Category Archives: Pharmaceutical Science

Anti-obesity activity of Cymbopogon citratus

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1090-1110, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres24.1989_12.6.1090

Review

Anti-obesity activity of Cymbopogon citratus (lemongrass): A systematic review

[Actividad antiobesidad de Cymbopogon citratus (hierba limón): Una revisión sistemática]

Musthika Wida Mashitah1,2*, Nashi Widodo3, Nur Permatasari4, Achmad Rudijanto5

1Department of Nursing, Faculty of Health Sciences, Institute of Technology, Science and Health Dr. Soepraoen Hospital, Malang, 65147, Indonesia.

2Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia.

3Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, 65145, Indonesia.

4Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia.

5Division of Endocrinology and Metabolic Disease, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya/Dr. Saiful Anwar Hospital, Malang, 65145, Indonesia.

*E-mail: ns.musthika@itsk-soepraoen.ac.id

Abstract

Context: Obesity represents a significant global health challenge. The limited efficacy and possible side effects of available anti-obesity agents highlight the need to find new, effective, and safe agents. Lemongrass (Cymbopogon citratus) is an aromatic herbal plant traditionally used as an anti-obesity agent, but previous review studies did not explain the mechanism in detail.

Aims: To evaluate the anti-obesity activity of C. citratus in vitro, in vivo, and in humans.

Methods: Full-text relevant articles published between 2003 and 2023 were searched through Google Scholar, PubMed, and Scopus. The American Dietetic Association (ADA) quality criteria checklist was used to assess the risk of bias. Data were systematically analysed and presented in tables and flowcharts.

Results: Eighteen articles met the inclusion criteria. The anti-obesity activity of C. citratus could come from various parts of the plant (leaves, stalks, roots, or whole plant). Its hydroalcoholic-based extract was rich in polyphenols, which had anti-obesity activity through inhibiting digestive enzymes, appetite suppression, modulation of lipid metabolism, and adipogenesis inhibition. Its essential oil and citral had anti-obesity activity through energy expenditure stimulation, lipid metabolism modulation, and adipogenesis inhibition. Dietary fibre from C. citratus had anti-obesity activity by inhibiting digestive enzymes and modulating lipid metabolism.

Conclusions: The anti-obesity activity of C. citratus could come from its polyphenol content, essential oil, or fibre through the same or different mechanisms, namely inhibition of digestive enzymes, suppression of appetite, modulation of lipid metabolism, inhibition of adipogenesis, and stimulation of energy expenditure.

Keywords: anti-obesity; Cymbopogon citratus; lemongrass.

PDF Download

Resumen

Contexto: La obesidad representa un importante desafío para la salud mundial. La eficacia limitada y los posibles efectos secundarios de los agentes contra la obesidad disponibles resaltan la necesidad de encontrar agentes nuevos, eficaces y seguros. La hierba limón (Cymbopogon citratus) es una planta herbaria aromática utilizada tradicionalmente como agente contra la obesidad, pero estudios de revisión anteriores no explicaron el mecanismo en detalle.

Objetivos: Evaluar la actividad antiobesidad de C. citratus in vitro, in vivo y en humanos.

Métodos: Se buscaron artículos relevantes de texto completo publicados entre 2003 y 2023 a través de Google Scholar, PubMed y Scopus. Se utilizó la lista de verificación de criterios de calidad de la Asociación Dietética Americana (ADA) para evaluar el riesgo de sesgo. Los datos fueron analizados sistemáticamente y presentados en tablas y diagramas de flujo.

Resultados: Dieciocho artículos cumplieron los criterios de inclusión. La actividad antiobesidad de C. citratus podría provenir de varias partes de la planta (hojas, tallos, raíces o planta entera). Su extracto de base hidroalcohólica era rico en polifenoles, que tenían actividad antiobesidad mediante la inhibición de las enzimas digestivas, la supresión del apetito, la modulación del metabolismo de los lípidos y la inhibición de la adipogénesis. Su aceite esencial y citral tenían actividad antiobesidad mediante la estimulación del gasto energético, la modulación del metabolismo de los lípidos y la inhibición de la adipogénesis. La fibra dietética procedente de C. citratus tenía actividad antiobesidad al inhibir las enzimas digestivas y modular el metabolismo de los lípidos.

Conclusiones: La actividad antiobesidad de C. citratus podría proceder de su contenido en polifenoles, aceite esencial o fibra a través de los mismos o diferentes mecanismos, a saber, inhibición de las enzimas digestivas, supresión del apetito, modulación del metabolismo lipídico, inhibición de la adipogénesis y estimulación del gasto energético.

Palabras Clave: antiobesidad; Cymbopogon citratus; hierba limón.

PDF Download
 
Citation Format: Mashitah MW, Widodo N, Permatasari N, Rudijanto A (2024) Anti-obesity activity of Cymbopogon citratus (lemongrass): A systematic review. J Pharm Pharmacogn Res 12(6): 1090–1110. https://doi.org/10.56499/jppres24.1989_12.6.1090
References

Abbas N, Rasheed A, Sayed Ahmed E, Ali S, Irfan UM, Hamed AL-Sueaadi M (2019) Study of anti-lipidemic effect of lemongrass (Cymbopogon citratus) aqueous roots and flower extracts on albino mice. Int J Pharm Sci Res 10(6): 2785. https://doi.org/10.13040/IJPSR.0975-8232.10(6).2785-89

Abdelrahman W, Omar S (2023) Effect of lemongrass powder on hyperlipidemia compared to orlistat using experimental animals. Egypt J Nutr Health 18(1): 45–62. https://doi.org/10.21608/ejnh.2023.298393

ADA (2008) American Dietetic Association. ADA Evidence Analysis Manual 2008. ADA Quality Criteria Checklist – Primary Research. pp. 55–56.

Adeneye AA, Agbaje EO (2007) Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of Cymbopogon citratus Stapf. in rats. J Ethnopharmacol 112(3): 440–444. https://doi.org/10.1016/j.jep.2007.03.034

Agbafor KN, Akubugwo EI (2007) Hypocholesterolemic effect of ethanolic extract of fresh leaves of Cymbopogon citratus (lemongrass). African Journal of Biotechnology, 6(5): 596–598. https://doi.org/10.5897/AJB06.497

Ajayi EO, Sadimenko AP, Afolayan AJ (2016) GC-MS evaluation of Cymbopogon citratus (DC) Stapf oil obtained using modified hydrodistillation and microwave extraction methods. Food Chem 209: 262–266. https://doi.org/10.1016/j.foodchem.2016.04.071

Bertuccioli A, Cardinali M, Biagi M, Moricoli S, Morganti I, Zonzini GB, Rigillo G (2021) Nutraceuticals and herbal food supplements for weight loss: Is there a prebiotic role in the mechanism of action? Microorganisms 9(12): 2427. https://doi.org/10.3390/microorganisms9122427

Betancourt ME, González MY, Escobar RR, Bermúdez TD, Blanco MF, Martínez MCM (2015) Evaluation of hypolipidemic potential of Cymbopogon citratus S. in a model of acute hyperlipidemia. Medicentro 19(1): 2-12.

Blüher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15(5): 288–298. https://doi.org/10.1038/s41574-019-0176-8

Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J (2021) Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. J Ethnopharmacol 280: 114410. https://doi.org/10.1016/j.jep.2021.114410

Cercato LM, White PAS, Nampo FK, Santos MRV, Camargo EA (2015) A systematic review of medicinal plants used for weight loss in Brazil: Is there potential for obesity treatment? J Ethnopharmacol 176: 286–296. https://doi.org/10.1016/j.jep.2015.10.038

Chan DC, Pang J, Watts GF (2016) Dyslipidemia in Obesity. In: Ahima RS (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-11251-0_30

Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: An endocrine organ. Arch Med Sci 9(2): 191–200. https://doi.org/10.5114/aoms.2013.33181

Costa CARA, Bidinotto LT, Takahira RK, Salvadori DMF, Barbisan LF, Costa M (2011) Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil. Food Chem Toxicol 49(9): 2268–2272. https://doi.org/10.1016/j.fct.2011.06.025

da Costa GFF (2015) Cymbopogon citratus and its polyphenols as potential phytotherapeutic products: an in vivo approach. Doctoral Thesis in Pharmacy. Faculty of Pharmacy, University of Coimbra.

Da Ressurreição S, Pedreiro S, Batista MT, Figueirinha A (2022) Effect of phenolic compounds from Cymbopogon citratus (DC) Stapf. leaves on micellar solubility of cholesterol. Molecules 27(21): 7338. https://doi.org/10.3390/molecules27217338

de Freitas Junior LM, de Almeida EB (2017) Medicinal plants for the treatment of obesity: Ethnopharmacological approach and chemical and biological studies. Am J Transl Res 9(5): 2050–2064. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5446492/

Dimgba UC, Kalu AAk, Ofoegbu CC, Ugboaja CI (2017) Evaluation of the appetite suppressing potential of aqueous extract of Cymbopogon citratus (Lemon grass) leaf using rat model. Int J Adv Biochem Res 1(2): 04–07. https://doi.org/10.33545/26174693.2017.v1.i2a.95

Ekpenyong CE, Akpan E, Nyoh A (2015) Ethnopharmacology, phytochemistry, and biological activities of Cymbopogon citratus (DC.) Stapf extracts. Chin J Nat Med 13(5): 321–337. https://doi.org/10.1016/S1875-5364(15)30023-6

Ekpenyong CE, Akpan EE, Daniel NE (2014) Phytochemical constituents, therapeutic applications and toxicological profile of Cymbopogon citratus Stapf (DC) leaf extract. J Pharmacogn Phytochem 3(1): 133–141.

Feingold KR (2023) Obesity and Dyslipidemia. [Updated 2023 Jun 19]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. https://www.ncbi.nlm.nih.gov/books/NBK305895/

Ferranti S, Mozaffarian D (2008) The perfect storm: Obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54: 6945–6955. http://dx.doi.org/10.1373/clinchem.2007.100156

Furtado DRL, Machado CT, Franca LM, Pinto B, Cartagenes MSS, Freire SMFF, Paes AMA, Borges ACR, Borges MOR (2011) Cymbopogon citratus Stapf effect in hyperlipidemic rats. Rev Ciênc Saúde São Luís 13(1): 11-19.

Gadde KM, Martin C, Berthoud H, Heymsfield SB (2018) Obesity: Pathophysiology and management. J Am Coll Cardiol 71(1): 69–84. https://doi.org/10.1016/j.jacc.2017.11.011

Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D (2021) Obesity–an update on the basic pathophysiology and review of recent therapeutic advances. Biomolecules 11(10): 1426. https://doi.org/10.3390/biom11101426

Gurevich-Panigrahi T, Panigrahi S, Wiechec E, Los M (2009) Obesity: Pathophysiology and clinical management. Curr Med Chem 16(4): 506–521. https://doi.org/10.2174/092986709787315568

Jakab J, Miškić B, Mikšić Š, Juranić B, Ćosić V, Schwarz D, Včev A (2021) Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes Metab Syndr Obes 14: 67–83. https://doi.org/10.2147/DMSO.S281186

Jo YS, Ju SM, Hwang KH, Kim KS, Kim MS, Jeon BH (2019) Inhibitory effect of Cymbopogon citratus ethanol extracts on adipogenesis in 3T3-L1 preadipocytes. J Physiol Pathol Korean Med 33(1): 17–24. https://doi.org/10.15188/kjopp.2019.02.33.1.17

Kiani HS, Ali A, Zahra S, Hassan ZU, Kubra KT, Azam M, Zahid HF (2022) Phytochemical composition and pharmacological potential of lemongrass (Cymbopogon) and impact on gut microbiota. AppliedChem 2(4): 229–246. https://doi.org/10.3390/appliedchem2040016

Klop B, Elte JWF, Cabezas MC (2013) Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 5(4): 1218–1240. https://doi.org/10.3390/nu5041218

Ku HC, Chan TY, Chung JF, Kao YH, Cheng CF (2022) The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomed Pharmacother 145: 112440. https://doi.org/10.1016/j.biopha.2021.112440

Kumar VRS, Inamdar MN, Nayeemunnisa, Viswanatha GL (2011) Protective effect of lemongrass oil against dexamethasone induced hyperlipidemia in rats: Possible role of decreased lecithin cholesterol acetyl transferase activity. Asian Pac J Trop Med 4(8): 658–660. https://doi.org/10.1016/S1995-7645(11)60167-3

Lin X Li H (2021) Obesity: Epidemiology, pathophysiology, and therapeutics. Front Endocrinol 12: 706978. https://doi.org/10.3389/fendo.2021.706978

Merchaoui H, Hanana M, Ksouri R (2018) Ethnobotanical and phytopharmacological notes on Cakile maritima Scop. Phytotherapie 16(S1): S197–S202. https://doi.org/10.3166/phyto-2019-0160

Modak T, Mukhopadhaya A (2011) Effects of citral, a naturally occurring antiadipogenic molecule, on an energy-intense diet model of obesity. Indian J Pharmacol 43(3): 300–305. https://doi.org/10.4103/0253-7613.81515

Ngamdokmai N, Paracha TU, Waranuch N, Chootip K, Wisuitiprot W, Suphrom N, Insumrong K, Ingkaninan K (2021) Effects of essential oils and some constituents from ingredients of anti-cellulite herbal compress on 3T3-L1 adipocytes and rat aortae. Pharmaceuticals 14(3): 253. https://doi.org/10.3390/ph14030253

Oladeji OS, Adelowo FE, Ayodele DT, Odelade KA (2019) Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Sci Afr 6: e00137. https://doi.org/10.1016/j.sciaf.2019.e00137

Olorunnisola SK, Asiyanbi HT, Hammed AM, Simsek S (2014) Biological properties of lemongrass: An overview. Int Food Res J 21(2): 455–462.

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan — a web and mobile app for systematic reviews. Syst Rev 5: 210. https://doi.org/10.1186/s13643-016-0384-4

Rezaee F, Dashty M (2013) Role of adipose tissue in metabolic system disorders adipose tissue is the initiator of metabolic diseases. J Diabetes Metab S13: 008. https://doi.org/10.4172/2155-6156.S13-008

Sandner G, König A, Wallner M, Weghuber J (2020) Functional foods – dietary or herbal products on obesity: Application of selected bioactive compounds to target lipid metabolism. Curr Opin Food Sci 34: 9–20. https://doi.org/10.1016/j.cofs.2020.09.011

Singh M, Thrimawithana T, Shukla R, Adhikari B (2020) Managing obesity through natural polyphenols: A review. Future Foods 1–2: 100002. https://doi.org/10.1016/j.fufo.2020.100002

Somparn N, Saenthaweeuk S, Naowaboot J, Thaeomor A, Kukongviriyapan V (2018) Effect of lemongrass water extract supplementation on atherogenic index and antioxidant status in rats. Acta Pharm 68(2): 185–197. https://doi.org/10.2478/acph-2018-0015

Spiegelman BM, Flier JS (1996) Adipogenesis and obesity: Rounding out the big picture. Cell 87(3): 377–389. https://doi.org/10.1016/S0092-8674(00)81359-8

Sprenger S, Woldemariam T, Kotchoni S, Elshabrawy HA, Chaturvedi LS (2022) Lemongrass essential oil and its major constituent citral isomers modulate adipogenic gene expression in 3T3-L1 cells. J Food Biochem 46(2): 1–14. https://doi.org/10.1111/jfbc.14037

Sri Devi S, Ashokkumar N (2018) Citral, a monoterpene inhibits adipogenesis through modulation of adipogenic transcription factors in 3T3-L1 cells. Indian J Clin Biochem 33: 414–421. https://doi.org/10.1007/s12291-017-0692-z

Tibenda JJ, Yi Q, Wang X, Zhao Q (2022) Review of phytomedicine, phytochemistry, ethnopharmacology, toxicology, and pharmacological activities of Cymbopogon genus. Front Pharmacol 13: 997918. https://doi.org/10.3389/fphar.2022.997918

Villalobos MC, Nicolas MG, Trinidad TP (2021) Antihyperglycemic and cholesterol-lowering potential of dietary fibre from lemongrass (Cymbopogon citratus Stapf.). Mediterr J Nutr Metab 14(4): 453–467. https://doi.org/10.3233/MNM-210568

Waheed S, Itrat N, Anwar L, Javed T (2019) Ameliorative potential of Cymbopogon citratus dried leaf powder in attenuation of hyperlipidemia. Asian J Emerging Res 1(1): 12–18.

WHO (2021) Obesity and Overweight. World Health Organization https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [Consulted October 6th, 2023].

Zhang Y, Liu J, Yao J, Ji G, Qian L, Wang J, Zhang G, Tian J, Nie Y, Zhang YE, Gold MS, Liu Y (2014) Obesity: Pathophysiology and intervention. Nutrients 6(11): 5153–5183. https://doi.org/10.3390/nu6115153

Zhao J, Zhou A, Qi W (2022) The potential to fight obesity with adipogenesis modulating compounds. Int J Mol Sci 23(4): 2299. https://doi.org/10.3390/ijms23042299

© 2024 Journal of Pharmacy & Pharmacognosy Research

Multicomponent crystals increase simvastatin solubility

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1079-1089, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres23.1898_12.6.1079

Original Article

Multicomponent crystals: Solubility enhancement of simvastatin using arginine and glycine coformers

[Cristales multicomponentes: Mejora de la solubilidad de la simvastatina utilizando coformadores de arginina y glicina]

Iyan Sopyan1,2*, Karyn Elizabeth1, Sandra Megantara3, Silmy Kaffah1

1Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, 45363, Indonesia.

2Study Center of Drugs Dosage Form Development, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia.

3Department Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, 45363, Indonesia.

*E-mail: i.sopyan@unpad.ac.id

Abstract

Context: Simvastatin can be modified by the formation of multicomponent crystals to increase its solubility.

Aims: To compare the solubility of multicomponent simvastatin crystals to pure simvastatin.

Methods: The in silico study of simvastatin and the coformers arginine and glycine revealed non-covalent interactions, so multicomponent preparations of simvastatin crystals were prepared by solvent evaporation using a mole ratio of 1:1; 1:2 and 2:1.

Results: Each simvastatin-arginine and simvastatin-glycine ratio increased the solubility, with the highest increase observed for the 1:2 ratio compared to pure simvastatin.

Conclusions: Simvastatin-arginine multicomponent crystals (1:2) showed the best dissolution profile in phosphate buffer medium pH 7.0 with 67.69% dissolution, while simvastatin-glycine multicomponent crystals (1:2) exhibited the best dissolution profile in buffer media pH 1.2 with 16.19% dissolution. Characterization of the multicomponent crystals revealed a shift in the peaks, a decreased melting point, and enthalpy, indicating decreased % crystallinity and the formation of a new solid phase.

Keywords: arginine; glycine; multicomponent crystal; simvastatin; solubility enhancement.

PDF Download

Resumen

Contexto: La simvastatina puede modificarse mediante la formación de cristales multicomponentes para aumentar su solubilidad.

Objetivos: Comparar la solubilidad de cristales multicomponentes de simvastatina con la simvastatina pura.

Métodos: El estudio in silico de la simvastatina y los coformadores arginina y glicina reveló interacciones no covalentes por lo que se prepararon preparaciones multicomponente de cristales de simvastatina por evaporación de disolvente utilizando una proporción molar de 1:1; 1:2 y 2:1.

Resultados: Cada relación simvastatina-arginina y simvastatina-glicina aumentó la solubilidad, observándose el mayor aumento para la relación 1:2 en comparación con la simvastatina pura.

Conclusiones: Los cristales multicomponentes de simvastatina-arginina (1:2) mostraron el mejor perfil de disolución en medio tampón fosfato pH 7,0 con un 67,69% de disolución, mientras que los cristales multicomponentes de simvastatina-glicina (1:2) exhibieron el mejor perfil de disolución en medio tampón pH 1,2 con un 16,19% de disolución. La caracterización de los cristales multicomponente reveló un desplazamiento de los picos, una disminución del punto de fusión y de la entalpía, lo que indica una disminución del % de cristalinidad y la formación de una nueva fase sólida.

Palabras Clave: arginina; cristal multicomponente; glicina; mejora de la solubilidad; simvastatina.

PDF Download

 

 
 
Citation Format: Sopyan I, Megantara S, Elizabeth K, Kaffah S (2024) Multicomponent crystals: Solubility enhancement of simvastatin using arginine and glycine coformers. J Pharm Pharmacogn Res 12(6): 1079–1089. https://doi.org/10.56499/jppres23.1898_12.6.1079
References

Alatas F, Azizsidiq FA, Sutarna TH, Ratih H, Soewandhi SN (2020) Improvement of albendazole solubility through multicomponent crystal formation with malic acid. Galenika J Pharm 6(1): 114–123. https://doi.org/10.22487/j24428744.2020.v6.i1.14998

Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12: 413–420. https://doi.org/10.1023/a:1016212804288

Domingos S, Duarte MT (2015) New forms of old drugs: Improving without changing. J Pharm Pharmacol 67(6): 830–846. https://doi.org/10.1111/jphp.12384

Elder DP, Holm R, De Diego HL (2013) Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm 453(1): 88–100. https://doi.org/10.1016/j.ijpharm.2012.11.028

Gustaman F (2019) Pengaruh Penambahan Cremophor EL Terhadap Peningkatan Laju Disolusi Simvastatin. J Pharmacopolium 2(1): 45-52.

Jeevana JB, Sreelakshmi K (2011) Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J Young Pharm 3(1): 4–8. https://doi.org/10.4103/0975-1483.76413

Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm 420(1): 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032

Kemenkes RI (2020) Farmakope Indonesia Edisi VI. Jakarta: Kemenkes RI.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: An Approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9(6): 304–316. https://doi.org/10.1016/j.ajps.2014.05.005

Komal K, Kaur T, Singh AP, Sharma P (2018) Enhancement of solubility and dissolution of simvastatin by using solid dispersion technique along with different combination of polymers. J Drug Deliv Therapeut 8(2): 32–40. https://doi.org/10.22270/jddt.v8i2.1668

Kong R, Zhu X, Meteleva ES, Dushkin AV, Su W (2018) Physicochemical characteristics of the complexes of simvastatin and atorvastatin calcium with hydroxypropyl-β-cyclodextrin produced by mechanochemical activation. J Drug Deliv Sci Technol 46: 436–445. https://doi.org/10.1016/j.jddst.2018.05.018

Kumar S, Nanda A (2018) Approaches to design of pharmaceutical cocrystals: A review. Mol Cryst Liq Cryst Sci Technol 667(1): 54–77. https://doi.org/10.1080/15421406.2019.1577462

Martin FA, Pop MM, Borodi G, Filip X, Kacso I (2013) Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst Growth Des 13(10): 4295–4304. https://doi.org/10.1021/cg400638g

Murtaza G (2012) Solubility enhancement of simvastatin: A review. Acta Pol Pharm 69(4): 581–590. https://pubmed.ncbi.nlm.nih.gov/22876598/

Nemichand SK, Laxman SD (2016) Solubility enhancement of nebivolol by microemulsion technique. J Young Pharm 8(4): 356–367. https://doi.org/10.5530/jyp.2016.4.11

Nensi H (2019) Pembentukan Multikomponen Kristal Piperin dengan Asam Siringat dan Arginin Menggunakan Metode Solvent Drop Grinding [Tesis]. Padang: Universitas Andalas.

Nugrahani I, Jessica M (2021) Amino acids as the potential co-former for co-crystal development: A review. Molecules 26(11): 3279. https://doi.org/10.3390/molecules26113279

Patole T, Despande A (2014) Co-crystallization a technique for solubility enhancement. Int J Pharm Sci Res 5(9): 3566–3576. https://doi.org/10.13040/IJPSR.0975-8232.5(9).3566-76

PubChem (2022) PubChem Compound Summary for CID 6322, Arginine. https://pubchem.ncbi.nlm.nih.gov/compound/Arginine

Sareen S, Mathew G, Joseph L (2012) Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharm Investig 2(1): 12–17. https://doi.org/10.4103/2230-973X.96921

Sathisaran I, Dalvi SV (2018) Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics 10(3): 108. https://doi.org/10.3390/pharmaceutics10030108

Shargel L, Yu A (1999) Applied Biopharmaceutics and Pharmacokinetics, 4th Ed. New York: Mcgraw-Hill.

Shete A, Murthy S, Korpale S, Yadav A, Sajane S, Sakhare S, Doijad R (2015) Cocrystals of itraconazole with amino acids: Screening, synthesis, solid state characterization, in vitro drug release and antifungal activity. J Drug Deliv Sci Technol 28: 46–55. https://doi.org/10.1016/j.jddst.2015.05.006

Sopyan I, Fudholi A, Muchtaridi M, Sari IP (2017) Co-crystallization: A tool to enhance solubility and dissolution rate of simvastatin. J Young Pharm 9(2): 186–186. https://dx.doi.org/10.5530/jyp.2017.9.36

Sopyan I, Syah ISK, Nurhayati D, Budiman A (2020) Improvement of simvastatin dissolution rate using derivative non-covalent approach by solvent drop grinding method. Int J Appl Pharm 12(1): 21–24. https://doi.org/10.22159/ijap.2020v12i1.35865

Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL (2006) A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm 3(6): 631–643. https://doi.org/10.1021/mp0600182

Thakuria R Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N (2013) Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm 453(1): 101–125. https://doi.org/10.1016/j.ijpharm.2012.10.043

Thenge R, Patel R, Kayande N, Mahajan N (2020) Co-crystals of carvedilol: Preparation, characterization and evaluation. Int J Appl Pharm 12(1): 42–49. https://doi.org/10.22159/ijap.2020v12i1.35640

© 2024 Journal of Pharmacy & Pharmacognosy Research

Phyllanthus emblica flavonoid glycosides against xanthine oxidase

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1067-1078, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres24.1959_12.6.1067

Original Article

Antioxidant potential and xanthine oxidase inhibition of flavonol glycosides from Phyllanthus emblica L. leaves

[Potencial antioxidante e inhibición de la xantina oxidasa de los glucósidos de flavonol de las hojas de Phyllanthus emblica L.]

Husnunnisa1, Rika Hartati1, Rachmat Mauludin2, Muhamad Insanu1*

1Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa No. 10 Bandung, West Java 40132, Indonesia.

2Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa No. 10 Bandung, West Java 40132, Indonesia.

*E-mail: insanu99@itb.ac.id

Abstract

Context: Hyperuricemia is the cause of gout in the inflammatory joint condition. The xanthine oxidase enzyme is a therapeutic target for gout treatment because it plays a role in the generation of uric acid. Allopurinol is used to treat gout. It prevents the xanthine oxidase enzyme from producing as much uric acid. When selecting a medication, one must consider the various adverse effects of allopurinol. Phyllanthus emblica plants are among the medicinal plants that can be used as an alternative treatment for gout.

Aims: To evaluate isolated compounds from the Phyllanthus emblica as antihyperuricemia candidates.

Methods: The isolated compounds were characterized using High-Performance Liquid Chromatography Analysis and Thin Layer Chromatography-Densitometry. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and cupric ion (CUPRAC) antioxidant capacity procedures were used to develop the antioxidant activity index. The ability to inhibit xanthine oxidase was determined using a spectrophotometer.

Results: Compound 1 was indicated as rutin having antioxidant capacity with an antioxidant activity index (AAI) DPPH value of 7.89 ± 0.03 and AAI CUPRAC value of 15.83 ± 0.04 stronger than compound 2 (quercitrin) with an AAI DPPH value of 3.72 ± 0.01 and AAI CUPRAC 3.24 ± 0.03. The IC50 for quercitrin’s inhibition of xanthine oxidase is 23.85 ± 2.04, which was higher than rutin’s IC50 value of 32.77 ± 4.49 µg/mL.

Conclusions: Flavonol glycosides present in the ethanol extract of Phyllanthus emblica leaves gave potent xanthine oxidase inhibitory activity stronger than the extract. Quercitrin gave stronger xanthine oxidase inhibitory activity, but this compound has weaker antioxidant capacity compared to rutin.

Keywords: antioxidants; hyperuricemia; Phyllanthus emblica; xanthine oxidase.

PDF Download

Resumen

Contexto: La hiperuricemia es la causa de la gota, una enfermedad inflamatoria de las articulaciones. La enzima xantina oxidasa es una diana terapéutica para el tratamiento de la gota porque interviene en la generación de ácido úrico. El alopurinol se utiliza para tratar la gota. Impide que la enzima xantina oxidasa produzca tanto ácido úrico. A la hora de elegir un medicamento, hay que tener en cuenta los diversos efectos adversos del alopurinol. Las plantas de Phyllanthus emblica se encuentran entre las plantas medicinales que pueden utilizarse como tratamiento alternativo para la gota.

Objetivos: Evaluar compuestos aislados de Phyllanthus emblica como candidatos antihiperuricemiantes.

Métodos: Los compuestos aislados se caracterizaron mediante análisis de cromatografía líquida de alto rendimiento y cromatografía de capa fina-densitometría. Se utilizaron los procedimientos de capacidad antioxidante 2,2-difenil-1-picrilhidrazilo (DPPH) e ion cúprico (CUPRAC) para desarrollar el índice de actividad antioxidante. La capacidad de inhibición de la xantina oxidasa se determinó con un espectrofotómetro.

Resultados: Se indicó que el compuesto 1 (rutina) tenía actividad antioxidante con un índice de actividad antioxidante (AAI) DPPH de 7,89 ± 0,03 y un valor AAI CUPRAC de 15,83 ± 0,04 más fuerte que el compuesto 2 (quercitrina) con un valor AAI DPPH de 3,72 ± 0,01 y un valor AAI CUPRAC de 3,24 ± 0,03. El IC50 para la inhibición de la xantina oxidasa por la quercitrina es de 23,85 ± 2,04, que fue superior al valor IC50 de la rutina de 32,77 ± 4,49 µg/mL.

Conclusiones: Los glucósidos de flavonol presentes en el extracto etanólico de las hojas de Phyllanthus emblica presentaron una potente actividad inhibidora de la xantina oxidasa, superior a la del extracto. La quercitrina presentó una actividad inhibidora de la xantina oxidasa más potente, pero este compuesto tiene una actividad antioxidante más débil en comparación con la rutina.

Palabras Clave: antioxidantes; hiperuricemia; Phyllanthus emblica; xantina oxidasa.

PDF Download
 
Citation Format: Husnunnisa, Hartati R, Mauludin R, Insanu M (2024) Potential antioxidant and xanthine oxidase inhibition of flavonol glycosides from Phyllanthus emblica L. leaves. J Pharm Pharmacogn Res 12(6): 1067–1078. https://doi.org/10.56499/jppres24.1959_12.6.1067
References

Ahmad B, Hafeez N, Rauf A, Bashir S, Linfang H, Rehman M, Mubarak MS, Uddin S, Bawazeer S, Shariati MA, Daglia M, Wan C, Rengasamy (2021) Review Phyllanthus emblica: A comprehensive review of its therapeutic benefits. S Afr J Bot 138: 278–310. https://doi.org/10.1016/j.sajb.2020.12.028

Alem MM (2018) Allopurinol and endothelial function: A systematic review with meta-analysis of randomized controlled trials. Cardiovasc Ther 36(4): 12432. https://doi.org/10.1111/1755-5922.12432

Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity. Pure Appl Chem 85: 957–998. https://doi.org/10.1351/PAC-REP-12-07-15

Atmani D, Chaher N, Atmani D, Berboucha M, Debbache N, Boudaoud H (2009) Flavonoids in human health: From structure to biological activity. Curr Nutr Food Sci 5(4): 225–237. https://doi.org/10.2174/157340109790218049

Bouman RW, Kebler PJ, Telford IR, Bruhl JJ, Strijk JS, Saunders RM, Esser HJ, Hidalgo BF, Van Welzen PC (2022) A revised phylogenetic classification of tribe Phyllantheae (Phyllanthaceae). Phytotaxa 540(1): 1. https://doi.org/10.11646/phytotaxa.540.1.1

Chaikul P, Kanlayavattanakul M, Somkumnerd J, Lourith N (2021) Phyllanthus emblica L. (amla) branch: A safe and effective ingredient against skin aging. J Tradit Complement Med 11(5): 390–399. https://doi.org/10.1016/j.jtcme.2021.02.004

Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10: 178–182. https://doi.org/10.38212/2224-6614.2748

Day RO, Kannangara DRW, Stocker SL, Carland JE, Williams KM, Graham GG (2017) Allopurinol: Insights from studies of dose-response relationships. Expert Opin Drug Metab Toxicol 13(4): 449–462. https://doi.org/10.1080/17425255.2017.1269745

Dirgantara S, Insanu M, Fidrianny I (2022) Evaluation of xanthine oxidase inhibitory, antioxidative activity of five selected Papua medicinal plants and correlation with phytochemical content. Pharmacia 69(4): 965–972. https://doi.org/10.3897/pharmacia.69.e91083

Faleschini T, Syafni N, Schulte HL, Garifulina A, Hering S, Espindola LS, Hamburger M (2023) A neolignan from Connarus tuberosus as an allosteric GABAA receptor modulator at the neurosteroid binding site. Biomed Pharmacother 161: 114498. https://doi.org/10.1016/j.biopha.2023.114498

Gliozzi M, Malara N, Muscoli S, Mollace V (2016) The treatment of hyperuricemia. Int J Cardiol 15(213): 23–27. https://doi.org/10.1016/j.ijcard.2015.08.087

Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10): 572–584. https://doi.org/10.1016/s0955-2863(02)00208-5

Huang H, Li M, Tan Q, Tang C, Gao J, Bao X, Fan S, Mo T, Han L, Zhang D, Lin J (2023) The impact of thermal extraction on the quality of Phyllanthus emblica Linn. fruit: A systematic study based on compositional changes. Arab J Chem 16(4): 104562. https://doi.org/10.1016/j.arabjc.2023.104562

Hu Q, Liu Z, Guo Y, Lu S, Du H, Cao Y (2021) Antioxidant capacity of flavonoids from folium Artemisia argyi and the molecular mechanism in Caenorhabditis elegans. J Ethnopharmacol 279: 114398. https://doi.org/10.1016/j.jep.2021.114398

Hu Y, Liang P, Wang Z, Jiang C, Zeng Q, Shen C, Wu, Y, Liu L, Yi Y, Zhu H, Liu Q (2023) Explore the effect of the structure-activity relationship and dose-effect relationship on the antioxidant activity of licorice flavonoids. J Mol Struct 1292: 136101. https://doi.org/10.1016/j.molstruc.2023.136101

Husnunnisa H, Hartati R, Mauludin R, Insanu M (2022) A review of the Phyllanthus genus plants: Their phytochemistry, traditional uses, and potential inhibition of xanthine oxidase. Pharmacia 69(3): 681–687. https://doi.org/10.3897/pharmacia.69.e87013

Ismed F, Dévéhat FL, Delalande O, Sinbandhit S, Bakhtiar A, Boustie J (2012) Lobarin from the Sumatran lichen, Stereocaulon halei. Fitoterapia 83: 1693–1698.  https://doi.org/10.1016/j.fitote.2012.09.025

Kiran KR, Swathy PS, Paul B, Prasada KS, Rao MR, Joshi MB, Rai PS, Satyamoorthy K, Muthusamy A (2021) Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species. J Ethnopharmacol 273: 113928. https://doi.org/10.1016/j.jep.2021.113928

Lee SC, Wo WK, Yeoh HS, Ali NM, Hariraj V (2021) Allopurinol induced severe cutaneous adverse drug reactions: An analysis of spontaneous reports in Malaysia (2000–2018). Ther Innov Regul Sci 55(3): 514–522. https://doi.org/10.1007/s43441-020-00245-w

Lin S, Zhang G, Liao Y, Pan J, Gong D (2015) Dietary flavonoids as xanthine oxidase inhibitors: structure-affinity and structure-activity relationships. J Agric Food Chem 63(35): 7784–94. https://doi.org/10.1021/acs.jafc.5b03386

Luo W, Zhao M, Yang B, Ren J, Shen G, Rao G (2011) Antioxidant and antiproliferative capacities of phenolics purified from Phyllanthus emblica L. fruit. Food Chem 126(1): 277–282. https://doi.org/10.1016/j.foodchem.2010.11.018

Mari E, Ricci F, Imberti D, Gallerani M (2011) Agranulocytosis: an adverse effect of allopurinol treatment. Ital J Med 5(2): 120–123. https://doi.org/10.4081/itjm.2011.120

Markham KR, Mabry TJ (1975) Ultraviolet-visible and proton magnetic resonance spectroscopy of flavonoid. In: The flavonoids, Ed. J.B. Harborne, T.J. Mabry, H. Mabry. USA: Springer-science+Business Media.

Mehmood A, Ishaq M, Zhao L, Safdar B, Ashfaq-ur-Rehman, Munir M, Raza A, Nadeem M, Iqbal W, Wang C (2019) Natural compounds with xanthine oxidase inhibitory activity: A review. Chem Biol Drug Des 93(4): 387–418. https://doi.org/10.1111/cbdd.13437

Nagao A, Seki M, Kobayashi H (1999) Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 63(10): 1787–1790. https://doi.org/10.1271/bbb.63.1787

Nayaka NMDMW, Fidrianny I, Sukrasno, Hartati R, Singgih M (2020) Antioxidant and antibacterial activities of multiflora honey extracts from the Indonesian Apis cerana bee. J Taibah Univ Med Sci 15(3): 211–217. https://doi.org/10.1016/j.jtumed.2020.04.005

Ongchai S (2019) Phyllanthus spp. as a potential alternative treatment for arthritic conditions. In: Watson RR, Preedy VR (Eds) Bioactive food as dietary interventions for arthritis and related inflammatory diseases (2nd Edn). United States of America: Academic Press, 523–533.

Owen PL, Johns T (1999) Xanthine oxidase inhibitory activity of northeastern North American plant remedies used for gout. J Ethnopharmacol 64(2): 149–160. https://doi.org/10.1016/S0378-8741(98)00119-6

Park HJ, Yun J, Kang DY, Park JW, Koh YI, Kim S, Kim SH, Nam YH, Jeong YY, Kim CW, Park HK, Kim SH, Kang HR, Jung JW (2019) Unique clinical characteristics and prognosis of allopurinol-induced severe cutaneous adverse reactions. J Allergy Clin Immunol Pract 7(8): 2739–2749. https://doi.org/10.1016/j.jaip.2019.05.047

Ponce AM, Blanco SE, Molina AS, Garcı´a-Domenech R, Ga´lvez J (2000) Study of the action of flavonoids on xanthine-oxidase by molecular topology. J Chem Inf Comput Sci 40: 1039–1045. https://doi.org/10.1021/ci000020k

Pourmorad F, Hosseinimehr SJ, Shahabimajd N (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol 5(11): 1142–1145. https://doi.org/10.4314/AJB.V5I11.42999

Purena R, Seth R, Bhatt R (2018) Protective role of Emblica officinalis hydro-ethanolic leaf extract in cisplatin induced nephrotoxicity in rats. Toxicol Rep 5: 270–277. https://doi.org/10.1016/j.toxrep.2018.01.008

Rusmana D, Wahyudianingsih R, Elisabeth M, Balqis, Maesaroh, Widowati W (2017) Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin. Indones Biomed J 9(2): 84–90. https://doi.org/10.18585/inabj.v9i2.281

Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, El-Shazly M, Kumar V (2022) Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J Ethnopharmacol 282: 114570. https://doi.org/10.1016/j.jep.2021.114570

Saksit N, Tassaneeyakul W, Nakkam N, Konyoung P, Khunarkornsiri U, Chumworathayi P, Sukasem C, Suttisai S, Piriyachananusorn N, Tiwong P, Chaiyakunapruk N, Sawanyawisuth K, Rerkpattanapipat T, Tassaneeyakul W (2017) Risk factors of allopurinol-induced severe cutaneous adverse reactions in a Thai population. Pharmacogenet Genom 27(7): 255–263. https://doi.org/10.1097/fpc.0000000000000285.

Shahidi F, Naczk M (2003) Phenolics in food and nutraceuticals, 2nd ed. Boca Raton: CRC Press, pp. 490. https://doi.org/10.1201/9780203508732

Stamp LK, Chapman PT (2020) Allopurinol hypersensitivity: Pathogenesis and prevention. Best Pract Res Clin Rheumatol 34(4): 101501. https://doi.org/10.1016/j.berh.2020.101501

Sukrasno, Tuty S, Fidrianny I (2017) Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, Central Java, Indonesia. Asian J Pharm Clin Res 10(6): 377–382. https://dx.doi.org/10.22159/ajpcr.2017.v10i6.16565

Variya BC, Bakrania AK, Patel SS (2016) Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 111: 180–200. https://doi.org/10.1016/j.phrs.2016.06.013

Yadav SS, Singh MK, Singh PK, Kumar V (2017) Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed Pharmacother 93: 1292–1302. https://doi.org/10.1016/j.biopha.2017.07.065

Zhao J, Huang L, Sun C, Zhao D, Tang H (2020) Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods, and molecular simulations. Food Chem 323: 126807. https://doi.org/10.1016/j.foodchem.2020.126807

© 2024 Journal of Pharmacy & Pharmacognosy Research

Spray-drying Perilla frutescens extract optimization

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1056-1066, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres24.2009_12.6.1056

Original Article

Optimization of spray-drying conditions and quality assessment of dry extract from Perilla frutescens (L.) Britton leaves

[Optimización de las condiciones de secado por atomización y evaluación de la calidad del extracto seco de hojas de Perilla frutescens (L.) Britton]

Nguyen Thi Linh Tuyen1*, Nguyen Thi Thuy Linh1, Pham Thi To Lien1, Do Quang Duong2

1Department of Pharmacognosy, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City, Vietnam.

2Department of Pharmaceutical Information Technology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, District 1, Ho Chi Minh City, Vietnam.

*E-mail: ntltuyen@ctump.edu.vn

Abstract

Context: Perilla frutescens and its dried extract have been employed in food and pharmaceutical manufacturing due to the plant’s biological activities, which include antibacterial, anti-allergic, anticancer, antiviral, antioxidant, and antidepressant properties. Despite numerous studies on preparing dry extracts from various medicinal herbs, no research has been conducted to optimize spray-drying conditions specifically for P. frutescens.

Aims: To optimize the spray-drying parameters using BCPharSoft software and evaluate the quality of P. frutescens dry extract.

Methods: D-optimal design based on four independent variables carrier type (Glucidex, Glucidex: Arabic gum 9:1, Glucidex: Arabic gum 8:2), carrier mass (10, 15, and 20 g), inlet air temperature (160, and 180℃) and flow rate (12, and 14 rpm/min) was applied to investigate the cause-effect relations and optimized preparation process. The drying performance, moisture content, total phenol, and total flavonoid content were investigated as four dependent variables.

Results: All independent variables had significant effects on the dependent variables. The optimal parameters of the preparation process included using carrier Glucidex: Arabic gum at a ratio of 9:1, carrier mass of 19 g, inlet air temperature of 161°C, and flow rate of 12 rpm/min. The drying performance, moisture content, total phenol, and flavonoid content of the optimized P. frutescens dry extract were found to be 10.42%, 4.80%, and 90.57 mg GA/g, and 53.55 mg QE/g, respectively.

Conclusions: Dried P. frutescens extract has been efficiently produced using the spray-drying technique, establishing a foundation for future manufacturing of pharmaceuticals and functional foods derived from P. frutescens.

Keywords: BCPharSoft software; dry extract; Perilla frutescens; spray-drying.

PDF Download

Resumen

Contexto: La Perilla frutescens y su extracto seco se han utilizado en la fabricación de alimentos y productos farmacéuticos debido a las actividades biológicas de la planta, que incluyen propiedades antibacterianas, antialérgicas, anticancerígenas, antivirales, antioxidantes y antidepresivas. A pesar de numerosos estudios sobre la preparación de extractos secos de varias hierbas medicinales, no se ha realizado ninguna investigación para optimizar las condiciones de secado por pulverización específicamente para la P. frutescens.

Objetivos: Optimizar los parámetros de secado por pulverización utilizando el software BCPharSoft y evaluar la calidad del extracto seco de P. frutescens.

Métodos: Se aplicó un diseño D-óptimo basado en cuatro variables independientes: tipo de portador (Glucidex, Glucidex: goma arábiga 9:1, Glucidex: goma arábiga 8:2), masa del portador (10, 15 y 20 g), temperatura del aire de entrada (160 y 180℃) y velocidad de flujo (12 y 14 rpm/min) para investigar las relaciones causa-efecto y optimizar el proceso de preparación. El rendimiento de secado, el contenido de humedad, el contenido total de fenoles y el contenido total de flavonoides fueron investigados como cuatro variables dependientes.

Resultados: Todas las variables independientes tuvieron efectos significativos en las variables dependientes. Los parámetros óptimos del proceso de preparación incluyeron el uso de un portador Glucidex: goma arábiga en una proporción de 9:1, una masa de portador de 19 g, una temperatura del aire de entrada de 161°C y una velocidad de flujo de 12 rpm/min. El rendimiento de secado, el contenido de humedad, el contenido total de fenoles y el contenido total de flavonoides del extracto seco de P. frutescens optimizado fueron de 10,42%; 4,80% y 90,57 mg de ácido gálico/g y 53,55 mg de equivalente de quercetina/g, respectivamente.

Conclusiones: El extracto seco de P. frutescens se ha producido de manera eficiente mediante la técnica de secado por aspersión, estableciendo una base para la futura fabricación de productos farmacéuticos y alimentos funcionales derivados de P. frutescens.

Palabras Clave: extracto seco; Perilla frutescens; secado por pulverización; software BCPharSoft.

PDF Download
 
Citation Format: Tuyen NTL, Linh NTT, Lien PTT, Duong DQ (2024) Optimization of spray-drying conditions and quality assessment of dry extract from Perilla frutescens (L.) Britton leaves. J Pharm Pharmacogn Res 12(6): 1056–1066. https://doi.org/10.56499/jppres24.2009_12.6.1056
References

Ahmed HM (2018) Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules 24(1): 102. https://doi.org/10.3390/molecules24010102

Ahmed HM, Al-Zubaidy AM, Othman-Qadir G (2022) Biological investigations on macro-morphological characteristics, polyphenolic acids, antioxidant activity of Perilla frutescens (L) Britt. Grown under open field. Saudi J Biol Sci 29(5): 3213–3222. https://doi.org/10.1016/j.sjbs.2022.01.059

Ahmed HM, Tavaszi-Sarosi S (2019) Identification and quantification of essential oil content and composition, total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt. Food Chem 275: 730–738. https://doi.org/10.1016/j.foodchem.2018.09.155

Azhar MD, Hashib SA, Ibrahim UK, Rahman NA (2021) Development of carrier material for food applications in spray drying technology: An overview. Mater Today Proc 47: 1371–1375. https://doi.org/10.1016/j.matpr.2021.04.140

Bao VVQ, Huy NVB (2019) Influence of some technical factors on the formulation of beverage containing polyphenol from Perilla leaves extract. Hue Univ J Sci: Tech Technol 128(2A): 29–41. https://doi.org/10.26459/hueuni-jtt.v128i2A.5260

Bednarska MA, Janiszewska-Turak E (2020) The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. J Food Sci Technol 57(2): 564–577. https://doi.org/10.1007/s13197-019-04088-8

Corrêa-Filho LC, Lourenço MM, Moldão-Martins M, Alves VD (2019) Microencapsulation of β-carotene by spray drying: Effect of wall material concentration and drying inlet temperature. Int J Food Sci 2019: 8914852. https://doi.org/10.1155/2019/8914852

Cortés MR, Hernández GS, Estrada EMM (2017) Optimization of the spray drying process for obtaining cape gooseberry powder: An innovative and promising functional food. Vitae 24(1): 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07

Gallo L, Ramírez-Rigo MV, Piña J, Bucalá V (2015) A comparative study of spray-dried medicinal plant aqueous extracts. Drying performance and product quality. Chem Eng Res Des 104: 681–694. https://doi.org/10.1016/j.cherd.2015.10.009

Jafari SM, Ghalenoei MG, Dehnad D (2017) Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol 311: 59–65. https://doi.org/10.1016/j.powtec.2017.01.070

Jangam SV, Thorat BN (2010) Optimization of spray drying of ginger extract. Dry Technol 28(12): 1426–1434. https://doi.org/10.1080/07373937.2010.482699

Kalušević A, Lević S, Čalija B, Pantić M, Belović M, Pavlović V, Bugarski B, Milić J, Žilić S, Nedović V (2017) Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. J Microencapsul 34(5): 475–487. https://doi.org/10.1080/02652048.2017.1354939

Karaaslan İ, Dalgıç AC (2014) Spray drying of liquorice (Glycyrrhiza glabra) extract. J Food Sci Technol 51(11): 3014–3025. https://doi.org/10.1007/s13197-012-0847-0

Karrar E, Mahdi AA, Sheth S, Ahmed IAM, Manzoor MF, Wei W, Wang X (2021) Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int J Biol Macromol 171: 208–216. https://doi.org/10.1016/j.ijbiomac.2020.12.045

Lee JKM, Taip FS, Abdullah Z (2018) Effectiveness of additives in spray drying performance: A review. Food Res 2(6): 486 – 499. https://doi.org/10.26656/fr.2017.2(6).134

Liu Y, Hou Y, Si Y, Zhang S, Sun S, Liu X, Wang R, Wang W (2020) Isolation, characterization, and xanthine oxidase inhibitory activities of flavonoids from the leaves of Perilla frutescens. Nat Prod Res 34(18): 2566–2572. https://doi.org/10.1080/14786419.2018.1544981

Mazuco RA, Cardoso PMMC, Bindaco ÉS, Scherer R, Castilho RO, Faraco AAG, Ruas FG, Oliveira JP, Guimarães MCC, de Andrade TU, Lenz D, Braga FC, Endringer DC (2018) Maltodextrin and gum Arabic-based microencapsulation methods for anthocyanin preservation in juçara palm (Euterpe edulis Martius) fruit pulp. Plant Foods Hum Nutr 73(3): 209–215. https://doi.org/10.1007/s11130-018-0676-z

Nguyen HTT, Phan DT, Tong TM, Tran TT (2021) Study on the process of preparing Perilla drinks from Perilla frustescens (L.) Britton. HNUE J Sci 66(4F): 205–214. http://doi.org/10.18173/2354-1059.2021-0084

Nguyen TTL, Minh TL, Do DQ, Nguyen NVT (2022) Optimization of alcohol extraction and spray-drying conditions for efficient processing and quality evaluation of instant tea powder from lotus and green tea leaves. Pharmacia 69(3): 621–630. https://doi.org/10.3897/pharmacia.69.e84650

Oliveira WP, Souza CRF, Kurozawa L, Park KJ (2010) Spray drying of food and herbal products. Volume 1, chapter 5. In: Woo MW, Mujumdar AS, Daud WRW (eds.) Spray Drying Technology. Singapure, pp. 113–156.

Osakabe N, Yasuda A, Natsume M, Yoshikawa T (2004) Rosmarinic acid inhibits epidermal inflammatory responses: Anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25(4): 549–557. https://doi.org/10.1093/carcin/bgh034

Özdikicierler O, Dirim N, Pazır F (2019) Modeling and optimization of the spray drying parameters for soapwort (Gypsophila sp.) extract. Food Sci Biotechnol 28(5): 1409–1419. https://doi.org/10.1007/s10068-019-00573-0

Patel RP, Patel MP, Suthar AM (2009) Spray drying technology: An overview. Indian J Sci Technol 2(10): 44–47. http://doi.org/10.17485/ijst/2009/v2i10.3

Pham VV, Nguyen HH, Tran VHP, Pham NB, Nguyen TD (2023) Effects of excipients on the preparation of Phyllanthus amarus Schum. et. Thonn. dry extract powder by spray-drying. J Military Pharmaco-Medicine 48: 167–176. https://doi.org/10.56535/jmpm.v48.514

Pui LP, Karim R, Yusof YA, Wong CW, Ghazali HM (2020) Optimization of spray-drying parameters for the production of ‘Cempedak’ (Artocarpus integer) fruit powder. Food Measure 14(6): 3238–3249. https://doi.org/10.1007/s11694-020-00565-3

Santhalakshmy S, Don Bosco SJ, Francis S, Sabeena M (2015) Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol 274: 37–43. https://doi.org/10.1016/j.powtec.2015.01.016

Shishir MRI, Chen W (2017) Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci Technol 65: 49–67. https://doi.org/10.1016/j.tifs.2017.05.006

Sinh NQ, Huong NTD, Thuan NT (2019) Effects of some spray drying process parameters on the quality of instant black tea powder. HUAF J Agric Sci Technol 3(2): 1217–1226. https://doi.org/10.46826/huaf-jasat.v3n2y2019.241

Tan ND, Thuy NM (2017) Optimization of carriers (maltodextrin, Arabic gum) for spray-drying of Pouzolzia zeylanica extracts using response surface methodology. Can Tho Univ J Sci 6: 102–110. http://doi.org/10.22144/ctu.jen.2017.033

Tan SP, Kha TC, Parks SE, Stathopoulos CE, Roach PD (2015) Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technol 281: 65–75. http://doi.org/10.1016/j.powtec.2015.04.074

Tang WF, Tsai HP, Chang YH, Chang TY, Hsieh CF, Lin CY, Lin GH, Chen YL, Jheng JR, Liu PC, Yang CM, Chin YF, Chen CC, Kau JH, Hung YJ, Hsieh PS, Horng JT (2021) Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed J 44(3): 293–303. http://doi.org/10.1016/j.bj.2021.01.005

The United States Pharmacopoeia Convention (2020) USP 43–NF 38. MD, USA: The United States Pharmacopoeia Convention Rockville, 2019.

Tontul I, Topuz A (2017) Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci Technol 63: 91–102. https://doi.org/10.1016/j.tifs.2017.03.009

Tran TTA, Nguyen HVH (2018) Effects of spray-drying temperatures and carriers on physical and antioxidant properties of lemongrass leaf extract powder. Beverages 4(4): 84. https://doi.org/10.3390/beverages4040084

van Boven AP, Novoa SMC, Kohlus R, Schutyser MAI (2023) Investigation on nozzle zone agglomeration during spray drying using response surface methodology. Powder Technol 429: 118910. https://doi.org/10.1016/j.powtec.2023.118910

Vietnam Ministry of Health (2018) Vietnam National Pharmacopoeia. Medical Publishing House, Hanoi, Vietnam.

Yu H, Qiu JF, Ma LJ, Hu YJ, Li P, Wan JB (2017) Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem Toxicol 108: 375–391. https://doi.org/10.1016/j.fct.2016.11.023

© 2024 Journal of Pharmacy & Pharmacognosy Research

Honey clinical applications in complementary medicine

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1040-1055, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres24.1870_12.6.1040

Review

Honey clinical applications in complementary medicine: A critical review

[Aplicaciones clínicas de la miel en la medicina complementaria: Una revisión crítica]

Thai Hau Koo1, Andee Dzulkarnaen Zakaria2*, Mohd Zulkifli Mustafa3

1Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.

2Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.

3Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.

*E-mail: andee@usm.my

Abstract

Context: Honey has been employed for its therapeutic attributes since ancient eras, with a history of medicinal utilization, and recent studies have highlighted its diverse clinical applications. The medicinal benefits of honey can be ascribed to various mechanisms, encompassing its osmotic and acidic characteristics, hydrogen peroxide generation, and particular bioactive compounds. While honey generally has a good safety profile, rare risks exist, particularly in infants under one year of age. More rigorous clinical trials and standardized protocols are needed to establish its optimal dosage, application methods, and specific indications. Economic considerations and regional variations in honey composition and quality should also be considered.

Aims: To provide an overview of the clinical uses of honey in the medical field, emphasizing its effectiveness and potential therapeutic benefits.

Methods: A comprehensive literature search was conducted to gather relevant studies on the clinical applications of honey. The search encompassed various databases and included studies published with the range from May 2001 to May 2023. The selected studies were critically reviewed to extract pertinent information for this critical review.

Results: Natural honey comes from two types of honey-producing bees: honeybees and stingless bees. Honey constitutes a multifaceted amalgamation of sugars, enzymes, minerals, vitamins, and bioactive compounds, all contributing to its therapeutic attributes. It exhibits antibacterial, anti-inflammatory, wound healing, and antioxidant effects. In wound management, honey promotes healing, reduces infection rates, and minimizes scarring. It also shows promise in treating bacterial and fungal infections. Furthermore, honey has effectively alleviated symptoms associated with respiratory tract infections, gastrointestinal disorders, and dermatological conditions.

Conclusions: Honey possesses multifaceted clinical applications in the medical field. Its diverse therapeutic properties and minimal adverse effects make it an attractive option for various conditions. However, further research is necessary to solidify its role in evidence-based clinical practice, including conducting more rigorous clinical trials, establishing standardized protocols, and considering economic and regional factors.

Keywords: clinical application; Kelulut honey; Tualang honey.

PDF Download

Resumen

Contexto: La miel se ha empleado por sus atributos terapéuticos desde la antigüedad, con una historia de utilización medicinal, y estudios recientes han puesto de relieve sus diversas aplicaciones clínicas. Los beneficios medicinales de la miel pueden atribuirse a diversos mecanismos, que abarcan sus características osmóticas y ácidas, la generación de peróxido de hidrógeno y determinados compuestos bioactivos. Aunque en general la miel tiene un buen perfil de seguridad, existen riesgos poco frecuentes, sobre todo en lactantes menores de un año. Se necesitan ensayos clínicos más rigurosos y protocolos estandarizados para establecer su dosis óptima, métodos de aplicación e indicaciones específicas. También deben tenerse en cuenta las consideraciones económicas y las variaciones regionales en la composición y calidad de la miel.

Objetivos: Ofrecer una visión general de los usos clínicos de la miel en el ámbito médico, haciendo hincapié en su eficacia y sus posibles beneficios terapéuticos.

Métodos: Se realizó una exhaustiva búsqueda bibliográfica para recopilar estudios relevantes sobre las aplicaciones clínicas de la miel. La búsqueda abarcó varias bases de datos e incluyó estudios publicados con un intervalo entre mayo de 2001 y mayo de 2023. Los estudios seleccionados se revisaron críticamente para extraer información pertinente para esta revisión crítica.

Resultados: La miel natural procede de dos tipos de abejas productoras de miel: las abejas melíferas y las abejas sin aguijón. La miel constituye una amalgama polifacética de azúcares, enzimas, minerales, vitaminas y compuestos bioactivos, que contribuyen a sus atributos terapéuticos. Tiene efectos antibacterianos, antiinflamatorios, cicatrizantes y antioxidantes. En el tratamiento de heridas, la miel favorece la cicatrización, reduce las tasas de infección y minimiza las cicatrices. También resulta prometedora en el tratamiento de infecciones bacterianas y fúngicas. Además, la miel ha aliviado eficazmente los síntomas asociados a infecciones de las vías respiratorias, trastornos gastrointestinales y afecciones dermatológicas.

Conclusiones: La miel posee aplicaciones clínicas polifacéticas en el campo de la medicina. Sus diversas propiedades terapéuticas y sus mínimos efectos adversos la convierten en una opción atractiva para diversas afecciones. Sin embargo, es necesario seguir investigando para consolidar su papel en la práctica clínica basada en la evidencia, incluyendo la realización de ensayos clínicos más rigurosos, el establecimiento de protocolos estandarizados y la consideración de factores económicos y regionales.

Palabras Clave: aplicación clínica; miel de Kelulut; miel de Tualang.

PDF Download
 
Citation Format: Koo TH, Zakaria AD, Mustafa MZ (2024) Honey clinical applications in complementary medicine: A critical review. J Pharm Pharmacogn Res 12(6): 1040–1055. https://doi.org/10.56499/jppres24.1870_12.6.1040
References

Abuelgasim H, Albury C, Lee J (2021) Effectiveness of honey for symptomatic relief in upper respiratory tract infections: A systematic review and meta-analysis. BMJ Evid Based Med 26(2): 57–64. https://doi.org/10.1136/bmjebm-2020-111336

Ahmed N, Sutcliffe A, Tipper C (2013) Feasibility study: Honey for treatment of cough in children. Pediatr Rep 5(2): 31–34. https://doi.org/10.4081/pr.2013.e8

Ahmed S, Othman NH (2013) Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malays J Med Sci 20(3): 6–13. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3743976/

Ahmed S, Sulaiman SA, Baig AA, Ibrahim M, Liaqat S, Fatima S, Jabeen S, Shamim N, Othman NH (2018) Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid Med Cell Longev 2018: 8367846. https://doi.org/10.1155/2018/8367846

Ajibola A (2015) Novel insights into the health importance of natural honey. Malays J Med Sci 22(5): 7–22. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5295738/

Ajibola A, Chamunorwa JP, Erlwanger KH (2012) Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr Metab (Lond) 9: 61. https://doi.org/10.1186/1743-7075-9-61

Akbar S (2020) Handbook of 200 medicinal plants. A comprehensive review of their traditional medical uses and scientific justifications. Switzerland AG: Springer Cham, pp. 2156. https://doi.org/10.1007/978-3-030-16807-0

Almasaudi S (2021) The antibacterial activities of honey. Saudi J Biol Sci 28(4): 2188–2196. https://doi.org/10.1016/j.sjbs.2020.10.017

Asha’ari ZA, Ahmad MZ, Jihan WS, Che CM, Leman I (2013) Ingestion of honey improves the symptoms of allergic rhinitis: evidence from a randomized placebo-controlled trial in the East Coast of Peninsular Malaysia. Ann Saudi Med 33(5): 469–475. https://doi.org/10.5144/0256-4947.2013.469

Azman KF, Aziz CBA, Zakaria R, Ahmad AH, Shafin N, Ismail CAN (2021) Tualang honey: A decade of neurological research. Molecules 26(17): 5424. https://doi.org/10.3390/molecules26175424

Babacan S, Rand AG (2007) Characterization of honey amylase. J Food Sci 72(1): C050–C055. https://doi.org/10.1111/j.1750-3841.2006.00215.x

Bett CK (2017) Factors influencing quality honey production. Int J Acad Res Bus Social Sci 7(11): 281–292. http://dx.doi.org/10.6007/IJARBSS/v7-i11/3458

Bohr A, Memarzadeh K (2020) The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare. Academic Press, pp. 25–60. https://doi.org/10.1016/B978-0-12-818438-7.00002-2

Burzyńska M, Piasecka-Kwiatkowska D (2021) A review of honeybee venom allergens and allergenicity. Int J Mol Sci 22(16): 8371. https://doi.org/10.3390/ijms22168371

Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F (2020) Effectiveness of interventions to enhance healing of chronic foot ulcers in diabetes: A systematic review. Diabetes Metab Res Rev 40(3): e3786. https://doi.org/10.1002/dmrr.3786

Clark M, Adcock L (2019) Honey for wound management: A review of clinical effectiveness and guidelines. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. https://www.ncbi.nlm.nih.gov/books/NBK538361/

Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM (2020) Honey: Another alternative in the fight against antibiotic-resistant bacteria? Antibiotics 9(11): 774. https://doi.org/10.3390/antibiotics9110774

Devasvaran K, Yong Y-K (2016) Anti-inflammatory and wound healing properties of Malaysia Tualang honey. Current Sci 110(1): 47–51.

Dinat S, Orchard A, Van Vuuren S (2023) A scoping review of African natural products against gastric ulcers and Helicobacter pylori. J Ethnopharmacol 301: 115698. https://doi.org/10.1016/j.jep.2022.115698

Ediriweera E, Premarathna N (2012) Medicinal and cosmetic uses of Bee’s honey–A review. Ayu 33(2): 178–182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611628

Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S (2010) Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Ann Endocrinol (Paris) 71(4): 291–296. https://doi.org/10.1016/j.ando.2010.03.003

Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S (2011) Glibenclamide or metformin combined with honey improves glycemic control in streptozotocin-induced diabetic rats. Int J Biol Sci 7(2): 244–252. https://doi.org/10.7150/ijbs.7.244

Esa NEF, Ansari MNM, Razak SIA, Ismail NI, Jusoh N, Zawawi NA, Jamaludin MI, Sagadevan S, Nayan NHM (2022) A review on recent progress of stingless bee honey and its hydrogel-based compound for wound care management. Molecules 27(10): 3080. https://doi.org/10.3390/molecules27103080

Eteraf-Oskouei, T, Najafi, M (2013) Traditional and modern uses of natural honey in human diseases: A review. Iran J Basic Med Sci 16(6): 731–742. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3758027/

Firdaus A, Khalid J, Yong YK (2018) Malaysian Tualang honey and its potential anti-cancer properties: A review. Sains Malaysiana 47(11): 2705–2711. http://dx.doi.org/10.17576/jsm-2018-4711-14

Fletcher MT, Hungerford NL, Webber D, Carpinelli de Jesus M, Zhang J, Stone ISJ, Blanchfield JT, Zawawi N (2020) Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci Rep 10(1): 12128. https://doi.org/10.1038/s41598-020-68940-0

Haddaway NR, Bethel A, Dicks LV, Koricheva J, Macura B, Petrokofsky G, Pullin AS, Savilaakso S, Stewart GB (2020) Eight problems with literature reviews and how to fix them. Nat Ecol Evol 4(12): 1582–1589. https://doi.org/10.1038/s41559-020-01295-x

Hassapidou M, Fotiadou E, Maglara E, Papadopoulou SK (2006) Energy intake, diet composition, energy expenditure, and body fatness of adolescents in northern Greece. Obesity 14(5): 855–862. https://doi.org/10.1038/oby.2006.99

Hazirah H, Yasmin A, Norwahidah A (2019) Antioxidant properties of stingless bee honey and its effect on the viability of lymphoblastoid cell line. Med Health 14: 91–105. http://dx.doi.org/10.17576/MH.2019.1401.08

Hossain, ML, Lim, LY, Hammer, K, Hettiarachchi, D, Locher, C (2021) Honey-based medicinal formulations: A critical review. Appl. Sci 11(11): 5159. https://doi.org/10.3390/app11115159

Ibrahim MA, Berahim Z, Ahmad A, Taib H (2021) The effect of locally delivered Tualang honey on healing of periodontal tissues during non-surgical periodontal therapy. IIUM J Orofac Health Sci 2(2): 16–26.

Jaganathan SK, Balaji A, Vellayappan MV, Asokan MK, Subramanian AP, John AA, Supriyanto E, Razak SI, Marvibaigi M (2015) A review on antiproliferative and apoptotic activities of natural honey. Anticancer Agents Med Chem 15(1): 48–56. https://doi.org/10.2174/1871520614666140722084747

Kek SP, Chin NL, Yusof YA, Tan SW, Chua LS (2014) Total phenolic contents and colour intensity of Malaysian honeys from the Apis spp. and Trigona spp. bees. Agric Agric Sci Procedia 2: 150–155. https://doi.org/10.1016/j.aaspro.2014.11.022

Khan SU, Anjum SI, Rahman K, Ansari MJ, Khan WU, Kamal S, Khattak B, Muhammad A, Khan HU (2018) Honey: Single food stuff comprises many drugs. Saudi J Biol Sci 25(2): 320–325. https://doi.org/10.1016/j.sjbs.2017.08.004

Khoo YT, Halim AS, Singh KK, Mohamad NA (2010) Wound contraction effects and antibacterial properties of Tualang honey on full-thickness burn wounds in rats in comparison to hydrofibre. BMC Complement Altern Med 10: 48. https://doi.org/10.1186/1472-6882-10-48

Main EN, Bowlin GL (2022) Potential for Manuka honey‐inspired therapeutics to improve the host–biomaterial response. MedComm – Biomater Appl 1(1): e18. https://doi.org/10.1002/mba2.18

Mandal MD, Mandal S (2011) Honey: Its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1(2): 154–160. https://doi.org/10.1016/s2221-1691(11)60016-6

Marimuthu MP, Makhtar A, Abd Rashid N, Faheem NAN, Haseeb A (2023) Potential of Malaysian stingless bee Kelulut honey in wound healing. Eur Chem Bull 12(Special Issue 4): 5217–5223.

Martinez-Armenta C, Camacho-Rea MC, Martínez-Nava GA, Espinosa-Velázquez R, Pineda C, Gomez-Quiroz LE, López-Reyes A (2021) Therapeutic potential of bioactive compounds in honey for treating osteoarthritis. Front Pharmacol 12: 642836. https://doi.org/10.3389/fphar.2021.642836

McLoone P, Oluwadun A, Warnock M, Fyfe L (2016) Honey: A therapeutic agent for disorders of the skin. Cent Asian J Glob Health 5(1): 241. https://doi.org/10.5195/cajgh.2016.241

Minden-Birkenmaier BA, Bowlin GL (2018) Honey-based templates in wound healing and tissue engineering. Bioengineering 5(2): 46. https://doi.org/10.3390/bioengineering5020046

Mohamed HK, Mobasher MA, Ebiya RA, Hassen MT, Hagag HM, El-Sayed R, Abdel-Ghany S, Said MM, Awad NS (2022) Anti-inflammatory, anti-apoptotic, and antioxidant roles of honey, royal jelly, and propolis in suppressing nephrotoxicity induced by doxorubicin in male albino rats. Antioxidants 11(5): 1029. https://doi.org/10.3390/antiox11051029

Mohd Kamal DA, Ibrahim SF, Kamal H, Kashim MIAM, Mokhtar MH (2021) Physicochemical and medicinal properties of Tualang, Gelam and Kelulut honeys: A comprehensive review. Nutrients 13(1): 197. https://doi.org/10.3390/nu13010197

Nasir NA, Halim AS, Singh KK, Dorai AA, Haneef MN (2010) Antibacterial properties of Tualang honey and its effect in burn wound management: a comparative study. BMC Complement Altern Med 10: 31. https://doi.org/10.1186/1472-6882-10-31

Ng WJ, Sit NW, Ooi PA, Ee KY, Lim TM (2020) The antibacterial potential of honeydew honey produced by stingless bee (Heterotrigona itama) against antibiotic resistant bacteria. Antibiotics 9(12): 871. https://doi.org/10.3390/antibiotics9120871

Nikhat S, Fazil M (2022) History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. J Ethnopharmacol 282: 114614. https://doi.org/10.1016/j.jep.2021.114614

Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, Shamseer L, Tetzlaff J, Akl E, Brennan S, Chou R, Glanville J, Grimshaw J, Hrobjartsson A, Lalu M, Li T, Loder E, MayoWilson E, McDonald S, McGuinness L, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88: 105906. https://doi.org/10.1016/j.ijsu.2021.105906

Pasupuleti VR, Sammugam L, Ramesh N, Gan SH (2017) Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev 2017: 1259510. https://doi.org/10.1155/2017/1259510

Pataca LC, Borges Neto W, Marcucci MC, Poppi RJ (2007) Determination of apparent reducing sugars, moisture and acidity in honey by attenuated total reflectance-Fourier transform infrared spectrometry. Talanta 71(5): 1926–1931. https://doi.org/10.1016/j.talanta.2006.08.028

Pleeging CC, Wagener FA, De Rooster H, Cremers NA (2022) Revolutionizing non-conventional wound healing using honey by simultaneously targeting multiple molecular mechanisms. Drug Resist Updat 62: 100834. https://doi.org/10.1016/j.drup.2022.100834

Ramli NZ, Chin K-Y, Zarkasi KA, Ahmad F (2019) The beneficial effects of stingless bee honey from Heterotrigona itama against metabolic changes in rats fed with high-carbohydrate and high-fat diet. Int J Environ Res Public Health 16(24): 4987. https://doi.org/10.3390/ijerph16244987

Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Zakaria, ZA, Bakar MFA (2021) Honey and its nutritional and anti-inflammatory value. BMC Complement Med Ther 21(1): 30. https://doi.org/10.1186/s12906-020-03170-5

Ranneh Y, Ali F, Zarei M, Akim AM, Abd Hamid H, Khazaai H (2018) Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT 89: 1–9. https://doi.org/10.1016/j.lwt.2017.10.020

Rao PV, Krishnan KT, Salleh N, Gan SH (2016) Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Rev Bras Farmacogn 26: 657–664. https://doi.org/10.1016/j.bjp.2016.01.012

Rashid MR, Nor Aripin KN, Syed Mohideen FB, Baharom N, Omar K, Md Taujuddin NMS, Mohd Yusof HH, Addnan FH (2019) The effect of Kelulut honey on fasting blood glucose and metabolic parameters in patients with impaired fasting glucose. J Nutr Metab 2019: 3176018. https://doi.org/10.1155/2019/3176018

Samarghandian S, Farkhondeh T, Samini F (2017) Honey and health: A review of recent clinical research. Pharmacogn Res 9(2): 121–127. https://doi.org/10.4103/0974-8490.204647

Schell KR, Fernandes KE, Shanahan E, Wilson I, Blair SE, Carter DA, Cokcetin NN (2022) The potential of honey as a prebiotic food to re-engineer the gut microbiome toward a healthy state. Front Nutr 9: 957932. https://doi.org/10.3389/fnut.2022.957932

Tashkandi H (2021) Honey in wound healing: An updated review. Open Life Sci 16(1): 1091–1100. https://doi.org/10.1515/biol-2021-0084

Verkuijl SJ, Friedmacher F, Harter PN, Rolle U, Broens PM (2021) Persistent bowel dysfunction after surgery for Hirschsprung’s disease: A neuropathological perspective. World J Gastrointest Surg 13(8): 822–833. https://doi.org/10.4240/wjgs.v13.i8.822

Visavadia BG, Honeysett J, Danford MH (2008) Manuka honey dressing: An effective treatment for chronic wound infections. Br J Oral Maxillofac Surg 46(1): 55–56. https://doi.org/10.1016/j.bjoms.2006.09.013

Vogt NA, Vriezen E, Nwosu A, Sargeant JM (2021) A scoping review of the evidence for the medicinal use of natural honey in animals. Front Vet Sci 7: 618301. https://doi.org/10.3389/fvets.2020.618301

Wang C, Guo M, Zhang N, Wang G (2019) Effectiveness of honey dressing in the treatment of diabetic foot ulcers: A systematic review and meta-analysis. Complement Ther Clin Pract 34: 123–131. https://doi.org/10.1016/j.ctcp.2018.09.004

Yaghoobi R, Kazerouni A, Kazerouni O (2013) Evidence for clinical use of honey in wound healing as an antibacterial, anti-inflammatory antioxidant and anti-viral agent: A review. Jundishapur J Nat Pharm Prod 8(3): 100–104. https://doi.org/10.17795/jjnpp-9487

Yazan LS, Zainal NA, Ali RM, Muhamad Zali MFS, Sze OY, Sim TY, Gopalsamy B, Ling VF, Sapuan S, Esa N, Haron AS, Ansar FHZ, Mokhtar AMA, Alwi SSS (2018) Antiulcer properties of Kelulut honey against ethanol-induced gastric ulcer. Pertanika J Sci Technol 26(1): 121–132.

Yong PYA, Islam F, Harith HH, Israf DA, Tan JW, Tham CL (2021) The Potential use of honey as a remedy for allergic diseases: A minireview. Front Pharmacol 11: 599080. https://doi.org/10.3389/fphar.2020.599080

Young G-WZ, Blundell R (2023) A review on the phytochemical composition and health applications of honey. Heliyon 9(2): e12507. https://doi.org/10.1016/j.heliyon.2022.e12507

Yupanqui Mieles J, Vyas C, Aslan E, Humphreys G, Diver C, Bartolo P (2022) Honey: An advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics 14(8): 1663. https://doi.org/10.3390/pharmaceutics14081663

Zainol MI, Mohd Yusoff K, Mohd Yusof MY (2013) Antibacterial activity of selected Malaysian honey. BMC Complement Altern Med 13: 129. https://doi.org/10.1186/1472-6882-13-129

Zulkhairi Amin FA, Sabri S, Mohammad SM, Ismail M, Chan KW, Ismail N, Norhaizan ME, Zawawi N (2018) Therapeutic properties of stingless bee honey in comparison with European bee honey. Adv Pharmacol Sci 2018: 6179596. https://doi.org/10.1155/2018/6179596

Zulkhairi Amin FA, Sabri S, Mohammad SM, Ismail M, Chan KW, Ismail N, Zawawi N (2018) Therapeutic properties of stingless bee honey in comparison with European bee honey. Adv Pharmacol Sci 2018: 6179596. https://doi.org/10.1155/2018/6179596

Zumla A, Lulat A (1989) Honey – A remedy rediscovered J R Soc Med 82(7): 384–385. https://doi.org/10.1177/014107688908200704

© 2024 Journal of Pharmacy & Pharmacognosy Research

Chemical composition and antioxidant capacity of Mentha essential oils from Morocco

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1021-1039, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres23.1897_12.6.1021

Original Article

A comparative study of the chemical composition and antioxidant capacity of the essential oils from three species of Mentha cultivated in Morocco

[Estudio comparativo de la composición química y la actividad antioxidante de los aceites esenciales de tres especies de Mentha cultivadas en Marruecos]

Arrahmouni Rayan1, Ouazzani Chadia1*, Er-Ramly Azzedine2, Moustaghfir Abdellah2, Benchama Zakaria3, Elamrani Abdelaziz3, Benkhouili Fatima Zahra4, El-Guourrami Otman5, Dami Abdallah1, Balouch Lhousaine1

1Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.

2Laboratory of Odontological Biomaterials and Nanotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco.

3Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco.

4Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.

5Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.

*E-mail: ouazcom@yahoo.fr

Abstract

Context: Mentha species are well known for their health benefits. Products extracted from aromatic plants of this genus (Mentha) are increasingly being studied for their active constituents in order to replace synthetic products that are harmful to health.

Aims: To determine the chemical composition, physicochemical parameters, and antioxidant properties of essential oils of M. spicata, M. piperita, and M. pulegium. These plants were collected from three different geographical areas in the Rabat-Sale-Kenitra region of Morocco, with an additional focus on analyzing the fluctuation of their chemical composition based on their locations.

Methods: Essential oils obtained through hydrodistillation of the fresh aerial parts of the plants were analyzed via gas chromatography and gas chromatography-mass spectrometry. The antioxidant capacity was measured by several chemical tests: DPPH, ABTS, and FRAP.

Results: Multiple major components were identified, showcasing variations in composition between species as well as between plants of the same species. M. spicata was characterized by carvone, piperitone, 1,3,8-p-menthatriene; while M. piperita features linalool, D-carvone, 1,3,8-p-menthatriene; and M. pulegium had a single major component which is pulegone. To the best of our knowledge, it is assumed that a new set of chemotypes may be defined based on the geographical regions studied. The examined essential oils demonstrated notable antioxidant efficacy.

Conclusions: These findings suggest the potential use of extracts from these plants as an alternative to synthetic chemical products. Therefore, they could find applications in complementary medicine as well as in the pharmaceutical and food industries.

Keywords: antioxidant capacity; chemical composition; essential oils; Mentha piperita; Mentha pulegium; Mentha spicata.

PDF Download

Resumen

Contexto: Las especies de Mentha son bien conocidas por sus beneficios para la salud. Los productos extraídos de las plantas aromáticas de este género (Mentha) son cada vez más estudiados por sus constituyentes activos con el fin de sustituir los productos sintéticos perjudiciales para la salud.

Objetivos: Determinar la composición química, los parámetros fisicoquímicos y las propiedades antioxidantes de los aceites esenciales de M. spicata, M. piperita y M. pulegium. Estas plantas se recolectaron en tres zonas geográficas diferentes de la región marroquí de Rabat-Sale-Kenitra, con el objetivo adicional de analizar la fluctuación de su composición química en función de su ubicación.

Métodos: Los aceites esenciales obtenidos por hidrodestilación de las partes aéreas frescas de las plantas se analizaron mediante cromatografía de gases y cromatografía de gases-espectrometría de masas. La capacidad antioxidante se midió mediante varias pruebas químicas: DPPH, ABTS y FRAP.

Resultados: Se identificaron múltiples componentes principales, mostrando variaciones en la composición entre especies, así como entre plantas de la misma especie. M. spicata se caracterizaba por carvona, piperitona, 1,3,8-p-menthatrieno; mientras que M. piperita presenta linalol, D-carvona, 1,3,8-p-menthatrieno; y M. pulegium tenía un único componente principal que es la pulegona. Hasta donde sabemos, se supone que puede definirse un nuevo conjunto de quimiotipos en función de las regiones geográficas estudiadas. Los aceites esenciales examinados demostraron una notable eficacia antioxidante.

Conclusiones: Estos hallazgos sugieren el uso potencial de los extractos de estas plantas como alternativa a los productos químicos sintéticos. Por lo tanto, podrían encontrar aplicaciones en medicina complementaria, así como en las industrias farmacéutica y alimentaria.

Palabras Clave: aceites esenciales; capacidad antioxidante; composición química; Mentha piperita; Mentha pulegium; Mentha spicata.

PDF Download

 

 
 
Citation Format: Rayan A, Chadia O, Azzedine E, Abdellah M, Zakaria B, Abdelaziz E, Zahra BF, Otman E, Abdallah D, Lhousaine B (2024) A comparative study of the chemical composition and antioxidant activity of the essential oils from three species of Mentha cultivated in Morocco. J Pharm Pharmacogn Res 12(6): 1021–1039. https://doi.org/10.56499/jppres23.1897_12.6.1021
References

Abdolpour F, Shahverdi AR, Rafii F, Fazeli MR, Amini M (2007) Effects of piperitone on the antimicrobial activity of nitrofurantoin and on nitrofurantoin metabolism by Enterobacter cloacae. Pharm Biol 45: 230–234. https://doi.org/10.1080/13880200701213161

Adams RP (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Carol Stream, Illinois: Allured Publishing Co.

AFNOR (1998) NF T75-006. Les huiles essentielles-vocabulaire-1ère liste.

Ait-Ouazzou A, Lorán S, Arakrak A, Laglaoui A, Rota C, Herrera A, Pagán R, Conchello P (2012) Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res Int 45: 313–319. https://doi.org/10.1016/j.foodres.2011.09.004

Ait-Sidi-Brahim M, Markouk M, Larhsini M (2019) Moroccan medicinal plants as anti-infective and antioxidant agents. In New Look Phytomed. Advancements in Herbal Products as Novel Drug Leads, Academic Press, pp. 91–142. https://doi.org/10.1016/B978-0-12-814619-4.00005-7

Alsaraf S, Hadi Z, Akhtar MJ, Khan SA (2021) Chemical profiling, cytotoxic and antioxidant activity of volatile oil isolated from the mint (Mentha spicata L.,) grown in Oman. Biocatalysis Agricult Biotechnol 34: 102034. https://doi.org/10.1016/j.bcab.2021.102034

Arrahmouni R, Ouazzani C, Erramly A, Moustaghfir A, Dami A, Balouch L (2023) Chemical composition of Moroccan commercial essential oils of mint: Mentha spicata, Mentha piperita, and Mentha pulegium. Trop J Nat Prod Res 7(4): 2708–2712. https://www.doi.org/10.26538/tjnpr/v7i4.6

Bardaweel SK, Bakchiche B, ALSalamat HA, Rezzoug M, GheribA, Flamini G (2018) Chemical composition, antioxidant, antimicrobial, and antiproliferative activities of essential oil of Mentha spicata L. (Lamiaceae) from Algerian Saharan Atlas. BMC Complement Altern Med 18(1): 201. https://doi.org/10.1186/s12906-018-2274-x

Beghidja N, Bouslimani N, Benayache F, Benayache S, Chalchat JC (2007) Composition of the oils from Mentha pulegium grown in different areas of the East of Algeria. Chem Nat Compd 43(4): 481–483. https://doi.org/10.1007/s10600-007-0170-6

Benabdallah A, Boumendjel M, Aissi O, Rahmoune C, Boussaid M, Messaoud C (2018) Chemical composition, antioxidant activity and acetylcholinesterase inhibitory of wild Mentha species from northeastern Algeria. South Afr J Botany 116: 131–139. https://doi.org/10.1016/j.sajb.2018.03.002

Ben Lagha A, Vaillancourt K, Maquera Huacho P, Grenier D (2020) Effects of labrador tea, peppermint, and winter savory essential oils on Fusobacterium nucleatum. Antibiotics 9(11): 794. https://doi.org/10.3390/antibiotics9110794

Benomari FZ, AndreuV, Kotarba J, Dib MEA, Bertrand C, Muselli A, Costa J, Djabou N (2018) Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains. Environ. Sci Pollut Res 25(30): 29889–29900. https://doi.org/10.1007/s11356-017-9991-4

Benzaid C, Belmadani A, Djeribi R, Rouabhia M (2019) The effects of Mentha × piperita essential oil on Candida albicans growth, transition, biofilm formation, and the expression of secreted aspartyl proteinases genes. Antibiotics 8(1): 10. https://doi.org/10.3390/antibiotics8010010

Boukhobza F (2020) Intérêt de l’huile essentielle de Menthe poivrée dans les soins bucco-dentaires. Actual Pharm 59(597): 52–53. https://doi.org/10.1016/s0515-3700(20)30273-1

Bouyahya A, Et-Touys A, Bakri Y, Talbaui A, Fellah H, Abrini J, Dakka N (2017) Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial, and antioxidant activities. Microb Pathog 111: 41–49. https://doi.org/10.1016/j.micpath.2017.08.015

Camele I, Gruľová D, Elshafie HS (2021) Chemical composition and antimicrobial properties of Mentha × piperita cv. ‘Kristinka’ essential oil. Plants 10(8): 1567. https://doi.org/10.3390/plants10081567

Chraibi M, Fikri-Benbrahim K, Ou-yahyia D, Balouiri M, Farah A (2016) Radical scavenging and disinfectant effect of essential oil from Moroccan Mentha pulegium. Int J Pharm Pharm Res 8: 116–119. https://doi.org/10.22159/ijpps.2016.v8i9.12434

Council of Europe (COE) (2007) European Directorate for the Quality of Medicines, European Pharmacopoeia, 6th edn. COE, Strasbourg.

da Silva Ramos R, Rodrigues AB, Farias AL, Simões RC, Pinheiro MT, Ferreira RM, Costa Barbosa LM, Picanço Souto RN, Fernandes JB, Santos LD, de Almeida SS (2017) Chemical composition and in vitro antioxidant, cytotoxic, antimicrobial, and larvicidal activities of the essential oil of Mentha piperita L. (Lamiaceae). Sci World J 2017: 4927214. https://doi.org/10.1155/2017/4927214

Derwich E, Benziane Z, Taouil R, Senhaji O, Touzani M (2010) Aromatic plants of Morocco: GC/MS analysis of the essential oils of leaves of Mentha piperita. Adv Environ Biol 80–86.

Dorman HJD, Koşar M, Kahlos K, Holm Y, Hiltunen R (2003) Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J Agric Food Chem 51(16): 4563–4569. https://doi.org/10.1021/jf034108k

Elbouny H, Ouahzizi B, Bakali AH, Sellam K, Chakib ALEM (2022) Phytochemical study and antioxidant activity of two Moroccan Lamiaceae species: Nepeta nepetella subsp. amethystina and Sideriti sarborescens Salzm. ex exBenth J Anal Sci Appl Biotechnol 4: 15–21. https://doi.org/10.48402/IMIST.PRSM/jasab-v3i1.29989

El-Gharbaoui A, Benítez G, González-Tejero R, Molero-Mesa J, Merzouki A (2017) Comparison of Lamiaceae medicinal uses in eastern Morocco and eastern Andalusia and in Ibn al-Baytar’s Compendium of Simple Medicaments (13th century CE). J Ethnopharmacol 202: 208–224. https://doi.org/10.1016/j.jep.2017.03.014

El Hassani FZ (2020) Characterization, activities, and ethnobotanical uses of Mentha species in Morocco. Heliyon 6(11): e05480. https://doi.org/10.1016/j.heliyon.2020.e05480

El Hassani FZ, Zinedine A, Bendriss Amraoui M, Errachidi F, Mdaghri Alaoui S, Aissam H, Merzouki M, Benlemlih M (2009) Characterization of the harmful effect of olive mill wastewater on spearmint. J Hazard Mater 170: 779–785. https://doi.org/10.1016/j.jhazmat.2009.05.033

Elouaddari A, El Amrani A, Cayuela Sánchez JA, OuldBellahcen T, Zouiten A, Jamal Eddine J (2019) Chemical composition and biological activities of the Cladanthus mixtus essential oil: A review. Anal Chem Lett 9(5): 649–663. https://doi.org/10.1080/22297928.2019.1682665

Fadli M, Chevalier J, Saad A, Mezrioui NE, Hassani L, Pages JM (2011) Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria. Int J Antimicrob Agents 38(4): 325–330. https://doi.org/10.1016/j.ijantimicag.2011.05.005

Fazili MA, Masood A, Wani AH, Khan NA (2020) Essential oil of mint: Current understanding and future prospects. In Biodiversity and Biomedicine. Academic Press, pp. 293–304. https://doi.org/10.1016/b978-0-12-819541-3.00016-5

Fitsiou E, Mitropoulou G, Spyridopoulou K, Tiptiri-Kourpeti A, Vamvakias M, Bardouki H, Panayiotidis MI, Galanis A, Kourkoutas Y, Chlichlia K, Pappa A (2016) Phytochemical profile and evaluation of the biological activities of essential oils derived from the Greek aromatic plant species Ocimum basilicum, Mentha spicata, Pimpinella anisum, and Fortunella margarita. Molecules 21(8): 1069. https://doi.org/10.3390/molecules21081069

Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2011) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110(5): 2023–2032. https://doi.org/10.1007/s00436-011-2731-7

Grulova D, De Martino L, Mancini E, Salamon I, De Feo V (2014) Seasonal variability of the main components in essential oil of Mentha×piperita L. J Sci Food Agric 95(3): 621–627. https://doi.org/10.1002/jsfa.6802

Hajlaoui H, Trabelsi N, Noumi E, Snoussi M, Fallah H, Ksouri R, Bakhrouf A (2009) Biological activities of the essential oils and methanol extract of two cultivated mint species (Mentha longifolia and Mentha pulegium) used in Tunisian folkloric medicine. World J Microbiol Biotechnol 25: 2227–2238. https://doi.org/10.1007/s11274-009-0130-3

Han Y, Sun Z, Chen W (2019) Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules 25(1): 33. https://doi.org/10.3390/molecules25010033

Hariri A, Ouis N, Bouhadi D, Benatouche Z (2020) In vitro antioxidant activity of essential oil of aerial parts of Mentha pulegium L. Acta Agric Serbica 25(50): 193–197. https://doi.org/10.5937/AASer2050193H

Hussain AI, Anwar F, Nigam PS, Ashraf M, Gilani AH (2010) Seasonal variation in content, chemical composition, and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J Sci Food Agric 90(11): 1827–1836. https://doi.org/10.1002/jsfa.4021

Jagdale AD, Kamble SP, Nalawade ML, Arvindekar AU (2015) Citronellol: A potential antioxidant and aldose reductase inhibitor from Cymbopogon citratus. Int J Pharm Pharm Sci 7: 203–209.

Kahl R, Kappus H (1993) Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z LebensmUnters 196: 329–338. https://doi.org/10.1007/BF01197931

Kamatou GPP, Viljoen AM (2008) Linalool – a review of a biologically active compound of commercial importance. Nat Prod Commun 3(7): 1934578X0800300. https://doi.org/10.1177/1934578×0800300727

Kanko C, Sawaliho BE, Kone S, Koukoua G, N’Guessan YT (2004) Étude des propriétés physico-chimiques des huiles essentielles de Lippia multiflora, Cymbopogon citratus, Cymbopogon nardus, Cymbopogon giganteus. C R Chim 7: 1039–1042. https://doi.org/10.1016/j.crci.2003.12.030

Kofidis G, Bosabalidis A, Kokkini S (2004) Seasonal variation of essential oils in a linalool-rich chemotype of Mentha spicata grown wild in Greece. J Essent Oil Res 16(5): 469–472. https://doi.org/10.1080/10412905.2004.9698773

Kulisic T, Radonic A, Milos M (2005) Inhibition of lard oxidation by fractions of different essential oils. Grasas Aceites 56: 284–291. https://doi.org/10.3989/gya.2005.v56.i4.94

Lamiri A, Lhaloui S, Benjilali B, Berrada M (2001) Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Res 71: 9–15. https://doi.org/10.1016/S0378-4290(01)00139-3

Laseve (1996) Mass Spectra and Retention Indice Database. Université de Québec à Chicoutoumi (UQAC), Canada.

Likibi BN, Tsiba G, Madiélé AB, Nsikabaka S, Moutsamboté JM, Ouamba JM (2015) Constituants chimiques de l’huile essentielle de Mentha piperata L. (Lamiaceae) du Congo. J Appl Biosci 92: 8578–8585. https://doi.org/10.4314/jab.v92i1.2

Luís Â, Domingues F (2021) Screening of the potential bioactivities of pennyroyal (Mentha pulegium L.) essential oil. Antibiotics 10(10): 1266. https://doi.org/10.3390/antibiotics10101266

Mahboubi M (2021) Mentha spicata L. essential oil, phytochemistry and its effectiveness in flatulence. J Tradit Complement Med 11(2): 75–81. https://doi.org/10.1016/j.jtcme.2017.08.011

Marwa C, Fikri-Benbrahim K, Ou-Yahia D, Farah A (2017) African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil. J Adv Pharm Technol Res 8(3): 86–90.https://doi.org/10.4103/japtr.JAPTR_11_17

Miguel MG (2010) Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr J 25(5): 291–312. https://doi.org/10.1002/ffj.1961

Mimica-Dukić N, Božin B, Soković M, Mihajlović B, Matavulj M (2003) Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med 69(5): 413–419. https://doi.org/10.1055/s-2003-39704

Ouedrhiri W, Mechchate H, Moja S, Mothana RA, Noman OM, Grafov A, Greche H (2021) Boosted antioxidant effect using a combinatory approach with essential oils from Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba: Mixture design optimization. Plants 10(12): 2817. https://doi.org/10.3390/plants10122817

Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr (17): 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

Palá-Paúl J, Pérez-Alonso MJ, Velasco-Negueruela A, Palá-Paúl R, Sanz J, Conejero F (2001) Seasonal variation in chemical constituents of Santolina rosmarinifolia L. ssp. rosmarinifolia. Biochem Syst Ecol 29: 663–672. https://doi.org/10.1016/s0305-1978(01)00032-1

Pina LTS, Serafini MR, Oliveira MA, Sampaio LA, Guimarães JO, Guimarães AG (2022) Carvone and its pharmacological activities: A systematic review. Phytochemistry 196: 113080. https://doi.org/10.1016/j.phytochem.2021.113080

Pukalskas A, van Beek TA, Venskutonis RP, Linssen JPH, van Veldhuizen A, de Groot Æ (2002) Identification of radical scavengers in sweet grass (Hierochloe odorata). J Agric Food Chem 50(10): 2914–2919. https://doi.org/10.1021/jf011016r

Rasooli I, Shayegh S, Astaneh S (2009) The effect of Mentha spicata and Eucalyptus camaldulensis essential oils on dental biofilm. Int J Dent Hyg 7(3): 196–203. https://doi.org/10.1111/j.1601-5037.2009.00389.x

Rocha J, Direito R, Lima A, Mota J, Gonçalves M, Duarte MP, Solas J, Peniche BF, Fernandes A, Pinto R, Ferreira RB, Sepodes B, Figueira ME (2019) Reduction of inflammation and colon injury by a Pennyroyal phenolic extract in experimental inflammatory bowel disease in mice. Biomed Pharmacother 118: 109351. https://doi.org/10.1016/j.biopha.2019.109351

Saba I, Anwar F (2018) Effect of harvesting regions on physico-chemical and biological attributes of supercritical fluid-extracted spearmint (Mentha spicata L.) leaves essential oil. J Essent Oil Bear Pl 21(2): 400–419. https://doi.org/10.1080/0972060x.2018.1458658

Sahin F, Güllüce M, Daferera D, Sökmen A, Sökmen M, Polissiou M, Agar G, Özer H (2004) Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 15(7): 549–557. https://doi.org/10.1016/j.foodcont.2003.08.009

Santana HSR, de Carvalho FO, Silva ER, Santos NGL, Shanmugam S, Santos DN, Wisniewski JO, Junior JSC, Nunes PS, Araujo AAS, de Albuquerque Junior RLC, Dos Santos MRV (2020) Anti-inflammatory activity of limonene in the prevention and control of injuries in the respiratory system: A systematic review. Curr Pharm Des 26(18): 2182–2191. https://doi.org/10.2174/1381612826666200320130443

Selles SMA, Kouidri M, Bellik Y, Amrane AA, Belhamiti BT, Benia AR, Hammoudi SM, Boukraa L (2018) Chemical composition, antioxidant, and in vitro antibacterial activities of essential oils of Mentha spicata leaf from Tiaret area (Algeria). Dhaka Univ J Pharm Sci 17(1): 87–96. https://doi.org/10.3329/dujps.v17i1.37123

Shahbazi Y (2015) Chemical composition and in vitro antibacterial activity of Mentha spicata essential oil against common food-borne pathogenic bacteria. J Pathog 2015: 916305. https://doi.org/10.1155/2015/916305

Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40(6): 945–948. https://doi.org/10.1021/jf00018a005

Singh R, Shushni MA, Belkheir A (2015) Antibacterial and antioxidant activities of Mentha piperita L. Arab J Chem 8: 322–328. https://doi.org/10.1016/j.arabjc.2011.01.019

Snoussi M, Noumi E, Trabelsi N, Flamini G, Papetti A, De Feo V (2015) Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 20(8): 14402–1424. https://doi.org/10.3390/molecules200814402

Soković MD, Vukojević J, Marin PD, Brkić DD, Vajs V, van Griensven L J (2009) Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 14(1): 238–249. https://doi.org/10.3390/molecules14010238

Sulieman AME, Abdelrahman SE, AbdelRahim AM (2011) Phytochemical analysis of local spearmint (Mentha spicata) leaves and detection of the antimicrobial activity of its oil. Res J Microbiol 1(1): 1–4. https://doi.org/10.5923/j.microbiology.20110101.01

Sustrikova A, Salamon I (2004) Essential oil of peppermint (Mentha × piperita L.) from fields in Eastern Slovakia. Hortic Sci 31(1): 31–36. https://doi.org/10.17221/3789-HORTSCI

Tawaha K, Alali F, Gharaibeh M, Mohammad M, Elelimat T (2007) Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 104(4): 1372–1378. https://doi.org/10.1016/j.foodchem.2007.01.064

Weecharangsan W, Sithithaworn W, Siripong P (2014) Cytotoxic activity of essential oils of Mentha spp. on human carcinoma cells. J Health Res 28(1): 9–12.

Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I (2006) Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 67(12): 1249–1255. https://doi.org/10.1016/j.phytochem.2006.04.025

Zekri N, Amalich S, Boughdad A, Alaoui El Belghiti M, Zair T (2013) Phytochemical study and insecticidal activity of Mentha pulegium L. oils from Morocco against Sitophilus oryzae. Med J Chem 2(4): 607–619. https://doi.org/10.13171/mjc.2.4.2013.08.11.23

Zougagh S, Belghiti A, Rochd T, ZerdaniI, Mouslim J (2019) Medicinal and aromatic plants used in traditional treatment of the oral pathology: The ethnobotanical survey in the economic capital Casablanca, Morocco (North Africa). Nat Product Bioprosp 9(1): 35–48. https://doi.org/10.1007/s13659-018-0194-6

© 2024 Journal of Pharmacy & Pharmacognosy Research

Curcumin derivatives against Staphylococcus aureus

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 1008-1020, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres24.1945_12.5.1008

Original Article

Hansch analysis by QSAR model of curcumin and eight of its transformed derivatives with antimicrobial activity against Staphylococcus aureus

[Análisis Hansch mediante modelo QSAR de curcumina y ocho de sus derivados transformados con actividad antimicrobiana contra Staphylococcus aureus]

Dini Kesuma1, Galih Satrio Putra2*, Yahmin Yahmin2, Sumari Sumari2, Anisa Oktaviana Putri2, Farida Anwari3, Novynanda Salmasfatah4, Melanny Ika Sulistyowaty5

1Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Surabaya, Surabaya, Indonesia.

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Malang, Indonesia.

3Pharmaceutical Chemistry Department, University of Anwar Medika, Sidoarjo, Indonesia.

4Institute of Technology, Science and Health RS Dr. Soepraoen, Malang, Indonesia.

5Department of Pharmaceutical Sciences, Faculty of Pharmacy Airlangga University, Surabaya, Indonesia.

*E-mail: galih.satrio.fmipa@um.ac.id

Abstract

Context: In the last decade, antimicrobial resistance cases have been widespread. The discovery and development of new drugs need to be done to overcome the case. Some research has found that some compounds, which are curcumin transformation derivatives, are able to inhibit the growth of Staphylococcus aureus.

Aims: To evaluate the development of antimicrobial candidates of curcumin versus S. aureus.

Methods: The in silico approach method, along with the QSAR technique, plays an important role in the process of discovery and development of new drugs. In this study, we focused on developing curcumin transformation derivatives that are much more potent by making the best QSAR equation of curcumin and eight curcumin transformation derivatives that have been tested in vitro for their antimicrobial activity against Staphylococcus aureus.

Results: The best QSAR equation was obtained from curcumin transformation derivatives as antimicrobial activity against S. aureus, with pMIC = 0.812 (± 0.162)EHOMO +5.443 (± 1.659) (n = 9; Sig = 0.002; R = 0.884; R2 = 0.782; F = 25.153; Q2 = 0.57.

Conclusions: In this study, an increase in the antimicrobial activity of curcumin transformation derivatives against S. aureus by increasing EHOMO was observed. The best QSAR equation can be a tool to obtain a more potential new chemical structure model and reduce trials and errors.

Keywords: antibacterial; curcumin; molecular docking; QSAR; transformation.

PDF Download

Resumen

Contexto: En la última década se han generalizado los casos de resistencia a los antimicrobianos. Es necesario descubrir y desarrollar nuevos fármacos para superar el caso. Algunas investigaciones han descubierto que algunos compuestos, que son derivados de la transformación de la curcumina, son capaces de inhibir el crecimiento de Staphylococcus aureus.

Objetivos: Evaluar el desarrollo de candidatos antimicrobianos de la curcumina contra S. aureus.

Métodos: El método de aproximación in silico con la técnica QSAR desempeña un papel importante en el proceso de descubrimiento y desarrollo de nuevos fármacos. En este estudio, nos centramos en el desarrollo de derivados de transformación de la curcumina que sean mucho más potentes realizando la mejor ecuación QSAR de la curcumina y ocho derivados de transformación de la curcumina que han sido probados in vitro por su actividad antimicrobiana contra S. aureus.

Resultados: Se obtuvo la mejor ecuación QSAR de los derivados de transformación de la curcumina como actividad antimicrobiana contra S. aureus, con pMIC = 0,812 (± 0,162)EHOMO +5,443 (± 1,659) (n = 9; Sig = 0,002; R = 0,884; R2 = 0,782; F = 25,153; Q2 = 0,57.

Conclusiones: En este studio se observó un aumento de la actividad antimicrobiana de los derivados de transformación de curcumina frente a S. aureus mediante el aumento de EHOMO. La mejor ecuación QSAR puede ser una herramienta para obtener un nuevo modelo de estructura química más potencial y reducir los ensayos y errores.

Palabras Clave: antibacteriano; curcumina; acoplamiento molecular; QSAR; transformación.

PDF Download
 
Citation Format: Kesuma D, Putra GS, Yahmin Y, Sumari S, Putri AO, Anwari F, Salmasfatah N, Sulistyowaty MI (2024) Hansch analysis by QSAR model of curcumin and eight of its transformed derivatives with antimicrobial activity against Staphylococcus aureus. J Pharm Pharmacogn Res 12(5): 1008–1020. https://doi.org/10.56499/jppres24.1945_12.5.1008
References

Adeniji SE, Uba S, Uzairu A (2018) QSAR modeling and molecular docking analysis of some active compounds against Mycobacterium tuberculosis receptor (Mtb CYP121). J Pathog 2018: 1018694. https://doi.org/10.1155/2018/1018694

Boehlich GJ, de Vries J, Geismar O, Gudzuhn M, Streit WR, Wicha SG, Schützenmeister N (2020) Total synthesis of anti-MRSA active diorcinols and analogues. Chemistry. 26(44): 9846-9850. https://doi.org/doi:10.1002/chem.202002442

Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51: 2320–2335. http://doi.org/10.1021/ci200211n

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7: 42717. https://doi.org/10.1038/srep42717

Gordon ON, Luis PB, Sintim HO, Schneider C (2015) Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J Biol Chem 290(8): 4817-4828. https://doi.org/10.1074/jbc.M114.618785

Gramatica P (2007) Principles of QSAR models validation: Internal and external. QSAR Comb Sci 2(5): 694–701. https://doi.org/10.1002/qsar.200610151

Green BN, Johnson CD, Egan JT, Rosenthal M, Griffith EA, Evans MW (2012) Methicillin-resistant Staphylococcus aureus: An overview for manual therapists. J Chiropr Med 11(1): 64–76. https://doi.org/doi:10.1016/j.jcm.2011.12.001

Hamed OA, Mehdawi N, Taha AA, Hamed EM, Al-Nuri MA, Hussein AS (2013) Synthesis and antibacterial activity of novel curcumin derivatives containing heterocyclic moiety. Iran J Pharm Res 12(1): 47–56. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3813224/

Hansch C, Fujita T (1964) ρ-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86: 1616–1626. https://doi.org/10.1021/ja01062a035

Hardjono S, Siswodihardjo S, Pramono P, Darmanto W (2016) Quantitave structure-cytotoxic activity relationship 1-(benzoyloxy)urea and its derivative. Curr Drug Discov Technol 13(2): 101–108. https://doi.org/10.2174/1570163813666160525112327

Jayaram B, Tanya S, Goutam M, Abhinav M, Shashank S, Sanjeevini VS (2013) A freely accessible web-server for target directed lead molecule discovery. BMC Bioinf 13(Suppl 17): S7. https://doi.org/10.1186/1471-2105-13-S17-S7

Jhanwar B, Sharmaa V, Singlaa RK, Shrivastava B (2011) QSAR-Hansch analysis and related approaches in drug design. Pharmacologyonline 1: 306–344.

Kubinyi H (1993) QSAR-Hansch analysis and related approaches. In Methods and Principles in Medicinal Chemistry. Vol. I. New York: VCH Verlagsgesellschaf. https://doi.org/10.1002/9783527616824

Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, Deplano A, Vandendriessche S, Bolfíková BC, Hulva P, Arendrup M (2022) Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 602: 135–141. https://doi.org/10.1038/s41586-021-04265-w

Lovering AL, Gretes MC, Safadi SS, Danel F, de Castro L, Page MG, Strynadka NCJ (2012) Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J Biol Chem 287(38): 32096–32102. https://doi.org/doi:10.1074/jbc.m112.355644

Luo X, Shu M, Wang Y, Liu J, Yang W, Lin Z (2012) 3D-QSAR studies of dihydropyrazole and dihydropyrrole derivatives as inhibitors of human mitotic kinesin Eg5 based on molecular docking. Molecules 17(2): 2015–2029. https://doi.org/10.3390/molecules17022015

Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A (2022) Methicillin-resistant Staphylococcus aureus: docking-based virtual screening and molecular dynamics simulations to identify potential penicillin-binding protein 2a inhibitors from natural flavonoids. Int J Microbiol 2022: 9130700. https://doi.org/10.1155/2022/9130700

Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, Kang OH, Kwon DY (2014) Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 19(11): 18283–18295. https://doi.org/10.3390/molecules191118283

Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: Predicting small molecule pharmacokinetic and toxicity properties using graph based signatures. J Med Chem. 58(9): 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Putra GS, Sulistyowaty MI, Yuniarta TA, Yahmin Y, Sumari S, Saechan C, Yamauchi T (2023) QSAR study of benzylidene hydrazine benzamides derivatives with in-vitro anticancer activity against human lung cancer cell line A459. J Pharm Pharmacogn Res 11(6): 1123–1136. https://doi.org/10.56499/jppres23.1718_11.6.1123

Putra GS, Yuniarta TA, Syahrani A, Rudyanto M (2016) Synthesis, molecular docking study and brine shrimp lethality test of benzoxazine and aminomethyl derivatives from eugenol. Int J Pharm Sci Rev Res 5(4): 1–11.

Schneider C, Gordon ON, Edwards RL, Luis PB (2015) Degradation of curcumin: From mechanism to biological implications. J Agric Food Chem 63(35): 7606–7614. https://doi.org/10.1021/acs.jafc.5b00244

Schraufstatter E, Bernt H (1949) Antibacterial action of curcumin and related compounds. Nature 164(4167): 456–457. https://doi.org/10.1038/164456a0

Shargel L, Yu ABC (2016) Applied Biopharmaceutics & Pharmacokinetics, 7th ed. New York: The McGraw-Hill Companies. 928 pages.

Soni LK, Gupta AK, Kaskhedikar SG (2009) Exploration of QSAR modelling techniques and their combination to rationalize the physicochemical characters of nitrophenyl derivatives towards aldose reductase inhibition. J Enzyme Inhib Med Chem 24(4): 1002–1007. https://doi.org/10.1080/14756360802565486

Suhud F, Tjahjono DH, Yuniarta TA, Putra GS, Setiawan J (2019) Molecular docking, drug-likeness, and ADMET study of 1-benzyl-3-benzoylurea and its analogs against VEGFR-2. IOP Conf Ser: Earth Environ Sci 293: 012018. https://doi.org/doi:10.1088/1755-1315/293/1/012018

Sulistyowaty MI, Putra GS, Budiati T, Indrianingsih AW, Anwari F, Kesuma D, Matsunami K, Yamauchi T (2023) Synthesis, in silico study, antibacterial and antifungal activities of n-phenylbenzamides. Int J Mol Sci 24(3): 2745.https://doi.org/10.3390/ijms24032745

Sulistyowaty MI, Widyowati R, Putra GS, Budiati T, Matsunami K (2021) Synthesis, ADMET predictions, molecular docking studies, and in-vitro anticancer activity of some benzoxazines against A549 human lung cancer cells. J Basic Clin Physiol Pharmacol 32(4): 385–392. https://doi.org/10.1515/jbcpp-2020-0433

Teow SY, Liew K, Ali SA, Khoo ASB, Peh SC (2016) Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J Trop Med 2016: 2853045. https://doi.org/10.1155/2016/2853045

Thomas HA (1996) Merck Molecular Force Field. I. Basis, form, scope, parametrization, and performance of MMFF94. J Com Chem 17(5-6): 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P

Thomsen R, Christensen MH (2006) MolDock:  A new technique for high-accuracy molecular docking. J Med Chem 49(11): 3315–3321. https://doi.org/10.1021/jm051197e

Todeschini R, Consonni V (2009) Molecular Descriptors for Chemoinformatics. Volume I & II. In: Methods and Principles in Medicinal Chemistry (Series Nr. 41). Weinheim: Wiley-VCH Verlag. 1220 Pages.

Topliss JG, Costello RJ (1972) Chance correlations in structure-activity studies using multiple regression analysis. J Med Chem 15(10): 1066–1068. https://doi.org/10.1021/jm00280a017

Trevor AJ, Katzung BG, Kruidering-Hall M (2015) Katzung and Trevor’s. Pharmacology Examination & Board Review, 11th ed. New York: The McGraw-Hill Education. 592 pages.

Verma V, Singh K, Kumar D, Narasimhan B (2017) QSAR studies of antimicrobial activity of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines using topological descriptors. Arab J Chem 10(1): S747–S756. https://doi.org/10.1016/j.arabjc.2012.11.021

Zhang ZS, Huang YZ, Luo J, Wang BF, Jin Z, Liu YH, Tang YZ (2018) Synthesis and antibacterial activity against MRSA of pleuromutilin derivatives Possessing a mercaptoethylamine linker. Med Chem 14(6): 585–594. https://doi.org/doi:10.2174/1573406414666180416131737

© 2024 Journal of Pharmacy & Pharmacognosy Research

SRC-3 in prostate cancer and therapeutic targeting

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 994-1007, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1916_12.5.994

Review

The role of SRC-3 in prostate cancer progression and implications for therapeutic targeting: A systematic review

[El papel de SRC-3 en la progresión del cáncer de próstata y las implicaciones para la orientación terapéutica: Una revisión sistemática]

Suleiman Zakari1,2,3*, Wisdom D. Cleanclay1,2, Mercy Bella-Omunagbe1,2, Hajara Zakari4, Celestine O. Ogbu3, Daniel Ejim Uti3,5, Olubanke O. Ogunlana1,2*

1Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

2Covenant Applied Informatics and Communication – Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria.

3Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Benue State, Nigeria.

4Department of Biological Sciences, Faculty of Science, Federal University of Health Sciences Otukpo, Benue State, Nigeria.

5Department of Publications and Extension, Kampala International University, P.O. Box 20000, Uganda.

*E-mail: zakarisuleiman13@gmail.com; banke.ogunlana@covenantuniversity.edu.ng

Abstract

Context: Prostate cancer remains a significant global health concern, and understanding the molecular drivers of this disease is crucial for developing effective diagnostic and therapeutic strategies. Steroid receptor coactivator-3 (SRC-3), a member of the SRC family, has emerged as a key player in prostate cancer pathogenesis.

Aims: To examine the role of SRC-3 in prostate cancer, encompassing molecular mechanisms, clinical implications, and therapeutic opportunities.

Methods: A systematic literature search following PRISMA guidelines was conducted in PubMed, PMC, and other relevant databases to identify studies that investigate SRC-3 in prostate cancer.

Results: 785 articles were retrieved from databases using specific keywords and MeSH terms related to SRC-3 and Prostate Cancer. After removing 461 duplicates, 260 articles were excluded based on title and abstract review. Subsequently, a comprehensive screening by three researchers resulted in 47 relevant articles for this systematic review. Evidence suggests that SRC-3 expression correlates with prostate cancer aggressiveness, disease recurrence, and poor patient outcomes. Its potential as a diagnostic biomarker and therapeutic target if explored, offers insights into personalized medicine approaches.

Conclusions: SRC-3 plays a pivotal role in prostate cancer, influencing disease progression and clinical outcomes. Understanding the molecular intricacies of SRC-3 in prostate cancer offers new opportunities for precision medicine and innovative therapeutic approaches. This review provides a comprehensive overview of SRC-3’s involvement in prostate cancer, emphasizing its clinical relevance and potential as a therapeutic target, ultimately contributing to improved patient care in the era of personalized oncology.

Keywords: androgen receptor; signaling; prostate cancer; SRC-3; therapeutics.

PDF Download

Resumen

Contexto: El cáncer de próstata sigue siendo un importante problema de salud mundial, y la comprensión de los impulsores moleculares de esta enfermedad es crucial para el desarrollo de estrategias diagnósticas y terapéuticas eficaces. El coactivador del receptor de esteroides 3 (SRC-3), miembro de la familia SRC, se ha revelado como un agente clave en la patogénesis del cáncer de próstata.

Objetivos: Examinar el papel de SRC-3 en el cáncer de próstata, abarcando mecanismos moleculares, implicaciones clínicas y oportunidades terapéuticas.

Métodos: Se realizó una búsqueda bibliográfica sistemática siguiendo las directrices PRISMA en PubMed, PMC y otras bases de datos relevantes para identificar estudios que investiguen SRC-3 en cáncer de próstata.

Resultados: Se recuperaron 785 artículos de bases de datos utilizando palabras clave específicas y términos MeSH relacionados con SRC-3 y cáncer de próstata. Tras eliminar 461 duplicados, se excluyeron 260 artículos basándose en la revisión del título y el resumen. Posteriormente, un cribado exhaustivo realizado por tres investigadores dio como resultado 47 artículos relevantes para esta revisión sistemática. Las pruebas sugieren que la expresión de SRC-3 se correlaciona con la agresividad del cáncer de próstata, la recurrencia de la enfermedad y los malos resultados de los pacientes. Su potencial como biomarcador de diagnóstico y diana terapéutica, si se explora, ofrece ideas sobre enfoques de medicina personalizada.

Conclusiones: SRC-3 desempeña un papel fundamental en el cáncer de próstata, influyendo en la progresión de la enfermedad y en los resultados clínicos. La comprensión de los entresijos moleculares de SRC-3 en el cáncer de próstata ofrece nuevas oportunidades para la medicina de precisión y los enfoques terapéuticos innovadores. Esta revisión ofrece una visión global de la implicación de SRC-3 en el cáncer de próstata, destacando su relevancia clínica y su potencial como diana terapéutica, contribuyendo en última instancia a mejorar la atención al paciente en la era de la oncología personalizada.

Palabras Clave: cáncer de próstata; receptor de andrógenos; señalización; SRC-3; terapéutica.

PDF Download
 
Citation Format: Zakari S, Cleanclay WD, Omunagbe MB, Zakari H, Ogbu CO, Uti DE, Ogunlana OO (2024) The role of SRC-3 in prostate cancer progression and implications for therapeutic targeting: A systematic review. J Pharm Pharmacogn Res 12(5): 994–1007. https://doi.org/10.56499/jppres23.1916_12.5.994
References

ACS (2023) Key Statistics for Prostate Cancer. Prostate Cancer Facts. https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html

Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM (2021) Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. J Biol Chem 296: 100240. https://doi.org/10.1074/jbc.REV120.012411

Axlund SD, Lambert JR, Nordeen SK (2010) HOXC8 inhibits androgen receptor signaling in human prostate cancer cells by inhibiting SRC-3 recruitment to direct androgen target genes. Molr Cancer Res 8(12): 1643–1655. https://doi.org/10.1158/1541-7786.mcr-10-0111

Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH (2020) The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 197: 105506. https://doi.org/10.1016/j.jsbmb.2019.105506

Bernasocchi T, Theurillat JPP (2022) SPOP-mutant prostate cancer: Translating fundamental biology into patient care. Cancer Lett 529: 11–18. https://doi.org/10.1016/j.canlet.2021.12.024

Blundon MA, Dasgupta S (2019) Metabolic dysregulation controls endocrine therapy–resistant cancer recurrence and metastasis. Endocrinology 160(8): 1811–1820. https://doi.org/10.1210/en.2019-00097

Chen HK, Su PJ, Wang YL, Chang KC, Su YL, Chang PH, Kuan FC, Hsieh CH, Kuo YC, Sheng TW, Chang CF, Yu SM, Huang WK, Lin YC, Tsan DL, Yu KJ, Lin PH, Chen HY, Chang YH, Pang ST, Chuang CK, Lai EC (2023) Long-term use and risk of major adverse cardiac events: Comparing enzalutamide and abiraterone in chemotherapy-naïve patients with metastatic castration-resistant prostate cancer. Int J Cancer 152(6): 1191–1201. https://doi.org/10.1002/ijc.34348

Chen J, Wang H, Jia L, He J, Li Y, Liu H, Wu R, Qiu Y, Zhan Y, Yuan Z, Cao Y, Li W, Xu K, Yin P (2021) Bufalin targets the SRC-3/MIF pathway in chemoresistant cells to regulate M2 macrophage polarization in colorectal cancer. Cancer Lett 513: 63–74. https://doi.org/10.1016/j.canlet.2021.05.008

Cleanclay, WD, Zakari, S, Adigun, TO, Ayeni, TO, Nnaji, PO, Nnenna, AD, Azeez, B, Adewale, A, Gbadebo, M, Agbetuyi-Tayo, P, Emetere, ME, Ogunlana, OO (2023) Cancer biology and therapeutics: Navigating recent advances and charting future directions. Trop J Nat Prod Res 7(12): 5377–5402. https://doi.org/10.26538/tjnpr/v7i12.4

Crona D, Whang Y (2017) Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers 9(12): 67. https://doi.org/10.3390/cancers9060067

Dahiya UR, Heemers HV (2022) Analyzing the androgen receptor interactome in prostate cancer: Implications for therapeutic intervention. Cells 11(6): 936. https://doi.org/10.3390/cells11060936

Dasgupta S, Putluri N, Long W, Zhang B, Wang J, Kaushik AK, Arnold JM, Bhowmik SK, Stashi E, Brennan CA, Rajapakshe K, Coarfa C, Mitsiades N, Ittmann MM, Chinnaiyan AM, Sreekumar A, O’Malley BW (2015) Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis. J Clin Invest 125(3): 1174–1188. https://doi.org/10.1172/JCI76029

Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ (2003) P300 in prostate cancer proliferation and progression. Cancer Res 63(22): 7638–7640. https://pubmed.ncbi.nlm.nih.gov/14633682/

Fujita K, Nonomura N (2019) Role of androgen receptor in prostate cancer: A review. World J Mens Health 37(3): 288. https://doi.org/10.5534/wjmh.180040

Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, Zimmermann M, Bond R, Shou J, Li C, Blattner M, Lonard DM, Demichelis F, Coarfa C, Rubin MA, Zhou P, O’Malley BW, Mitsiades N (2013) Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A 110(17): 6997–7002. https://doi.org/10.1073/pnas.1304502110

Gilad Y, Eliaz Y, Yu Y, Dean AM, Han SJ, Qin L, O’Malley BW, Lonard DM (2021) A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells. Commun Biol 4(1): 399. https://doi.org/10.1038/s42003-021-01929-1

Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN (2001) Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer 85(12): 1928–1936. https://doi.org/10.1054/bjoc.2001.2179

Gong J, Zhu J, Goodman OB Jr, Pestell RG, Schlegel PN, Nanus DM, Shen R (2006) Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Oncogene 25(14): 2011–2021. https://doi.org/10.1038/sj.onc.1209231

He C, Shan N, Xu P, Ge H, Yuan Y, Liu Y, Zhang P, Wen L, Zhang F, Xiong L, Peng C, Qi H, Tong C, Baker PN (2019) Hypoxia-induced downregulation of SRC-3 suppresses trophoblastic invasion and migration through inhibition of the AKT/mTOR pathway: Implications for the pathogenesis of preeclampsia. Sci Rep 9(1): 10349. https://doi.org/10.1038/s41598-019-46699-3

Iheagwam FN, Iheagwam OT, Odiba JK, Ogunlana OO, Chinedu SN (2022) Cancer and glucose metabolism: A review on Warburg mechanisms. Trop J Nat Prod Res 6(5): 661–667.

Kiliti AJ, Sharif GM, Martin MB, Wellstein A, Riegel AT (2023) AIB1/SRC-3/NCOA3 function in estrogen receptor alpha positive breast cancer. Front Endocrinol 14: 1250218. https://doi.org/10.3389/fendo.2023.1250218

Kishore C, Zi X (2023) Wnt signaling and therapeutic resistance in castration-resistant prostate cancer. Curr Pharmacol Rep 9(5): 261–274. https://doi.org/10.1007/s40495-023-00333-z

Li L, Deng CX, Chen Q (2021) SRC-3, a steroid receptor coactivator: implication in cancer. Int J Mol Sci 22(9): 4760. https://doi.org/10.3390/ijms22094760

Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356(2): 156–164. https://doi.org/10.1016/j.canlet.2014.04.001

Ma G, Ren Y, Wang K, He J (2011) SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Int J Biol Sci 7(5): 664–672. https://doi.org/10.7150/ijbs.7.664

Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP (2022) Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. Front Reprod Health 4: 1033581. https://doi.org/10.3389/frph.2022.1033581

Mohler ML, Sikdar A, Ponnusamy S, Hwang DJ, He Y, Miller DD, Narayanan R (2021) An overview of next-generation androgen receptor-targeted therapeutics in development for the treatment of prostate cancer. Int J Mol Sci 22(4): 2124. https://doi.org/10.3390/ijms22042124

Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95(5): 353–361. https://doi.org/10.1093/jnci/95.5.353

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372: n71. https://doi.org/10.1136/bmj.n71

Qin L, Chen J, Lu D, Jain P, Yu Y, Cardenas D, Peng X, Yu X, Xu J, Wang J, O’Malley BW, Lonard DM (2021) Development of improved SRC-3 inhibitors as breast cancer therapeutic agents. Endocr Relat Cancer 28(10): 657–670. https://doi.org/10.1530/erc-20-0402

Qin L, Chung YM, Berk M, Naelitz B, Zhu Z, Klein E, Chakraborty AA, Sharifi N (2022) Hypoxia-reoxygenation couples 3βHSD1 enzyme and cofactor upregulation to facilitate androgen biosynthesis and hormone therapy resistance in prostate cancer. Cancer Res 82(13): 2417–2430. https://doi.org/10.1158/0008-5472.can-21-4256

Rotimi SO, Rotimi OA, Salhia B (2021) A review of cancer genetics and genomics studies in Africa. Front Oncol 10: 606400. https://doi.org/10.3389/fonc.2020.606400

Sawant Dessai A, Kalhotra P, Novickis AT, Dasgupta S (2023) Regulation of tumor metabolism by post translational modifications on metabolic enzymes. Cancer Gene Ther 30(4): 548–558. https://doi.org/10.1038/s41417-022-00521-x

Shrestha A (2022) The regulation of steroid receptor co-activator-3 activity by p38MAPK-MK2 Signaling Pathway. Doctoral thesis. UiT The Arctic University of Norway.

Song X, Chen J, Zhao M, Zhang C, Yu Y, Lonard DM, Chow DC, Palzkill T, Xu J, O’Malley BW, Wang J (2016) Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc Natl Acad Sci U S A 113(18): 4970–4975. https://doi.org/10.1073/pnas.1604274113

Szwarc MM, Kommagani R, Lessey BA, Lydon JP (2014) The p160/steroid receptor coactivator family: Potent arbiters of uterine physiology and dysfunction. Biol Reprod 91(5): 122. https://doi.org/10.1095/biolreprod.114.125021

Takayama K (2018) The Biological Role of Androgen Receptor in Prostate Cancer Progression. In Estrada M (ed.), Advances in Testosterone Action. IntechOpen. https://doi.org/10.5772/intechopen.76360

Tang Z, Xu Z, Zhu X, Zhang J (2021) New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Comm 41(1): 16–36. https://doi.org/10.1002/cac2.12112

Tanizaki Y, Bao L, Shi B, Shi YB (2021) A role of endogenous histone acetyltransferase steroid hormone receptor coactivator 3 in thyroid hormone signaling during xenopus intestinal metamorphosis. Thyroid 31(4): 692–702. https://doi.org/10.1089/thy.2020.0410

Tien JC, Liu Z, Liao L, Wang F, Xu Y, Wu YL, Zhou N, Ittmann M, Xu J (2013) The steroid receptor coactivator-3 is required for the development of castration-resistant prostate cancer. Cancer Res 73(13): 3997–4008. https://doi.org/10.1158/0008-5472.CAN-12-3929

Wang Y, Luo X, Wu N, Liao Q, Wang J (2023) SRC-3/TRAF4 facilitates ovarian cancer development by activating the PI3K/AKT signaling pathway. Med Oncol 40(2): 76. https://doi.org/10.1007/s12032-022-01944-0

Wang Z, Jiang Q, Dong C (2020) Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med 17(1): 44–59. https://doi.org/10.20892/j.issn.2095-3941.2019.0210

Watters RJ, Verdelis K, Lucas PC, Jiang S, Chen Y, Lu F, Martin BM, Lukashova L, Pecar G, Morales-Restrepo A, Hankins M, Zhu L, Mittwede P, Hartmaier RJ, Alexander PG, Tseng GC, Weiss KR, Galson DL, Lee AV, Lee B, Oesterreich S (2021) A novel mouse model for SNP in steroid receptor co-activator-1 reveals role in bone density and breast cancer metastasis. Endocrinology 162(8): bqab094. https://doi.org/10.1210/endocr/bqab094

Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17(9): 1681–1692. https://doi.org/10.1210/me.2003-0116

Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, Wang YL, Wang XS, Niu HT (2015) Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat 38(3): 117–122. https://doi.org/10.1159/000375435

Yao L, Wang L, Cao ZG, Hu X, Shao ZM (2019) High expression of metabolic enzyme PFKFB4 is associated with poor prognosis of operable breast cancer. Cancer Cell Int 19: 165. https://doi.org/10.1186/s12935-019-0882-2

Yoo HC, Yu YC, Sung Y, Han JM (2020) Glutamine reliance in cell metabolism. Exp Mol Med 52(9): 1496–1516. https://doi.org/10.1038/s12276-020-00504-8

Zakari S, Bella-Omunagbe M, Ogunlana OO (2023) PROTOCOL: The Role of SRC-3 in Prostate Cancer Progression and Implications for Therapeutic Targeting: A Systematic Review. PROSPERO International Prospective Register of Systematic Reviews. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=471034

Zakari S, Ekenwaneze CC, Amadi EC, Abuhamdia A, Ogunlana OO (2024) Unveiling the latest insights into androgen receptors in prostate cancer. Int J Med Biochem 7(2): 101–113. https://doi.org/10.14744/ijmb.2024.93585

Zhou HJ, Yan J, Luo W, Ayala G, Lin SH, Erdem H, Ittmann M, Tsai SY, Tsai MJ (2005) SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res 65(17): 7976–7983. https://doi.org/10.1158/0008-5472.CAN-04-4076

© 2024 Journal of Pharmacy & Pharmacognosy Research

Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 972-993, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres24.1956_12.5.972

Original Article

Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions

[Efecto antiinflamatorio de la mezcla de extracto de Ageratum conyzoides L. e hidrolizados de membrana de cáscara de huevo, y predicción in silico de compuestos activos]

Suci Nar Vikasari1,3*, Elin Yulinah Sukandar3, Tri Suciati2, I Ketut Adnyana1*

1Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.

2Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.

3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia.

*E-mail: uci.vikasari@lecture.unjani.ac.id; ketut@itb.ac.id

Abstract

Context: Ageratum conyzoides L. and eggshell membrane have the potential to be used as medicine. The independent use of A. conyzoides extract or eggshell membrane hydrolysates independently as a natural medicine has been widely known, but the mixture of the two as an anti-inflammatory has not been studied.

Aims: To evaluate both the in vivo and in vitro anti-inflammatory effects of A. conyzoides extract and eggshell membrane hydrolysates, independently and in combination. In silico testing was conducted to identify chemicals that have a key role in inflammation signaling pathways.

Methods: The chronic anti-inflammatory effects of A. conyzoides extract and eggshell membrane hydrolysates were evaluated on cotton pellet-induced rats using diclofenac-Na as a control. In vitro anti-inflammatory effects were studied via protein denaturation, membrane stability, and antiprotease activity. Furthermore, molecular docking was performed on the p38-MAPK signaling pathway using compounds found in A. conyzoides extract and eggshell membrane hydrolysates.

Results: A. conyzoides extract and eggshell membrane hydrolysates given separately or in combination can inhibit the formation of exudates and granulomas. Molecular docking simulations showed that the metabolites in the extract and hydrolysate interact with p38-MAPK. Nobiletin in the extract is the potential metabolite that interacts with the p38-MAPK receptor with a free energy of binding and inhibition constant of -8.92 kcal/mol and 260.80 nM. Amino acids in the hydrolysates showed weaker interactions compared to the compound in the extract.

Conclusions: A. conyzoides extract and eggshell membrane hydrolysates work additively to inhibit the severity of chronic inflammation.

Keywords: Ageratum conyzoides; anti-inflammatory; eggshell membrane hydrolysates; molecular docking; p38-MAPK.

PDF Download

Resumen

Contexto: El Ageratum conyzoides L. y la membrana de cáscara de huevo tienen potencial para ser utilizados como medicamentos. El uso independiente del extracto de A. conyzoides o de los hidrolizados de membrana de cáscara de huevo como medicina natural es ampliamente conocido, pero no se ha estudiado la mezcla de ambos como antiinflamatorio.

Objetivos: Evaluar los efectos antiinflamatorios in vivo e in vitro del extracto de A. conyzoides y de los hidrolizados de membrana de cáscara de huevo, independientemente y en combinación. Se realizaron pruebas in silico para identificar sustancias químicas que desempeñan un papel clave en las vías de señalización de la inflamación.

Métodos: Se evaluaron los efectos antiinflamatorios crónicos del extracto de A. conyzoides y de los hidrolizados de membrana de cáscara de huevo en ratas inducidas por gránulos de algodón, utilizando diclofenaco-Na como control. In vitro, los efectos antiinflamatorios se estudiaron mediante la desnaturalización de proteínas, la estabilidad de la membrana y la actividad antiproteasa. Además, se realizó un acoplamiento molecular de la vía de señalización p38-MAPK utilizando compuestos presentes en el extracto de A. conyzoides y en los hidrolizados de membrana de cáscara de huevo.

Resultados: El extracto de A. conyzoides y los hidrolizados de membrana de cáscara de huevo administrados por separado o en combinación pueden inhibir la formación de exudados y granulomas. Las simulaciones de acoplamiento molecular mostraron que los metabolitos del extracto y el hidrolizado interactúan con p38-MAPK. La nobiletina del extracto es el metabolito potencial que interactúa con el receptor p38-MAPK con una energía libre de unión y una constante de inhibición de -8,92 kcal/mol y 260,80 nM. Los aminoácidos de los hidrolizados mostraron interacciones más débiles en comparación con el compuesto del extracto.

Conclusiones: El extracto de A. conyzoides y los hidrolizados de membrana de cáscara de huevo actúan de forma aditiva para inhibir la gravedad de la inflamación crónica.

Palabras Clave: acoplamiento molecular; Ageratum conyzoides; anti-inflamatorio; hidrolizados de membrana de cáscara de huevo; p38-MAPK.

PDF Download
 
Citation Format: Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2024) Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions. J Pharm Pharmacogn Res 12(5): 972–993. https://doi.org/10.56499/jppres24.1956_12.5.972
References

Adianingsih OR, Khasanah U, Anandhy, Yurina V (2022) In silico ADME-T and molecular docking study of phytoconstituents from Tithonia diversifolia (Hemsl.) A. Gray on various targets of diabetic nephropathy. J Pharm Pharmacogn Res 10(4): 571–594. https://doi.org/10.56499/jppres22.1345.10.4.571

Aligita W, Singgih M, Sutrisno E, Adnyana IK (2023) Hepatoprotective study of Indonesian water kefir against CCl4-induced liver injury in rats. J Pharm Pharmacogn Res 11(6): 1002–1016. https://doi.org/10.56499/jppres23.1732_11.6.1002

Ansar W, Ghosh S (2016) Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. In: Biology of C Reactive Protein in Health and Disease. New Delhi: Springer, pp. 67–107. https://doi.org/10.1007/978-81-322-2680-2_4

Asnawi A, Nedja M, Febrina E, Purwaniati P (2023) Prediction of a stable complex of compounds in the ethanol extract of celery leaves (Apium graveolens L.) function as a VKORC1 antagonist. Trop J Nat Prod Res 7(2): 2362-2370. https://doi.org/10.26538/tjnpr/v7i2.10

AL Azzam K (2023) SwissADME and pkCSM webservers predictors: An integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Compl Use Min Resour 325(2): 14–21. https://doi.org/10.31643/2023/6445.13

Bamidele O, Akinnuga AM, Anyakudo MMC, Ojo OA, Ojo GB, Olorunfemi OJ, Johnson OP (2010) Haemostatic effect of methanolic leaf extract of Ageratum conyzoides in albino rats. J Med Plant Res 4(20): 2075–2079.

Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1): W257-W263. https://doi.org/10.1093/nar/gky318

Bayraktar O, Galanakis CM, Aldawoud TMS, Ibrahim SA, Köse MD, Uslu ME (2021) Utilization of eggshell membrane and olive leaf extract for the preparation of functional materials. Foods 10(4): 806. https://doi.org/10.3390/foods10040806

Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016: 5698931. https://doi.org/10.1155/2016/5698931

Caesar LK, Cech NB (2019) Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 36(6): 869-888. https://doi.org/10.1039/c9np00011a

Cánovas F, Abellán-Ruíz MS, García-Muñoz AM, Luque-Rubia AJ, Victoria-Montesinos D, Pérez-Piñero S, Sánchez-Macarro M, López-Román FJ (2022) Randomised clinical trial to analyse the efficacy of eggshell membrane to improve joint functionality in knee osteoarthritis. Nutrients 14(11): 2340. https://doi.org/10.3390/nu14112340

Castanheira FVS, Kubes P (2019) Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133(20): 2178–2185. https://doi.org/10.1182/blood-2018-11-844530

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6): 7204-7218. https://doi.org/10.18632/oncotarget.23208

Choi HJ, Kim YM, Suh JY, Han JY (2021) Beneficial effect on rapid skin wound healing through carboxylic acid-treated chicken eggshell membrane. Mater Sci Eng C Mater Biol Appl 128: 112350. https://doi.org/10.1016/j.msec.2021.112350

Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL (2015) Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat Report (79): 1-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573565/

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1): 42717. https://doi.org/10.1038/srep42717

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2): 144. https://doi.org/10.3390/ijms17020144

Elangovan B, Ajayakumar AS, Anandraj RP (2020) Cardioprotective role of Ageratum conyzoides L. on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats. Int J Pharmacognosy Pharm Sci 2(2): 9–13. https://doi.org/10.33545/27067009.2020.v2.i2a.64

Fathihah B, Mahmood AA, Sidik K, Salmah I (2005) The Antiulcer and cytoprotective effect of Ageratum conyzoides’ honey combination in rats. J Health Trans Med 8(1): 28–32. https://doi.org/10.22452/jummec.vol8no1.6

Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 31(9): 1911-1918. https://doi.org/10.1002/jcc.21478

Galea I (2021) The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 18(11): 2489-2501. https://doi.org/10.1038/s41423-021-00757-x

Ganesan N, Ronsmans S, Vanoirbeek J, Hoet PHM (2022) Assessment of experimental techniques that facilitate human granuloma formation in an in vitro system: A systematic review. Cells 11(5): 864. https://doi.org/10.3390/cells11050864

Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR, Curtis JL, Martinez FJ, Zick S, Hershenson MB, Sajjan US (2010) Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 11(1): 131. https://doi.org/10.1186/1465-9921-11-131

Gros A, Ollivier V, Ho-Tin-Noé B (2015) Platelets in inflammation: Regulation of leukocyte activities and vascular repair. Front Immunol 5: 678. https://doi.org/10.3389/fimmu.2014.00678

Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV (2018) In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines 6(4): 107. https://doi.org/10.3390/biomedicines6040107

Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM (2017) Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol 79: 567-592. https://doi.org/10.1146/annurev-physiol-022516-034348

Jain S, Anal AK (2017) Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J Food Sci Technol 54(5): 1062-1072. https://doi.org/10.1007/s13197-017-2530-y

Jenne CN, Urrutia R, Kubes P (2013) Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 35(3): 254-261. https://doi.org/10.1111/ijlh.12084

Jia H, Hanate M, Aw W, Itoh H, Saito K, Kobayashi S, Hachimura S, Fukuda S, Tomita M, Hasebe Y, Kato H (2017) Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci Rep 7: 43993. https://doi.org/10.1038/srep43993

Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133(6 Suppl 1): 2052S-2056S. https://doi.org/10.1093/jn/133.6.2052S

Kamala Lakshmi B, Valarmathi S (2020) In vitro anti-inflammatory activity of aqueous extract of Albizia lebbeck leaf (L). J Phytopharmacol 9(5): 356-360. https://doi.org/10.31254/phyto.2020.9511

Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754(1-2): 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017

Kemppainen LM, Kemppainen TT, Reippainen JA, Salmenniemi ST, Vuolanto PH (2018) Use of complementary and alternative medicine in Europe: Health-related and sociodemographic determinants. Scand J Public Health 46(4): 448-455. http://doi.org/10.1177/1403494817733869

Kessenbrock K, Dau T, Jenne DE (2011) Tailor-made inflammation: How neutrophil serine proteases modulate the inflammatory response. J Mol Med (Berl) 89(1): 23-28. https://doi.org/10.1007/s00109-010-0677-3

Ketnawa S, Ogawa Y (2019) Evaluation of protein digestibility of fermented soybeans and changes in biochemical characteristics of digested fractions. J Funct Foods 52: 640–647. https://doi.org/10.1016/j.jff.2018.11.046

Kiers JL, Bult JHF (2021) Mildly processed natural eggshell membrane alleviates joint pain associated with osteoarthritis of the knee: A randomized double-blind placebo-controlled study. J Med Food 24(3): 292-298. https://doi.org/10.1089/jmf.2020.0034

Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: An update. Arch Toxicol 89(6): 867-882. https://doi.org/10.1007/s00204-015-1472-2

Klinger MH (1997) Platelets and inflammation. Anat Embryol (Berl) 196(1): 1-11. https://doi.org/10.1007/s004290050075

Klopf J, Brostjan C, Eilenberg W, Neumayer C (2021) Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci 22(2): 559. https://doi.org/10.3390/ijms22020559

Kotta JC, Lestari ABS, Candrasari DS, Hariono M (2020) Medicinal effect, in silico bioactivity prediction, and pharmaceutical formulation of Ageratum conyzoides L.: A review. Scientifica 2020: 6420909. https://doi.org/10.1155/2020/6420909

Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R (2013) Anti-inflammatory treatments for chronic diseases: A review. Inflamm Allergy Drug Targets 12(5): 349-361. https://doi.org/10.2174/18715281113129990053

Lee CH, Choi EY (2018) Macrophages and Inflammation. J Rheum Dis 25: 11-18. https://doi.org/10.4078/jrd.2018.25.1.11

Lee D, Bamdad F, Khey K, Sunwoo HH (2017) Antioxidant and anti-inflammatory properties of chicken egg vitelline membrane hydrolysates. Poult Sci 96(9): 3510-3516. https://doi.org/10.3382/ps/pex125

Li X, Cai Z, Ahn DU, Huang X (2019) Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids Surf B Biointerfaces 183: 110449. https://doi.org/10.1016/j.colsurfb.2019.110449

Lindvall JM, Blomberg KE, Smith CI (2003) In silico tools for signal transduction research. Brief Bioinform 4(4): 315-324. https://doi.org/10.1093/bib/4.4.315

Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Major MR, Wong VW, Nelson ER, Longaker MT, Gurtner GC (2015) The foreign body response: at the interface of surgery and bioengineering. Plast Reconstr Surg 135(5): 1489-1498. https://doi.org/10.1097/PRS.0000000000001193

Malik A, Najda A, Bains A, Nurzyńska-Wierdak R, Chawla P (2021) Characterization of Citrus nobilis peel methanolic extract for antioxidant, antimicrobial, and anti-inflammatory activity. Molecules 26(14): 4310. https://doi.org/10.3390/molecules26144310

Margraf A, Zarbock A (2019) Platelets in inflammation and resolution. J Immunol 203(9): 2357-2367. https://doi.org/10.4049/jimmunol.1900899

Mariani E, Lisignoli G, Borzì RM, Pulsatelli L (2019) Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 20(3): 636. https://doi.org/10.3390/ijms20030636

Missiroli S, Genovese I, Perrone M, Vezzani B, Vitto VAM, Giorgi C (2020) The role of mitochondria in inflammation: From cancer to neurodegenerative disorders. J Clin Med 9(3): 740. https://doi.org/10.3390/jcm9030740

Moreno-Fernández S, Garcés-Rimón M, Miguel M (2020) Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 104: 208–218. https://doi.org/10.1016/j.tifs.2020.08.002

Moura ACA, Silva ELF, Fraga MCA, Wanderley AG, Afiatpour P, Maia MBS (2005) Antiinflammatory and chronic toxicity study of the leaves of Ageratum conyzoides L. in rats. Phytomedicine 12(1–2): 138–142. https://doi.org/10.1016/j.phymed.2003.12.003

OPIE EL (1962) On the relation of necrosis and inflammation to denaturation of proteins. J Exp Med 115(3): 597-608. https://doi.org/10.1084/jem.115.3.597

Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F, Aliberti S (2021) Protease-antiprotease imbalance in bronchiectasis. Int J Mol Sci 22(11): 5996. https://doi.org/10.3390/ijms22115996

Osman NI, Sidik NJ, Awal A, Adam NA, Rezali NI (2016) In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J Intercult Ethnopharmacol 5(4): 343-349. https://doi.org/10.5455/jice.20160731025522

Paul S, Datta BK, Ratnaparkhe MB, Dholakia BB (2022) Turning waste into beneficial resource: Implication of Ageratum conyzoides L. in sustainable agriculture, environment and biopharma sectors. Mol Biotechnol 64(3): 221-244. https://doi.org/10.1007/s12033-021-00409-5

Pires DE, Blundell TL, Ascher DB (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9): 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Pober JS, Sessa WC (2015) Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol 7(1): a016345. https://doi.org/10.1101/cshperspect.a016345

Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N (2023) Experimental animal models of chronic inflammation. Curr Res Immunol 4: 100063. https://doi.org/10.1016/j.crimmu.2023.100063

Roleff S, Arndt G, Bottema B, Junker L, Grabner A, Kohn B (2007) Clinical evaluation of the CA530-VET hematology analyzer for use in veterinary practice. Vet Clin Pathol 36(2): 155-166. https://doi.org/10.1111/j.1939-165X.2007.tb00202.x

Ruff KJ, Morrison D, Duncan SA, Back M, Aydogan C, Theodosakis J (2018) Beneficial effects of natural eggshell membrane versus placebo in exercise-induced joint pain, stiffness, and cartilage turnover in healthy, postmenopausal women. Clin Interv Aging 13: 285-295. https://doi.org/10.2147/CIA.S153782

Ruff KJ, DeVore DP (2014) Reduction of pro-inflammatory cytokines in rats following 7-day oral supplementation with a proprietary eggshell membrane-derived product. Mod Res Inflamm 3(1): 19–25. https://doi.org/10.4236/mri.2014.31003

Saleem A, Saleem M, Akhtar MF (2020) Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family. S Afr J Bot 128: 246–256. https://doi.org/10.1016/j.sajb.2019.11.023

Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P (2012) Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Curr Pharm 18(9): 1173-1185. https://doi.org/10.2174/138161212799436368

Seemakhan S, Srisook K (2014) Ageratum conyzoides leaf extract inhibits inflammatory response via suppression of NF-NB and MAPKs pathway in LPS-induced macrophages. Conference Proceedings. The 5th International Conference on Natural Products for Health and Beauty, Phuket, Thailand, May 6-8, pp. 158–163.

Serhan CN, de la Rosa X, Jouvene C (2019) Novel mediators and mechanisms in the resolution of infectious inflammation: Evidence for vagus regulation. J Intern Med 286(3): 240-258. https://doi.org/10.1111/joim.12871

Sharma V, Holmes JH, Sarkar IN (2016) Identifying complementary and alternative medicine usage information from internet resources. A systematic review. Methods Inf Med 55(4): 322-332. https://doi.org/10.3414/ME15-01-0154

Shi Y, Zhou K, Li D, Guyonnet V, Hincke MT, Mine Y (2021) Avian eggshell membrane as a novel biomaterial: A review. Foods 10(9): 2178. https://doi.org/10.3390/foods10092178

Sim WJ, Ahn J, Lim W, Son DJ, Lee E, Lim TG (2023) Anti-skin aging activity of eggshell membrane administration and its underlying mechanism. Mol Cell Toxicol 19: 165–176. https://doi.org/10.1007/s13273-022-00291-5

Soehnlein O, Steffens S, Hidalgo A, Weber C (2017) Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17(4): 248-261. https://doi.org/10.1038/nri.2017.10

Son ES, Park JW, Kim SH, Park HR, Han W, Kwon OC, Nam JY, Jeong SH, Lee CS (2020) Anti‑inflammatory activity of 3,5,6,7,3′,4’‑hexamethoxyflavone via repression of the NF‑κB and MAPK signaling pathways in LPS‑stimulated RAW264.7 cells. Mol Med Rep 22(3): 1985-1993. https://doi.org/10.3892/mmr.2020.11252

Stockley RA (1999) Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med 160(5 Pt 2): S49-52. https://doi.org/10.1164/ajrccm.160.supplement_1.13

Sukmawan YP, Alifiar I, Nurdianti L, Ningsih WR (2021) Wound healing effectivity of the ethanolic extracts of Ageratum conyzoides L. leaf (white and purple flower type) and Centella asiatica and astaxanthin combination gel preparation in animal model. Turk J Pharm Sci 18(5): 609-615. https://doi.org/10.4274/tjps.galenos.2021.34676

Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X (2022) NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 50(D1): D1324-D1333. https://doi.org/10.1093/nar/gkab913

Tambunan AP, Bahtiar A, Tjandrawinata RR (2017) Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from Ageratum conyoides L. leaves. Pharmacogn J 9(6): 767–774. https://doi.org/10.5530/pj.2017.6.121

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int J Mol Sci 19(6): 1578. https://doi.org/10.3390/ijms19061578

Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86: 2-10. https://doi.org/10.1016/j.addr.2015.01.009

Uhegbu FO, Imo C, Onwuegbuchulam CH (2016) Lipid lowering, hypoglycemic and antioxidant activities of Chromolaena odorata (L) and Ageratum conyzoides (L) ethanolic leaf extracts in albino rats. J Med Plants Stud 4(2): 155–159.

Vigil de Mello SV, da Rosa JS, Facchin BM, Luz AB, Vicente G, Faqueti LG, Rosa DW, Biavatti MW, Fröde TS (2016) Beneficial effect of Ageratum conyzoides Linn (Asteraceae) upon inflammatory response induced by carrageenan into the mice pleural cavity. J Ethnopharmacol 194: 337-347. https://doi.org/10.1016/j.jep.2016.09.003

Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2022) Antiinflammation and antioxidant effect of ethanolic extract of Ageratum conyzoides leaves. IOP Conf Ser: Earth Environ Sci 1104(1): 012024. https://doi.org/10.1088/1755-1315/1104/1/012024

Vikasari SN, Sukandar EY, Suciati T, Adnyana IK (2024) Anti-inflammatory effects of eggshell membrane hydrolysates on carrageenan-induced rat. Pharm Educ 24(2): 152–157. https://doi.org/10.46542/pe.2024.242.152157

Vuong TT, Rønning SB, Suso HP, Schmidt R, Prydz K, Lundström M, Moen A, Pedersen ME (2017) The extracellular matrix of eggshell displays anti-inflammatory activities through NF-κB in LPS-triggered human immune cells. J Inflamm Res 10: 83-96. https://doi.org/10.2147/JIR.S130974

Vuong TT, Rønning SB, Ahmed TAE, Brathagen K, Høst V, Hincke MT, Suso HP, Pedersen ME (2018) Processed eggshell membrane powder regulates cellular functions and increase MMP-activity important in early wound healing processes. PLoS ONE 13(8): e0201975. https://doi.org/10.1371/journal.pone.0201975

Wang CZ, Moss J, Yuan CS (2015) Commonly used dietary supplements on coagulation function during surgery. Medicines (Basel) 2(3): 157-185. https://doi.org/10.3390/medicines2030157

Webb BCW, Rafferty S, Vreugdenhil AJ (2022) Preparation and characterization of antibacterial films with eggshell-membrane biopolymers incorporated with chitosan and plant extracts. Polymers 14(3): 383. https://doi.org/10.3390/polym14030383

Wedekind KJ, Ruff KJ, Atwell CA, Evans JL, Bendele, AM (2017) Beneficial effects of natural eggshell membrane (NEM) on multiple indices of arthritis in collagen-induced arthritic rats. Mod Rheumatol 27(5): 838–848. https://doi.org/10.1080/14397595.2016.1259729

Yadav N, Ganie SA, Singh B, Chhillar AK, Yadav SS (2019) Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phytother Res 33(9): 2163-2178. https://doi.org/10.1002/ptr.6405

Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, Yoo BC, Cho JY (2014) Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014: 352371. https://doi.org/10.1155/2014/352371

Yoo J, Park K, Yoo Y, Kim J, Yang H, Shin Y (2014) Effects of egg shell membrane hydrolysates on anti-inflammatory, anti-wrinkle, anti-microbial activity and moisture-protection. Korean J Food Sci Anim Resour 34(1): 26-32. https://doi.org/10.5851/kosfa.2014.34.1.26

Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5): 559. https://doi.org/10.3390/molecules21050559

Zhu L, Ma M, Ahn DU, Guyonnet V, Wang L, Zheng Y, He Q, Xiong H, Huang X (2022a) Hatched eggshell membrane can be a novel source of antioxidant hydrolysates to protect against H2O2-induced oxidative stress in human chondrocytes. Antioxidants (Basel) 11(12): 2428. https://doi.org/10.3390/antiox11122428

Zhu L, Xiong H, Huang X, Guyonnet V, Ma M, Chen X, Zheng Y, Wang L, Hu G (2022b) Identification and molecular mechanisms of novel antioxidant peptides from two sources of eggshell membrane hydrolysates showing cytoprotection against oxidative stress: A combined in silico and in vitro study. Food Res Int 57: 111266. https://doi.org/10.1016/j.foodres.2022.111266

Zuo HL, Huang HY, Lin YC, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD (2022) Enzyme activity of natural products on cytochrome P450. Molecules 27(2): 515. https://doi.org/10.3390/molecules27020515

© 2024 Journal of Pharmacy & Pharmacognosy Research

SS-31 for diabetic nephropathy

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 956-971, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1904_12.5.956

Review

SS-31 protects diabetic nephropathy progression: A systematic review of in vivo and in vitro studies

[El SS-31 protege la progresión de la nefropatía diabética: Una revisión sistemática de estudios in vivo e in vitro]

Jonathan Christianto Sutadji1#, Dian Anggraini Permatasari Musalim1#, David Setyo Budi1#, Jennifer Susanto1, Fanny Gunawan1, Chaq El Chaq Zamzam Multazam2, Citrawati Dyah Kencono Wungu3,4*

1Faculty of Medicine, Universitas Airlangga, Indonesia.

2National Heart and Lung Institute, Imperial College London, London, United Kingdom.

3Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Indonesia.

4Institute of Tropical Disease, Universitas Airlangga, Indonesia.

#JCS, DAPM, and DSB are joint first authors.

*E-mail: citrawati.dyah@fk.unair.ac.id

Abstract

Context: Diabetic nephropathy is the leading cause of end-stage renal disease and also death in the world. Administration of Szeto-Schiller-31 (SS-31) as a potential therapeutic candidate that can decrease the renal function damage progressivity in diabetes needs to be comprehensively analyzed.

Aims: To assess the protective effects of SS31 against the progressivity of diabetic nephropathy.

Methods: This systematic review follows PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines 2020. Searches of databases (Pubmed, Science Direct, Scopus, ProQuest, and Springer) were done on 17 September 2023 in order to find articles related to the animal diabetic model and SS-31 treatment. Manual searches from medRxiv were also conducted to obtain additional evidence. Renal function, histopathology analysis, reactive oxygen species in vivo, and in vitro analysis were described.

Results: There were six in vivo studies, each of which discussed the renal function, histopathology, and reactive oxygen species (ROS), and four in vitro studies that discussed ROS. The available data suggested that SS-31 improves kidney function by lowering urinary albumin excretion, proteinuria, serum creatinine, creatinine clearance, and BUN, supported by histopathological improvements. In addition, SS-31 also has the effect of lowering 8-hydroxy-2-deoxyguanosine (8-OHdG) level, malondialdehyde (MDA) level, and nicotinamide adenine dinucleotide phosphate (NADPH) expression.

Conclusions: SS31 had a renoprotective effect that could prevent the worsening of renal function in diabetic mice. In addition, the results of histopathology and ROS analysis also support the positive results of SS-31 treatment. Further studies are required to confirm its findings.

Keywords: diabetic nephropathy; elamipretide; mitochondria targeted peptide; SS-31.

PDF Download

Resumen

Contexto: La nefropatía diabética es la principal causa de enfermedad renal terminal y también de muerte en el mundo. Es necesario analizar exhaustivamente la administración de Szeto-Schiller-31 (SS-31) como posible candidato terapéutico capaz de disminuir la progresividad del daño de la función renal en la diabetes.

Objetivos: Evaluar los efectos protectores del SS31 contra la progresividad de la nefropatía diabética.

Métodos: Esta revisión sistemática sigue las directrices PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) 2020. Se realizaron búsquedas en bases de datos (Pubmed, Science Direct, Scopus, ProQuest y Springer) el 17 de septiembre de 2023 para encontrar artículos relacionados con el modelo diabético animal y el tratamiento con SS-31. También se realizaron búsquedas manuales en medRxiv para obtener pruebas adicionales. Se describieron la función renal, el análisis histopatológico, las especies reactivas de oxígeno in vivo y el análisis in vitro.

Resultados: Hubo seis estudios in vivo, cada uno de los cuales analizaba la función renal, la histopatología y las especies reactivas del oxígeno (ROS), y cuatro estudios in vitro que analizaban las ROS. Los datos disponibles sugirieron que el SS-31 mejora la función renal al reducir la excreción urinaria de albúmina, la proteinuria, la creatinina sérica, el aclaramiento de creatinina y el BUN, apoyado por mejoras histopatológicas. Además, el SS-31 también tiene el efecto de reducir el nivel de 8-hidroxi-2-deoxiguanosina (8-OHdG), el nivel de malondialdehído (MDA) y la expresión de nicotinamida adenina dinucleótido fosfato (NADPH).

Conclusiones: El SS31 tuvo un efecto renoprotector que pudo prevenir el empeoramiento de la función renal en ratones diabéticos. Además, los resultados de la histopatología y el análisis de ROS también apoyan los resultados positivos del tratamiento con SS-31. Se requieren más estudios para confirmar sus resultados.

Palabras Clave: elamipretida; nefropatía diabética; péptido dirigido a las mitocondrias; SS-31.

PDF Download
 
Citation Format: Sutadji JC, Musalim DAP, Budi DS, Susanto J, Gunawan F, Multazam CEZ, Wungu CDK (2024) SS-31 protects diabetic nephropathy progression: A systematic review of in vivo and in vitro studies. J Pharm Pharmacogn Res 12(5): 956–971. https://doi.org/10.56499/jppres23.1904_12.5.956
References

Alam NM, Mills WC 4th, Wong AA, Douglas RM, Szeto HH, Prusky GT (2015) A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech 8: 701–710. https://doi.org/10.1242/dmm.020248

Al-Aubaidy HA, Jelinek HF (2010) 8-Hydroxy-2-deoxy-guanosine identifies oxidative DNA damage in a rural prediabetes cohort. Redox Rep 15:155–160. https://doi.org/10.1179/174329210X12650506623681

Chaudhary N, Tyagi N (2018) Diabetes mellitus: An Overview. Int J Res Dev Pharm Life Sci 7: 3030–3033. https://doi.org/10.21276/IJRDPL.2278

Chen X, Chen X (2020) Dexmedetomidine contributes to reduced anesthesia dosages and improves anesthetic effectiveness in the radical resection of gastric cancer. Int J Clin Exp Med 13: 6533–6541.

Chen Y, Lee K, Ni Z, He JC (2020) Diabetic kidney disease: Challenges, advances, and opportunities. Kidney Dis 6: 215–225. https://doi.org/10.1159/000506634

Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR (2021) Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in diabetes mellitus and Alzheimer’s disease. Pharmacol Res 171:105783. https://doi.org/10.1016/j.phrs.2021.105783

Du X, Zeng Q, Luo Y, He L, Zhao Y, Li N, Han C, Zhang G, Liu W (2024) Application research of novel peptide mitochondrial-targeted antioxidant SS-31 in mitigating mitochondrial dysfunction. Mitochondrion 75: 101846. https://doi.org/10.1016/j.mito.2024.101846

El Baky AMNEDA, Ismail NA, Abo-Hashesh MM, Kandil ME, Rasheed IA, Thabet EH, El-Lebedy D (2017) Assessment of serum malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) in Egyptian children with type i diabetes mellitus and factors affecting. Res J Pharm Biol Chem Sci 8: 342-349.

Escribano-López I, de Marañon AM, Iannantuoni F, López-Domènech S, Abad-Jiménez Z, Díaz P, Solá E, Apostolova N, Rocha M, Víctor VM (2019) The mitochondrial antioxidant SS-31 modulates oxidative stress, endoplasmic reticulum stress, and autophagy in type 2 diabetes. J Clin Med 8: 1322. https://doi.org/10.3390/jcm8091322

Garofalo C, Borrelli S, Liberti ME, Andreucci M, Conte G, Minutolo R, Provenzano M, De Nicola L (2019) SGLT2 Inhibitors: Nephroprotective efficacy and side effects. Medicina (Kaunas) 55: 268. https://doi.org/10.3390/medicina55060268

Higgins GC, Coughlan MT, Higgins G (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 171: 1917–1942. https://doi.org/10.1111/bph.12503

Hojs NV, Bevc S, Ekart R, Hojs R (2020) Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 9: 925. https://doi.org/10.3390/antiox9100925

Hou Y, Li S, Wu M, Wei J, Ren Y, Du C, Wu H, Han C, Duan H, Shi Y (2016) Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol 310: F547–F559. https://doi.org/10.1152/ajprenal.00574.2014

Hou Y, Shi Y, Han B, Liu X, Qiao X, Qi Y, Wang L (2018) The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrol Dial Transplant 33:1908–1918. https://doi.org/10.1093/ndt/gfy021

Li J, Chen X, Xiao W, Ma W, Li T, Huang J, Liu X, Liang X, Tang S, Luo Y (2011) Mitochondria-targeted antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem Biophys Res Commun 404: 349–356. https://doi.org/10.1016/j.bbrc.2010.11.122

Lim AKH (2014) Diabetic nephropathy – Complications and treatment. Int J Nephrol Renovasc Dis 7: 361–381. https://doi.org/10.2147/IJNRD.S40172

Lin YC, Chang YH, Yang SY, Wu KD, Chu TS (2018) Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc 117: 662–675. https://doi.org/10.1016/j.jfma.2018.02.007

Liu D, Jin F, Shu G, Xu X, Qi J, Kang X, Yu H, Lu K, Jiang S, Han F, You J, Du Y, Ji J (2019) Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 211: 57-67. https://doi.org/10.1016/j.biomaterials.2019.04.034

McGrath K, Edi R (2019) Diabetic kidney disease: Diagnosis, treatment, and prevention. Am Fam Physician 99: 751–759. https://pubmed.ncbi.nlm.nih.gov/31194487/

Miyamoto S, Zhang G, Hall D, Oates PJ, Maity S, Madesh M, Han X, Sharma K (2020) Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects db/db mice against progression of diabetic kidney disease. J Biol Chem 295: 7249–7260. https://doi.org/10.1074/jbc.RA119.011110

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372: n71. https://doi.org/10.1136/bmj.n71

Pasupuleti VR, Arigela CS, Gan SH, Salam SKN, Krishnan KT, Rahman NA, Jeffree MS (2020) A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid Med Cell Longev 2020: 8878172. https://doi.org/10.1155/2020/8878172

Qadarsih S, Zainuddin A, Yustisia I, Astuti N, Idris I, Santoso A (2022) 8- Hydroxy-Deoxyguanosine (8-OhDG) urine as a biomarker of oxidative damage in late elderly diabetes mellitus. Int J Health Sci (Qassim) 6: 2316–2327. https://doi.org/10.53730/ijhs.v6ns6.9983

Qi C, Mao X, Zhang Z, Wu H (2017) Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res 2017: 8637138. https://doi.org/10.1155/2017/8637138

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157: 107843. https://doi.org/10.1016/j.diabres.2019.107843

Thompson WR, Hornby B, Manuel R, Bradley E, Laux J, Carr J, Vernon HJ (2021) A phase 2/3 randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism. Genet Med 23: 471–478. https://doi.org/10.1038/s41436-020-01006-8

Wang , Tang D, Zou Y, Wu X, Chen Y, Li H, Chen S, Shi Y, Niu H (2019) A mitochondrial-targeted peptide ameliorated podocyte apoptosis through a HOCl-alb-enhanced and mitochondria-dependent signalling pathway in diabetic rats and in vitro. J Enzyme Inhib Med Chem 34: 394–404. https://doi.org/10.1080/14756366.2018.1488697

Wyss JC, Kumar R, Mikulic J, Schneider M, Mary JL, Aebi JD, Juillerat-Jeanneret L, Golshayan D (2019) Differential effects of the mitochondria-active tetrapeptide SS-31 (D-ARG-dimethyltyr-lysphe-NH2) and its peptidase-targeted prodrugs in experimental acute kidney injury. Front Pharmacol 10: 1209. https://doi.org/10.3389/fphar.2019.01209

Yang Q, Xie W, Wang X, Luo J, Zhou Y, Cao H, Sun Q, Jiang L, Yang J (2022) SS31 Ameliorates podocyte injury via inhibiting OMA1-mediated hydrolysis of OPA1 in diabetic kidney disease. Front Pharmacol 12: 707006. https://doi.org/10.3389/fphar.2021.707006

Yang SK, Li AM, Han YC, Peng CH, Song N, Yang M, Zhan M, Zeng LF, Song PA, Zhang W, Tang SQ, Zhang H (2019a) Mitochondria-targeted peptide SS31 attenuates renal tubulointerstitial injury via inhibiting mitochondrial fission in diabetic mice. Oxid Med Cell Longev. 2019: 2346580. https://doi.org/10.1155/2019/2346580

Yang W, Kong LS, Zhu XX, Wang RX, Liu Y, Chen LR (2019b) Effect of dexmedetomidine on postoperative cognitive dysfunction and inflammation in patients after general anaesthesia: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 98: e15383. https://doi.org/10.1097/MD.0000000000015383

Zhao WY, Han S, Zhang L, Zhu YH, Wang LM, Zeng L (2013) Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell Physiol Biochem 32: 591–600. https://doi.org/10.1159/000354463

Zoungas S, de Boer IH (2021) Sglt2 inhibitors in diabetic kidney disease. Clin J Am Soc Nephrol 16: 631–633. https://doi.org/10.2215/CJN.18881220

© 2024 Journal of Pharmacy & Pharmacognosy Research