 339–345. https://doi.org/10.1016/j.jds.2019.03.011

Kojima T, Yamaguchi M, Yoshino T (2013) TNF-a and RANKL facilitates the development of orthodontically-induced inflammatory root resorption. Open J Stomatol 3(9): 52–58. http://dx.doi.org/10.4236/ojst.2013.39A008

Kook SH, Jang YS, Lee JC (2011) Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells. J Cell Biochem 112(10): 2891–2901. https://doi.org/10.1002/jcb.23205

Krishnan V, Davidovitch Z (2021) Biology of Orthodontic Tooth Movement. The Evolution of Hypotheses and Concepts.In: Biological Mechanisms of Tooth Movement. Third ed. USA: Springer, pp. 3-6. https://doi.org/10.1002/9781119608912.ch2

Li Y, Jacox LA, Little SH, Ko CC (2018) Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 34(4): 207–214. https://doi.org/10.1016/j.kjms.2018.01.007

Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2: 17023. https://doi.org/10.1038/sigtrans.2017.23

Murtaza G, Karim S, Akram MR, Khan SA, Azhar S, Mumtaz A, Bin Asad MH (2014) Caffeic acid phenethyl ester and therapeutic potentials. Biomed Res Int 2014: 145342. https://doi.org/10.1155/2014/145342

Nareswari RAAR, Narmada IB, Djaharu’ddin I, Rahmawati D, Putranti NAR, Nugraha AP (2019) Effect of vitamin D administration on vascular endothelial growth factor expression and angiogenesis number in orthodontic tooth movement of pregnant Wistar rats. J Postgrad Med Inst 33(3): 182-188.

Narmada IB, Husodo KRD, Ardani IGAW, Rahmawati D, Nugraha AP, Iskandar RPD (2019) Effect of vitamin D during orthodontic tooth movement on receptor activator of nuclear factor kappa-B ligand expression and osteoclast number in pregnant Wistar rat (Rattus novergicus). J Krishna Inst Medical Sci Univ 8(1): 38–42.

Narmada IB, Putri PD, Lucynda L, Triwardhani A, Ardani IGAW, Nugraha AP (2021) Effect of caffeic acid phenethyl ester provision on fibroblast growth factor-2, matrix metalloproteinase-9 expression, osteoclast and osteoblast numbers during experimental tooth movement in Wistar rats (Rattus norvegicus). Eur J Dent 15(2): 295-301. https://doi.org/10.1055/s-0040-1718640

Natarajan K, Singh S, Burke TR, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κB. Proc Natl Acad Sci U S A 93(17): 9090–9095. https://doi.org/10.1073/pnas.93.17.9090

Nugraha AP, Narmada IB, Sitasari PI (2020) High mobility group box 1 and heat shock protein-70 expression post (-)-epigallocatechin-3-gallate in east Java green tea methanolic extract administration during orthodontic tooth movement in Wistar rats. Pesqui Bras Odontopediatria Clin Integr 20: e5347. https://doi.org/10.1590/pboci.2020.040

Park, JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim K.A, Chung SJ, Paik SY, Oh HY (2004) Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol 4(3): 429–436. https://doi.org/10.1016/j.intimp.2004.01.013

Pramusita A, Nugraha AP, Yuliyanasari N, Ardani IGAW, Triwardhani A (2020) The potential capability of melatonin to anticipate postorthodontic treatment relapse: A literature review. Biochem Cell Arch 20(Suppl. 1): 3061–3066. https://doi.org/10.35124/bca.2020.20.S1.3061

Rahmawati D, Nugraha AP, Ardani IGAW, Triwardhani A, Narmada IB (2020) Role of hematopoetic stem cell in inflammatory response during orthodontic tooth movement: A narrative review. Biochem Cell Arch 20 (Suppl. 1): 2879–2882. https://doi.org/10.35124/bca.2020.20.S1.2879

Savi FM, Brierly GI, Baldwin J, Theodoropoulos C, Woodruff MA (2017) Comparison of different decalcification methods using rat mandibles as a model. J Histochem Cytochem 65(12): 705–722. https://doi.org/10.1369/0022155417733708

Sitasari PI, Narmada IB, Hamid T, Triwardhani A, Nugraha AP, Rahmawati D (2020) East Java green tea methanolic extract can enhance RUNX2 and osterix expression during orthodontic tooth movement in vivo. J Pharm Pharmacogn Res 8(4): 290–298.

Tosun S, Karataslioglu E (2020) Does caffeic acid phenethyl ester as an irrigation solution increase the adhesive quality of root canal sealer? J Adv Oral Res 11(1): 65–70. https://doi.org/10.1177/2320206820911766

Toyoda T, Tsukamoto T, Takasu S (2009) Anti-inflammatory effects of caffeic acid phenethyl ester (CAPE), a nuclear factor-kappaB inhibitor, on Helicobacter pylori-induced gastritis in Mongolian gerbils. Int J Cancer 125(8):1786–1795. https://doi.org/10.1002/ijc.24586

Triwardhani A, Anggitia C, Ardani IGAW, Nugraha AP, Riawan W (2021b) The increased basic fibroblast growth factor expression and osteoblasts number post Bifidobacterium bifidum probiotic supplementation during orthodontic tooth movement in Wistar rats. J Pharm Pharmacogn Res 9(4): 446–453. https://doi.org/10.56499/jppres21.1010_9.4.446

Triwardhani A, Oktaviona I, Narmada IB, Nugraha AP, Riawan W (2021a) The Effect of Bifidobacterium probiotic on heat shock protein-70 expression and osteoclast number during orthodontic tooth movement in rats (Rattus novergicus). Res J Pharm Tech 14(3): 1477–1481. https://doi.org/10.5958/0974-360X.2021.00262.6

Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: Routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5): 600–613.

Vagish KLS (2014) Propolis in dentistry and oral cancer management. N Am J Med Sci 6(6): 250–259. https://doi.org/10.4103/1947-2714.134369

Von Böhl M, Kuijpers-Jagtman AM (2009) Hyalinization during orthodontic tooth movement: A systematic review on tissue reactions. Eur J Ortho 31(1): 30–36. https://doi.org/10.1093/ejo/cjn080

Yamaguchi M, Fukasawa S (2021) Is inflammation a friend or foe for orthodontic treatment?: Inflammation in orthodontically induced inflammatory root resorption and accelerating tooth movement. Int J Mol Sci 22(5): 2388. https://doi.org/10.3390/ijms22052388

Zhang M, Zhou J, Wang L (2014) Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-α), IL-6 and IL-1β levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. Biol Pharm Bull 37(3): 347–354. https://doi.org/10.1248/bpb.b13-00459

Zuo J, Archer LA, Cooper A, Johnson KL, Holliday LS, Dolce C (2007) Nuclear factor kappaB p65 phosphorylation in orthodontic tooth movement. J Dent Res 86(6): 556–559. https://doi.org/10.1177/154405910708600613

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Antioxidant and antimicrobial activity of Senecio nutans

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1026-1025, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1471_10.6.1026

Original Article

In vitro antioxidant properties and antimicrobial activity of the ethanolic extract of Senecio nutans Sch. Beep. (Asteraceae)

[Propiedades antioxidantes in vitro y actividad antimicrobiana del extracto etanólico de Senecio nutans Sch. Beep. (Asteraceae)]

Felipe Surco-Laos1, Jorge A. Garcia1, María R. Bendezú1, Doris Laos-Anchante1, Juan F. Panay-Centeno1, Manuel Valle-Campos1, Juan J. Palomino-Jhong1, Paulina Eliades Yarasca-Carlos2, Berta Loja3, Angel T. Alvarado4*

1Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, 11004, Ica, Peru.

2Biological Sciences Faculty, San Luis Gonzaga National University of Ica, 11004, Ica, Peru.

3Environmental Engineering, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

4International Research Network of Pharmacology and Precision Medicine (REDIFMEP), San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

*E-mail: angel.alvarado@usil.pe

Abstract

Context: Senecio nutans Sch. Beep. is used by the Andean population of Ayacucho-Peru as traditional medicine for various health problems.

Aims: To evaluate the antioxidant and antimicrobial activity of the ethanolic extract of leaves of S. nutans against the enteropathogen Escherichia coli and the filamentous fungus Aspergillus niger.

Methods: The antioxidant capacity of the ethanolic extract was evaluated by ABTS, DPPH, and FRAP assays; the antimicrobial activity was evaluated by the agar diffusion method, and determining the minimum inhibitory concentration (MIC), minimum bactericidal (MBC), and fungicidal concentration (MFC).

Results: Polyphenols, terpenes, and tannins were identified; the total polyphenolic content was 67.91 ± 0.29 mg GAE/g. The ethanolic extract at 20 mg/mL showed moderate antibacterial activity (79.14 ± 0.02% inhibition, MIC and MBC >400 μg/mL on E. coli), and antifungal (88.90 ± 0.17% inhibition, MIC and MCF >400 μg/mL on A. niger); radical scavenging capacity (ABTS 10.31 ± 0.09 mM TE/g; DPPH 8.28 ± 0.07 IC50 µg/mL) and iron reducing power (FRAP 17.72 ± 0.11 mM TE/g). S. nutans turned out to be a potential antimicrobial and antioxidant species associated with the presence of its bioactive components, for which further investigation is warranted.

Conclusions: The ethanolic extract of leaves S. nutans showed moderate activity against pathogenic bacteria (E. coli) and filamentous fungus (A. niger), as well as antioxidant activity in three in vitro methods.

Keywords: antimicrobial activity; chachacoma; in vitro antioxidant activity; phenolic compounds; Senecio nutans.

jppres_pdf_free

Resumen

Contexto: Senecio nutans Sch. Beep. es utilizada por la población andina de Ayacucho-Perú como medicina tradicional en diversos problemas de salud.

Objetivos: Evaluar la actividad antioxidante y antimicrobiana del extracto etanólico de hojas de S. nutans frente al enteropatógeno Escherichia coli y el hongo filamentoso Aspergillus niger.

Métodos: La capacidad antioxidante del extracto etanólico fue evaluada mediante los ensayos de ABTS, DPPH y FRAP; la actividad antimicrobiana se evaluó mediante el método de difusión en agar, y determinando la concentración inhibitoria mínima (MIC), concentración bactericida (MBC) y fungicida mínimo (MCF).

Resultados: Se identificó polifenoles, terpenos y taninos; el contenido polifenólico total fue de 67,91 ± 0,29 mg GAE/g. El extracto etanólico a 20 mg/mL mostró actividad antibacteriana moderada (79,14 ± 0,02% de inhibición, MIC y MBC >400 μg/mL sobre E. coli), y antifúngica (88,90 ± 0,17 % de inhibición, MIC y MCF >400 μg/mL sobre A. niger); capacidad secuestradora de radicales (ABTS 10,31 ± 0,09 mM TE/g; DPPH 8,28 ± 0,07 IC50 µg/mL) y poder reductor del hierro (FRAP 17,72 ± 0,11 mM TE/g). S. nutans resultó ser una especie potencial como antimicrobiana y antioxidante, asociado a la presencia de sus componentes bioactivos, por lo que amerita mayor investigación.

Conclusiones: El extracto etanólico de las hojas de S. nutans mostró actividad moderada frente a la bacteria patógena (E. coli) y hongo filamentoso (A. niger), a la vez actividad antioxidante en tres métodos in vitro.

Palabras Clave: actividad antimicrobiana; actividad antioxidante in vitro; chachacoma; compuestos fenólicos; Senecio nutans.

jppres_pdf_free
Citation Format: Surco F, García JA, Bendezú MR, Laos D, Panay JF, Valle M, Palomino JJ, Yarasca PE, Loja B, Alvarado AT (2022) In vitro antioxidant properties and antimicrobial activity of the ethanolic extract of Senecio nutans Sch. Beep. (Asteraceae). J Pharm Pharmacogn Res 10(6): 1026–1036. https://doi.org/10.56499/jppres22.1471_10.6.1026
References

Abbas M, Ali A, Arshad M, Atta A, Mehmood Z, Tahir IM, Iqbal M (2018) Mutagenicity, cytotoxic and antioxidant activities of Ricinus communis different parts. Chem Cent J 12(1): 3. https://doi.org/10.1186/s13065-018-0370-0

Al-Mansoub MA, Asif M, Revadigar V, Hammad MA, Chear NJ-Y, Hamdan MR, Abdul Majid A, Asmawi M, Murugaiyah V (2021) Chemical composition, antiproliferative and antioxidant attributes of ethanolic extract of resinous sediment from Etlingera elatior (Jack.) inflorescence. Braz J Pharm Sci 57: e18954. https://doi.org/10.1590/s2175-97902020000418954

Alvarado AT, Navarro C, Pineda M, Villanueva L, Muñoz AM, Bendezú MR, Chávez H, García JA (2022) Activity of Lepidium meyenii Walp (purple maca) in immunosuppressed Oryctolagus cuniculus (albino rabbits). Pharmacia 69(2): 501–507. https://doi.org/10.3897/pharmacia.69.e80033

Badaracco P, Sortino M, Pioli RN (2020) Estudio de compuestos vegetales con potencial acción antifúngica sobre patógenos de plantas cultivadas. Chil J Agric Anim Sci 36(3): 244–252. https://doi.org/10.1186/s13065-018-0370-0

Basaid K, Mayad EH, Bouharroud R, Furze JN, Benjlil H, Lopes de Oliveira A, Chebli B (2020) Biopesticidal value of Senecio glaucus subsp. coronopifolius essential oil against pathogenic fungi, nematodes, and mites. Mater Today: Proc 27(4): 3082–3090. https://doi.org/10.1016/j.matpr.2020.03.588

Benites J, Bravo F, Rojas M, Fuentes R, Moiteiro C, Venancio F (2011) Composition and antimicrobial screening of the essential oil from the leaves and stems of Senecio atacamensis Phil. from Chile. J Chil Chem Soc 56(2): 712–714. https://doi.org/10.4067/S0717-97072011000200020

Carbonel K, Suárez S, Arnao A (2016) Características fisicoquímicas y capacidad antioxidante in vitro del extracto de Gentianella nitida. An Fac med 77(4): 333–337. https://doi.org/10.15381/anales.v77i4.12648

Casian FC, Souza AM, Zuchetto M, Hirota BCK, Duarte AFS, Kulik JD, Miguel MD, Miguel OG (2015) Análise fitoquímica, potencial antioxidante e toxicidade do extrato bruto etanólico e das frações da espécie Senecio westermanii Dusén frente à Artemia salina. Rev Bras Plant Med, Campinas 17(4): 1031–1040. https://doi.org/10.1590/1983-084X/14_137

Centurión-Hidalgo D, Espinosa-Moreno J, Mayo-Mosqueda A, Frías-Jiménez A, Velázquez-Martínez JR (2013) Evaluación de la actividad antibacteriana de los extractos hexánicos de las inflorescencias de palmas comestibles de la Sierra de Tabasco, México. Polibotánica 35: 133–142.

CNEPCE-Centro Nacional de Epidemiologia, Prevención y Control de Enfermedades (2022) Número de casos de EDA según grupos de edad, Perú 2017 a 2022. MINSA. https://www.dge.gob.pe/portal/docs/vigilancia/sala/2022/SE16/edas.pdf [Consulted 20 June, 2022].

CLSI-Clinical and Laboratory Standards Institute (2018) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th Edition. document M07. Wayne, PA: National Committee for Clinical Laboratory Standard. https://clsi.org/media/1928/m07ed11_sample.pdf [Consulted 25 September, 2022].

Chávez H, Palomino F, Angelino J, Torres E, Bendezú MR, García JA, Loja B, Muñoz AM, Alvarado AT (2021) In vivo bronchodilator evaluation of the ethanolic extract of the stems of Jatropha macrantha Müll.Arg. J Pharm Pharmacogn Res 9(6): 937–946. https://doi.org/10.56499/jppres21.1109_9.6.937

De Feo V, Urrunaga Soria E, Urrunaga Soria R, Senatore F (2003) Chemical composition of essential oils of Senecio nutans Sch.-Bip. (Asteraceae). Flavour Fragr J 18(3): 234–236. https://doi.org/10.1002/ffj.1204

De Zoysa MHN, Rathnayake H, Hewawasam RP, Wijayaratne WMD (2019) Determination of in vitro antimicrobial activity of five Sri Lankan medicinal plants against selected human pathogenic bacteria. Int J Microbiol 2019: 7431439. https://doi.org/10.1155/2019/7431439

Galvez CE, Jimenez CM, Gomez ALA, Lizarraga EF, Sampietro DA (2020) Chemical composition and antifungal activity of essential oils from Senecio nutans, Senecio viridis, Tagetes terniflora and Aloysia gratissima against toxigenic Aspergillus and Fusarium species. Nat Prod Res 34(10): 1442–1445. https://doi.org/10.1080/14786419.2018.1511555

Gallegos M (2016) Las plantas medicinales: principal alternativa para el cuidado de la salud, en la población rural de Babahoyo, Ecuador. An Fac Med 77(4): 327–332. https://doi.org/10.15381/anales.v77i4.12647

Gómez-Duarte O (2014) Enfermedad diarreica aguda por Escherichia coli enteropatógenas en Colombia. Rev Chilena Infectol 31(5): 577–586. https://doi.org/10.4067/S0716-10182014000500010

Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Filho BP (2002) Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz 97(7): 1027–1031. https://doi.org/10.1590/s0074-02762002000700017

Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C (2022) A review of commonly used methodologies for assessing the antibacterial activity of honey and honey products. Antibiotics (Basel) 11(7): 975. https://doi.org/10.3390/antibiotics11070975

Jaberian H, Piri K, Nazari J (2013) Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chem 136: 237–244. https://doi.org/10.1016/j.foodchem.2012.07.084 

Joshi BC, Kumar V, Chandra B, Kandpal ND (2019) Chemical composition and antibacterial activity of essential oil of Senecio graciliflorus. J Drug Deliv Ther 9: 98–100. https://doi.org/10.22270/jddt.v9i1-s.2265

Juarez A, Guerriero J, De Martino L, Senatore F, De Feo V (2007) Chemical composition and antibacterial activity of Senecio nutans essential oil. J Essent Oil-Bear Plants 10(4): 332–338. https://doi.org/10.1080/0972060X.2007.10643564

Kowalska-Krochmal B, Dudek-Wicher R (2021) The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 10(2): 165. https://doi.org/10.3390/pathogens10020165

Liu M, Seidel V, Katerere DR, Gray AI (2007) Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeasts. Methods 42(4): 325–329. https://doi.org/10.1016/j.ymeth.2007.02.013

Loja B, Alvarado A, Salazar A, Ramos E, Jurado B (2017) Cribado fitoquímico del Baccharis latifolia (R&P.) Pers. (chilca). Rev Cubana Plant Med 22(1): 1–7.

Lopez S, Lima B, Agüero MB, M.L. Lopez ML, Hadad M, Zygadlo J, Caballero D, Stariolo R, Suero E, Feresin GE, Tapia A (2018) Chemical composition, antibacterial and repellent activities of Azorella trifurcata, Senecio pogonias, and Senecio oreophyton essential oils. Arab J Chem 11: 181–187. https://doi.org/10.1016/j.arabjc.2014.11.022

Maungchanburi S, Rattanaburee T, Sukpondma Y, Tedasen A, Tipmanee V, Graidist P (2022) Anticancer activity of Piper cubeba L. extract on triple negative breast cancer MDA-MB-23. J Pharm Pharmacogn Res 10(1): 39–51. https://doi.org/10.56499/jppres21.1160_10.1.39

Mishra D, Joshi S, Sah SP, Dev A, Bisht G (2011) Chemical composition and antimicrobial activity of the essential oils of Senecio rufinervis DC. (Asteraceae). Indian J Nat Prod Res 2: 44–47.

Ouchbani T, Ouchbani S, Bouhfid R, Merghoub N, Guessous AR, Mzibri ME, Essassi EM (2013) Chemical composition and antiproliferative activity of Senecio leucanthemifolius Poiret essential oil. J Essen Oil Bearing Plants 14: 815–819. https://doi.org/10.1080/0972060X.2011.10644010

Palacios J, Paredes A, Catalán MA, Nwokocha CR, Cifuentes F (2022) Novel oxime synthesized from a natural product of Senecio nutans SCh. Bip. (Asteraceae) enhances vascular relaxation in rats by an endothelium-independent mechanism. Molecules 27: 3333. https://doi.org/10.3390/molecules27103333

Paredes A, Leyton Y, Riquelme C, Morales G (2016) A plant from the altiplano of Northern Chile Senecio nutans, inhibits the Vibrio cholerae pathogen. Springerplus 5(1): 1788. https://doi.org/10.1186/s40064-016-3469-6

Parra C, Soto E, Leon G, Salas CO, Heinrich M, Echiburu-Chau C (2018) Nutritional composition, antioxidant activity and isolation of scopoletin from Senecio nutans: Support of ancestral and new uses. Nat Prod Res 32(6): 719–722. https://doi.org/10.1080/14786419.2017.1335726

Ramos-Escudero F, Muñoz AM, Alvarado-Ortíz C, Alvarado A, Yáñez JA (2012) Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J Med Food 15: 206–215. https://doi.org/10.1089/jmf.2010.0342

Riveros M, Ochoa TJ (2015) Enteropatógenos de importancia en salud pública. Rev Peru Med Exp Salud Publica 32(1): 157–164.

Santander J, Otto C, Lowry D, Cuellar M, Mellado M, Salas C, Rothhammer F, Echiburu-Chau C (2015) Specific Gram-positive antibacterial activity of 4-hydroxy-3-(3-methyl-2-butenyl) acetophenone isolated from Senecio graveolens. Microbiol Res J Int 5(2): 94–106. https://doi.org/10.9734/BMRJ/2015/11934

Sarmiento GM, Gutiérrez YI, Delgado R, Burbano Z, Soledispa PA, Jaramillo ND, Vargas LA (2022) Phytochemical composition and antioxidant capacity of the aqueous extracts of Malva sylvestris L. and Malva pseudolavatera Webb & Berthel. J Pharm Pharmacogn Res 10(3): 551–561. https://doi.org/10.56499/jppres22.1342_10.3.551

Singh R, Ahluwalia V, Singh P, Kumar N, Prakash Sati O, Sati N (2016) Antifungal and phytotoxic activity of essential oil from root of Senecio amplexicaulis Kunth. (Asteraceae) growing wild in high altitude-Himalayan region. Nat Prod Res 30: 1875–1879. https://doi.org/10.1080/14786419.2015.1079910

Soberón JR, Lizarraga EF, Sgariglia MA, Carrasco Juárez MB, Sampietro DA, Ben Altabef A, Catalán CA, Vattuone MA (2015) Antifungal activity of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone against Candida albicans: evidence for the antifungal mode of action. Antonie van Leeuwenhoek 108(5): 1047–1057. https://doi.org/10.1007/s10482-015-0559-3

Tenorio-Abreu A, Gil J, Bratos MA, de la Iglesia A, Borrás M, Ortiz R, Ávila A, Colomina J, Pérez JA, Saavedra JM, Márquez A, Domínguez A, de la Iglesia M (2015) Estudio multicéntrico sobre la actividad in vitro de ceftarolina frente a Staphylococcus aureus aislados en España. Enferm Infecc Microbiol Clin 33(2): 101–104. https://doi.org/10.1016/j.eimc.2014.02.009

Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil A (2019) Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients 11: 2786. https://doi.org/10.3390/nu11112786

Zhang Y, Tang H, Zheng Y, Li J, Pan L (2019) Optimization of ultrasound-assisted extraction of poly-phenols from Ajuga ciliata Bunge and evaluation of antioxidant activities in vitro. Heliyon 5(10): e02733. https://doi.org/10.1016/j.heliyon.2019.e02733

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)