J. Pharm. Pharmacogn. Res., vol. 11, no. 6, pp. 975-1001, Nov-Dec 2023.
DOI: https://doi.org/10.56499/jppres23.1697_11.6.975
Review
Medicinal plants with antileishmanial activity on parasites responsible for new-world cutaneous leishmaniasis. A systematic review 2018-2022
[Plantas medicinales con actividad antileishmania sobre parásitos responsables de leishmaniasis cutánea del nuevo mundo. Una revisión sistemática 2018-2022]
Yenny Y. Lozano1, Sara E. Giraldo1, Angela C. Zapata1, Jesús E. Escobar1, Ruth M. Sánchez2*
1Universidad de La Salle, Bogotá, D.C., Colombia.
2Universidad Colegio Mayor de Cundinamarca, Bogotá, D.C., Colombia.
*E-mail: rmsanchezm@unicolmayor.edu.co
Abstract
Context: Cutaneous leishmaniasis is a disease of public health importance; treatment is based on the use of pentavalent antimonials with high toxicity and low efficacy; therefore, it´s necessary to search for therapeutic alternatives derived from natural products, based on the study of medicinal plants as a source of molecules with highly effective leishmanicidal potential.
Aims: To carry out a systematic review between 2018 and 2022 on medicinal plants with potential leishmanicidal activity on parasite strains from the New World causing cutaneous leishmaniasis.
Methods: The review study was conducted in four phases following the PRISMA methodology. First, research questions and objectives were formulated to establish the topic areas and construct the search algorithm. Second, a search was performed across different databases, including ScienceDirect, Scopus, PubMed, Web of Science, EBSCO, Taylor and Francis, and Scielo. Third, articles were chosen based on specific inclusion and exclusion criteria. Finally, the relevant information for the review was systematically organized.
Results: The search yielded 163 articles, and 12 of them were selected as the basis for the construction of the review. Ethanolic and aqueous extracts stand out, as well as biocompounds such as terpenes and flavonoids. Antioxidant activity on reactive oxygen species was the most frequently cited.
Conclusions: Promising terpene and flavonoid molecules with high antileishmanial activity (IC50 <2 μM or <10 μg/mL and SI >1) were identified in this study; these findings provide a scientific basis for the traditional use that communities have given to plants as a therapeutic source to treat cutaneous leishmaniasis in the New World.
Keywords: antiprotozoal agents; cutaneous; Leishmania; leishmaniasis; plant extracts.

Resumen
Contexto: La leishmaniasis cutánea es una enfermedad de importancia en salud pública; su tratamiento se basa en el uso de antimoniales pentavalentes con alta toxicidad y baja eficacia; por tanto, es necesaria la búsqueda de alternativas terapéuticas derivadas de productos naturales, a partir del estudio de plantas medicinales como fuente de moléculas con potencial leishmanicida.
Objetivos: Realizar una revisión sistemática comprendida entre los años 2018-2022 referente a plantas medicinales con potencial actividad leishmanicida sobre cepas parasitarias del nuevo mundo causales de leishmaniasis cutánea.
Métodos: La revisión se realizó en cuatro fases siguiendo la metodología PRISMA. En primer lugar, se formularon las preguntas de investigación y los objetivos para establecer las áreas temáticas y construir el algoritmo de búsqueda. En segundo lugar, se realizó una búsqueda en diferentes bases de datos, como ScienceDirect, Scopus, PubMed, Web of Science, EBSCO, Taylor and Francis y Scielo. En tercer lugar, se seleccionaron los artículos en función de criterios específicos de inclusión y exclusión. Por último, la información relevante se organizó sistemáticamente para la revisión.
Resultados: La búsqueda arrojó 163 artículos, definiendo 12 artículos base para la construcción de la revisión. Sobresalen los extractos etanólicos y acuosos; así como biocompuestos tipo terpenos y flavonoides. La actividad antioxidante sobre especies reactivas de oxígeno fue la más citada.
Conclusiones: Se identificaron moléculas promisorias con alta actividad antileishmania (CI50 <2 μM o <10 μg/mL y con IS >1) tipo terpenos y flavonoides; resultado que brinda una base científica para el uso tradicional que las comunidades le han dado a las plantas como fuente terapéutica para tratar la leishmaniasis cutánea en el nuevo mundo.
Palabras Clave: agentes antiprotozoarios; cutáneo; extractos de plantas; Leishmania; leishmaniasis.

Citation Format: Lozano YY, Giraldo SG, Zapata AC, Escobar JE, Sánchez RM (2023) Medicinal plants with antileishmanial activity on parasites responsible for new-world cutaneous leishmaniasis. A systematic review 2018-2022. J Pharm Pharmacogn Res 11(6): 975–1001. https://doi.org/10.56499/jppres23.1697_11.6.975
References
Al-Dabbagh B, Elhaty IA, Elhaw M, Murali C, Al Mansoori A, Awad B, Amin A (2019) Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Res Notes 12(1): 3. https://doi.org/10.1186/s13104-018-3960-y
Alexander J, Satoskar A R, Russell DG (1999) Leishmania species: models of intracellular parasitism. J Cell Sci 112 Pt 18: 2993–3002. https://doi.org/10.1242/jcs.112.18.2993
Ali EMM, Almagboul AZI, Khogali SME, Gergeir UMA (2012) Antimicrobial activity of Cannabis sativa L. Chinese Med 3(1): 61–64. https://doi.org/10.4236/cm.2012.31010
Alvar J, Croft S, Olliaro P (2006a) Chemotherapy in the treatment and control of leishmaniasis. Adv Parasitol 61: 223–274. https://doi.org/10.1016/S0065-308X(05)61006-8
Alvar J, Yactayo S, Bern C (2006b) Leishmaniasis and poverty. Trends Parasitol 22(12): 552–557. https://doi.org/10.1016/j.pt.2006.09.004
Alves DR, Maia de Morais S, Tomiotto-Pellissier F, Miranda-Sapla MM, Vasconcelos FR, da Silva ING, Araujo de Sousa H, Assolini JP, Conchon-Costa I, Pavanelli WR, Freire F (2017) Flavonoid composition and biological activities of ethanol extracts of Caryocar coriaceum Wittm., a native plant from Caatinga Biome. Evid Based Complement Alternat Med 2017: 7. https://doi.org/10.1155/2017/6834218
Amsterdam JD, Shults J, Soeller I, Mao JJ, Rockwell K, Newberg AB (2012) Chamomile (Matricaria recutita) may provide antidepressant activity in anxious, depressed humans: an exploratory study. Altern Ther Health Med 18(5): 44–49. https://pubmed.ncbi.nlm.nih.gov/22894890/
Andrade PM, Melo DC, Alcoba AET, Ferreira Junior WG, Pagotti MC, Magalhaes LG, Santos T, Crotti AEM, Alves CCF, Miranda MLD (2018) Chemical composition and evaluation of antileishmanial and cytotoxic activities of the essential oil from leaves of Cryptocarya aschersoniana Mez. (Lauraceae Juss.). An Acad Bras Cienc 90(3): 2671–2678. https://doi.org/10.1590/0001-3765201820170332
Aragão Macedo SR, Ferreira AS, Biguinati de Barros N, Ulisses de Oliveira Meneguetti D, Facundo VA, Shibayama TY, Nicolete R (2019) Evaluation of the antileishmanial activity of biodegradable microparticles containing a hexanic eluate subfraction of Maytenus guianensis bark. Exp Parasitol 205: 107738. https://doi.org/10.1016/j.exppara.2019.107738
Araújo-Vilges KM, Oliveira SV, Couto SCP, Fokoue HH, Romero GAS, Kato MJ, Romeiro LAS, Leite J, Kuckelhaus SAS (2017) Effect of piplartine and cinnamides on Leishmania amazonensis, Plasmodium falciparum and on peritoneal cells of Swiss mice. Pharm Biol 55(1): 1601–1607. https://doi.org/10.1080/13880209.2017.1313870
Arevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, Miranda-Verastegui C, Lazo M, Loayza-Muro R, De Doncker S, Maurer A, Chappuis F, Dujardin J C, Llanos-Cuentas A (2007) Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis 195(12): 1846–1851. https://doi.org/10.1086/518041
Arruda DC, D’Alexandri F L, Katzin AM, Uliana SR (2005) Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother 49(5): 1679–1687. https://doi.org/10.1128/AAC.49.5.1679-1687.2005
Arruda DC, Miguel DC, Yokoyama-Yasunaka JK, Katzin AM, Uliana SR (2009) Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomed Pharmacother 63(9): 643–649. https://doi.org/10.1016/j.biopha.2009.02.004
Autran ES, Neves IA, da Silva CS, Santos GK, da Câmara CA, Navarro DM (2009) Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol 100(7): 2284–2288. https://doi.org/10.1016/j.biortech.2008.10.055
Barbosa WL, Pinto L, Quignard E, Vieira J, Silva Jr J, Albuquerque S (2008) Arrabidaea chica (HBK) Verlot: Phytochemical approach, antifungal and trypanocidal activities. Rev Bras Farmacogn 18(4): 544–548. https://doi.org/10.1590/S0102-695X2008000400008
Barrera P, Sulsen VP, Lozano E, Rivera M, Beer MF, Tonn C, Martino VS, Sosa MA (2013) Natural sesquiterpene lactones induce oxidative stress in Leishmania mexicana. Evid Based Complement Alternat Med 2013: 163404. https://doi.org/10.1155/2013/163404
Barros LM, Duarte AE, Morais-Braga MF, Waczuk EP, Vega C, Leite NF, de Menezes IR, Coutinho HD, Rocha JB, Kamdem JP (2016) Chemical characterization and trypanocidal, leishmanicidal and cytotoxicity potential of Lantana camara L. (Verbenaceae) essential oil. Molecules 21(2): 209. https://doi.org/10.3390/molecules21020209
Boniface PK, Ferreira EI (2019) Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res 33(10): 2473–2517. https://doi.org/10.1002/ptr.6383
Bosquiroli LSS, Demarque DP, Rizk YS, Cunha MC, Marques MCS, Matos MdFC, Kadri MCT, Carollo CA, Arruda CCP (2015) In vitro anti-Leishmania infantum activity of essential oil from Piper angustifolium. Rev Bras Farmacogn 25(2): 124–128. https://doi.org/10.1016/j.bjp.2015.03.008
Brito LM, Alves MMdM, Souza AC, Carvalho TPd, Campos JHF, Monção NBN, Citó AMdGL, Arcanjo DDR, Carvalho FAdA (2021) Selective in vitro antileishmanial activity of Mimosa caesalpiniifolia stem barks and its main constituent betulinic acid against Leishmania amazonensis. S Afr J Bot 140: 68–75. https://doi.org/10.1016/j.sajb.2021.03.028
Brú J, Guzman JD (2016) Folk medicine, phytochemistry and pharmacological application of Piper marginatum. Rev Bras Farmacogn 26(6):767–779. https://doi.org/10.1016/j.bjp.2016.03.014
Caldas LA, Yoshinaga ML, Ferreira MJP, Lago JHG, de Souza AB, Laurenti MD, Passero LFD, Sartorelli P (2019) Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida (Asteraceae). Bioorg Chem 83: 348–353. https://doi.org/10.1016/j.bioorg.2018.10.059
Carneiro SM, Carvalho FA, Santana LC, Sousa AP, Neto JM, Chaves MH (2012) The cytotoxic and antileishmanial activity of extracts and fractions of leaves and fruits of Azadirachta indica (A Juss.). Biol Res 45(2): 111–116. https://doi.org/10.4067/S0716-97602012000200002
Chahed MK, Bellali H, Ben Jemaa S, Bellaj T (2016) Psychological and psychosocial consequences of zoonotic cutaneous leishmaniasis among women in Tunisia: Preliminary findings from an exploratory study. PLoS Negl Trop Dis 10(10): e0005090. https://doi.org/10.1371/journal.pntd.0005090
Chhetri BK, Ali NAA, Setzer WN (2015) A survey of chemical compositions and biological activities of Yemeni aromatic medicinal plants. Medicines (Basel) 2(2): 67–92. https://doi.org/10.3390/medicines2020067
Claborn DM (2010) The biology and control of leishmaniasis vectors. J Glob Infect Dis 2(2): 127–134. https://doi.org/10.4103/0974-777X.62866
Colotti G, Ilari A (2011) Polyamine metabolism in Leishmania: From arginine to trypanothione. Amino Acids 40(2): 269–85. https://doi.org/10.1007/s00726-010-0630-3
Corpas-Lopez V, Merino-Espinosa G, Lopez-Viota M, Gijon-Robles P, Morillas-Mancilla MJ, Lopez-Viota J, Diaz-Saez V, Morillas-Marquez F, Navarro Moll MC, Martin-Sanchez J (2016) Topical treatment of Leishmania tropica infection using (-)-alpha-bisabolol ointment in a hamster model: Effectiveness and safety assessment. J Nat Prod 79(9): 2403–2407. https://doi.org/10.1021/acs.jnatprod.6b00740
Corpas-Lopez V, Morillas-Marquez F, Navarro-Moll MC, Merino-Espinosa G, Diaz-Saez V, Martin-Sanchez J (2015) (-)-alpha-Bisabolol, a Promising oral compound for the treatment of visceral leishmaniasis. J Nat Prod 78(6): 1202–1207. https://doi.org/10.1021/np5008697
Costa E, Belem Pinheiro M, Silva J, Maia B, Duarte M, Amaral A, Machado G, Leon L (2009) Antimicrobial and antileishmanial activity of essential oil from the leaves of Annona foetida (Annonaceae). Quim Nova 32(1): 78–81. https://doi.org/10.1590/S0100-40422009000100015
Cox-Georgian D, Ramadoss N, Dona C, Basu C (2019) Therapeutic and medicinal uses of terpenes. In: Joshee N, Dhekney S, Parajuli P (eds) Medicinal Plants. Springer, Cham, p. 333–359. https://doi.org/10.1007/978-3-030-31269-5_15
Craciunescu O, Constantin D, Gaspar A, Toma L, Utoiu E, Moldovan L (2012) Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem Cent J 6(1): 97. https://doi.org/10.1186/1752-153X-6-97
Da Costa FB, Terfloth L, Gasteiger J (2005) Sesquiterpene lactone-based classification of three Asteraceae tribes: A study based on self-organizing neural networks applied to chemosystematics. Phytochemistry 66(3): 345–353. https://doi.org/10.1016/j.phytochem.2004.12.006
da Silva ER, Brogi S, Grillo A, Campiani G, Gemma S, Vieira PC, Maquiaveli CDC (2019) Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem Biol Drug Des 93(2): 139–146. https://doi.org/10.1111/cbdd.13391
da Silva MA, Fokoue HH, Fialho SN, Dos Santos APA, Rossi N, Gouveia AJ, Ferreira AS, Passarini GM, Garay AFG, Alfonso JJ, Soares AM, Zanchi FB, Kato MJ, Teles CBG, Kuehn CC (2021) Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: An integrated approach in vitro and in silico. Parasitol Res 120(6): 2199–2218. https://doi.org/10.1007/s00436-021-07169-w
Danelli MG, Soares DC, Abreu HS, Pecanha LM, Saraiva EM (2009) Leishmanicidal effect of LLD-3 (1), a nor-triterpene isolated from Lophanthera lactescens. Phytochemistry 70(5): 608–614. https://doi.org/10.1016/j.phytochem.2009.03.009
D’Angelo LC, Xavier HS, Torres LM, Lapa AJ, Souccar C (1997) Pharmacology of Piper marginatum Jacq. a folk medicinal plant used as an analgesic, antiinflammatory and hemostatic. Phytomedicine 4(1): 33–40. https://doi.org/10.1016/S0944-7113(97)80025-6
de Araujo FF, Neri-Numa IA, de Paulo Farias D, da Cunha G, Pastore GM (2019) Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res Int 121: 57–72. https://doi.org/10.1016/j.foodres.2019.03.018
de Araújo VE, Morais MH, Reis IA, Rabello A, Carneiro M (2012) Early clinical manifestations associated with death from visceral leishmaniasis. PLoS Negl Trop Dis 6(2): e1511. https://doi.org/10.1371/journal.pntd.0001511
De Lima JPS, Pinheiro MLB, Santos AMG, Pereira JLdaS, Santos DMF, Barison A, Silva-Jardim I, Costa EV (2012) In vitro antileishmanial and cytotoxic activities of Annona mucosa (Annonaceae). Rev Virtual Quim 4(6): 692–702. https://dx.doi.org/10.5935/1984-6835.20120052
de Oliveira ML, Nunes-Pinheiro DC, Tome AR, Mota EF, Lima-Verde IA, Pinheiro FG, Campello CC, de Morais SM (2010) In vivo topical anti-inflammatory and wound healing activities of the fixed oil of Caryocar coriaceum Wittm. seeds. J Ethnopharmacol 129(2): 214–219. https://doi.org/10.1016/j.jep.2010.03.014
de Sousa SM, Reis AC, Viccini LF (2013) Polyploidy, B chromosomes, and heterochromatin characterization of Mimosa caesalpiniifolia Benth. (Fabaceae-Mimosoideae). Tree Genet Genomes 9(2): 613–619. https://doi.org/10.1007/s11295-012-0567-7
de Souza AM, de Oliveira CF, de Oliveira VB, Betim FCM, Miguel OG, Miguel MD (2018) Traditional uses, phytochemistry, and antimicrobial activities of Eugenia species – A review. Planta Med 84(17): 1232–1248. https://doi.org/10.1055/a-0656-7262
de Toledo J S, Ambrosio S R, Borges C H, Manfrim V, Cerri D G, Cruz A K, Da Costa F B (2014) In vitro leishmanicidal activities of sesquiterpene lactones from Tithonia diversifolia against Leishmania braziliensis promastigotes and amastigotes. Molecules 19(5): 6070–6079. https://doi.org/10.3390/molecules19056070
Delgado-Altamirano R, Lopez-Palma RI, Monzote L, Delgado-Dominguez J, Becker I, Rivero-Cruz JF, Esturau-Escofet N, Vazquez-Landaverde PA, Rojas-Molina A (2019) Chemical constituents with leishmanicidal activity from a pink-yellow cultivar of Lantana camara var. aculeata (L.) collected in Central Mexico. Int J Mol Sci 20(4): 872. https://doi.org/10.3390/ijms20040872
Dellacasa A, Bailac P, Ponzi M, Ruffinengo S, Eguaras M (2003) In vitro activity of essential oils from San Luis-Argentina against Ascosphaera apis. J Essent Oil Res 15(4): 282–285. https://doi.org/10.1080/10412905.2003.9712143
Demarchi IG, Thomazella MV, de Souza Terron M, Lopes L, Gazim ZC, Cortez DA, Donatti L, Aristides SM, Silveira TG, Lonardoni MV (2015) Antileishmanial activity of essential oil and 6,7-dehydroroyleanone isolated from Tetradenia riparia. Exp Parasitol 157: 128–137. https://doi.org/10.1016/j.exppara.2015.06.014
Desjeux P (1999) Global control and Leishmania HIV co-infection. Clin Dermatol 17(3): 317–325. https://doi.org/10.1016/S0738-081X(99)00050-4
Dias CN, Alves LP, Rodrigues KA, Brito MC, Rosa Cdos S, do Amaral FM, Monteiro Odos S, Andrade EH, Maia JG, Moraes DF (2015) Chemical composition and larvicidal activity of essential oils extracted from Brazilian legal amazon plants against Aedes aegypti L. (Diptera: Culicidae). Evid Based Complement Alternat Med 2015: 490765. https://doi.org/10.1155/2015/490765
do Nascimento Silva J, Drumond RR, Monção NBN, Paula A, Ferreira P (2016) Prospective study about antineoplasic properties of plants from Fabaceae family: Emphasis in Mimosa caesalpiniifolia. Geintec 6(3): 3304–3318. https://doi.org/10.7198/S2237-072220160003005
do Socorro SRMS, Mendonça-Filho RR, Bizzo HR, de Almeida Rodrigues I, Soares RM, Souto-Padrón T, Alviano CS, Lopes AH (2003) Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob Agents Chemother 47(6): 1895–1901. https://doi.org/10.1128/AAC.47.6.1895-1901.2003
Docampo R (2000) New and re-emerging diseases: a dedication to Norman D. Levine. Parasitol Today 16(8): 316–317. https://doi.org/10.1016/s0169-4758(00)01718-x
Dostálová A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasites Vectors 5: 276. https://doi.org/10.1186/1756-3305-5-276
Downes MJ, Brennan ML, Williams HC, Dean RS (2016) Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 6(12): e011458. http://dx.doi.org/10.1136/bmjopen-2016-011458
El Asbahani A, Miladi K, Badri W, Sala M, Ait Addi EH, Casabianca H, El Mousadik A, Hartmann D, Jilale A, Renaud FN, Elaissari A (2015) Essential oils: from extraction to encapsulation. Int J Pharm 483(1-2): 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069
El-Mougy NS (2009) Effect of some essential oils for limiting early blight (Alternaria solani) development in potato field. J Plant Prot Res 49(1): 57–62. https://doi.org/10.2478/v10045-009-0008-2
ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78(5): 539–548. https://doi.org/10.1016/j.lfs.2005.09.011
Elzinga S, Fischedick J, Podkolinski R, Raber J (2015) Cannabinoids and terpenes as chemotaxonomic markers in Cannabis. Nat Prod Chem Res 3(4): 1000181. https://doi.org/10.4172/2329-6836.1000181
Emerenciano VP, Militão JSLT, Campos CC, Romoff P, Kaplan MAC, Zambon M, Brant AJC (2001) Flavonoids as chemotaxonomic markers for Asteraceae. Biochem Syst Ecol 29(9): 947–957. https://doi.org/10.1016/S0305-1978(01)00033-3
Fadel H, Sifaoui I, Lopez-Arencibia A, Reyes-Batlle M, Hajaji S, Chiboub O, Jimenez IA, Bazzocchi IL, Lorenzo-Morales J, Benayache S, Pinero JE (2018) Assessment of the antiprotozoal activity of Pulicaria inuloides extracts, an Algerian medicinal plant: Leishmanicidal bioguided fractionation. Parasitol Res 117(2): 531–537. https://doi.org/10.1007/s00436-017-5731-4
Fadel H, Sifaoui I, Lopez-Arencibia A, Reyes-Batlle M, Jimenez IA, Lorenzo-Morales J, Ghedadba N, Benayache S, Pinero JE, Bazzocchi IL (2019) Antioxidant and leishmanicidal evaluation of Pulicaria Inuloides root extracts: A bioguided fractionation. Pathogens 8(4): 201. https://doi.org/10.3390/pathogens8040201
Fouque F, Reeder JC (2019) Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect Dis Poverty 8(1): 51. https://doi.org/10.1186/s40249-019-0565-1
Frézard F, Demicheli C, Ribeiro RR (2009) Pentavalent antimonials: New perspectives for old drugs. Molecules 14(7): 2317–2336. https://doi.org/10.3390/molecules14072317
Garcia CC, Talarico L, Almeida N, Colombres S, Duschatzky C, Damonte EB (2003) Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother Res 17(9): 1073–1075. https://doi.org/10.1002/ptr.1305
Garcia MCF, Soares DC, Santana RC, Saraiva EM, Siani AC, Ramos MFS, Danelli M, Souto-Padron TC, Pinto-da-Silva LH (2018) The in vitro antileishmanial activity of essential oil from Aloysia gratissima and guaiol, its major sesquiterpene against Leishmania amazonensis. Parasitology 145(9): 1219–1227. https://doi.org/10.1017/S0031182017002335
Ghadimi SN, Sharifi N, Osanloo M (2020) The leishmanicidal activity of essential oils: A systematic review. J Herbmed Pharmacol 9(4): 300–308. https://doi.org/10.34172/jhp.2020.38
Giraldo Escobar AF (2022) Revisión sistemática de los factores agronómicos del cultivo de Cannabis sativa L. y su relación con sus potenciales usos. Tesis. Escuela de Ciencias Básicas y Aplicadas, Universidad de La Salle, Bogotá.
Goretty M, Ferreira P, Kayano A, Silva-Jardim I, Silva T, Zuliani J, Facundo V, Calderon L, Calderon A, De A, Ciancaglini P, Stabeli R (2010) Antileishmanial activity of 3-(3,4,5-trimethoxyphenyl) propanoic acid purified from Amazonian Piper tuberculatum Jacq., Piperaceae, fruits. Rev Bras Farmacogn 20(6):1003–1006. https://doi.org/10.1590/S0102-695X2010005000033
Guerra JA, Prestes SR, Silveira H, Coelho LI, Gama P, Moura A, Amato V, Barbosa M, Ferreira LC (2011) Mucosal leishmaniasis caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon. PLoS Negl Trop Dis 5(3): e980. https://doi.org/10.1371/journal.pntd.0000980
Hajaji S, Sifaoui I, Lopez-Arencibia A, Reyes-Batlle M, Jimenez IA, Bazzocchi IL, Valladares B, Akkari H, Lorenzo-Morales J, Pinero JE (2018) Leishmanicidal activity of alpha-bisabolol from Tunisian chamomile essential oil. Parasitol Res 117(9): 2855–2867. https://doi.org/10.1007/s00436-018-5975-7
Herrera Acevedo C, Scotti L, Feitosa Alves M, Formiga Melo Diniz MF, Scotti MT (2017) Computer-aided drug design using sesquiterpene lactones as sources of new structures with potential activity against infectious neglected diseases. Molecules 22(1): 79–98. https://doi.org/10.3390/molecules22010079
Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT (2021) Discovery of alternative chemotherapy options for leishmaniasis through computational studies of Asteraceae. ChemMedChem 16(8): 1234–1245. https://doi.org/10.1002/cmdc.202000862
Higuita-Castro J, Vélez ID, Escobar DM, Murillo J, Pineda T, Ospina V, Robledo SM (2021) Development of a biocompatible polymeric chitosan system for the release of compounds with leishmanicidal activity. Mater Des 212: 110232. https://doi.org/10.1016/j.matdes.2021.110232
Höfling JF, Anibal PC, Obando-Pereda GA, Peixoto IAT, Furletti VF, Foglio MA, Gonçalves RB (2010) Antimicrobial potential of some plant extracts against Candida species. Braz J Biol 70 (4):1065–1068. https://doi.org/10.1590/S1519-69842010000500022
Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2013) In vitro and in vivo effects of (-)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J Nat Prod 76(10): 1993–1996. https://doi.org/10.1021/np400624d
Ioset J-R (2008) Natural products for neglected diseases: A review. Curr Org Chem 12(8): 643–666. https://doi.org/10.2174/138527208784577394
Jamalian A, Shams-Ghahfarokhi M, Jaimand K, Pashootan N, Amani A, Razzaghi-Abyaneh M (2012) Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens. J Mycol Med 22(4): 308–315. https://doi.org/10.1016/j.mycmed.2012.09.003
Jha P, Bhalerao S, Dhole M (2018) A comparative analysis of anxiolytic activity of Arnica montana and alprazolam in rats using open field test. Int J Basic Clin Pharmacol 7(4): 718–722. https://doi.org/10.18203/2319-2003.ijbcp20181175
Johnson EL, Schmidt WF, Norman HA (1997) Leaf flavonoids as chemotaxonomic markers for two Erythroxylum. Taxa. Z Naturforsch C 52(9-10): 577–585. https://doi.org/10.1515/znc-1997-9-1004
Kato H, Gomez EA, Cáceres AG, Uezato H, Mimori T, Hashiguchi Y (2010) Molecular epidemiology for vector research on leishmaniasis. Int J Environ Res Public Health 7(3): 814–826. https://doi.org/10.3390/ijerph7030814
Kato H, Gomez EA, Seki C, Furumoto H, Martini-Robles L, Muzzio J, Calvopiña M, Velez L, Kubo M, Tabbabi A, Yamamoto DS, Hashiguchi Y (2019) PCR-RFLP analyses of Leishmania species causing cutaneous and mucocutaneous leishmaniasis revealed distribution of genetically complex strains with hybrid and mito-nuclear discordance in Ecuador. PLoS Negl Trop Dis 13(5): e0007403. https://doi.org/10.1371/journal.pntd.0007403
Kawakami MYM, Zamora LO, Araújo RS, Fernandes CP, Ricotta TQN, de Oliveira LG, Queiroz-Junior CM, Fernandes AP, da Conceição EC, Ferreira LAM, Barros ALB, Aguiar MG, Oliveira A (2021) Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed Pharmacother 134: 111109. https://doi.org/10.1016/j.biopha.2020.111109
Kevric I, Cappel MA, Keeling JH (2015) New World and Old World Leishmania infections: A practical review. Dermatol Clin 33(3): 579–593. https://doi.org/10.1016/j.det.2015.03.018
Klaas CA, Wagner G, Laufer S, Sosa S, Della Loggia R, Bomme U, Pahl HL, Merfort I (2002) Studies on the anti-inflammatory activity of phytopharmaceuticals prepared from Arnica flowers. Planta Med 68(5): 385–391. https://doi.org/10.1055/s-2002-32067
Klatt S, Simpson L, Maslov DA, Konthur Z (2019) Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 13(7): e0007424. https://doi.org/10.1371/journal.pntd.0007424
Koutsoni OS, Karampetsou K, Dotsika E (2019) In vitro screening of antileishmanial activity of natural product compounds: Determination of IC(50), CC(50) and SI values. Bio Protoc 9(21): e3410. https://doi.org/10.21769/BioProtoc.3410
Kriplani P, Guarve K, Baghael US (2017) Arnica montana L. – A plant of healing: review. J Pharm Pharmacol 69(8): 925–945. https://doi.org/10.1111/jphp.12724
Lima J, Belem Pinheiro M, Santos A, Pereira J, Santos D, Barison A, Silva-Jardim I, Costa E (2012) In vitro antileishmanial and cytotoxic activities of Annona mucosa (Annonaceae). Rev Virtual Quim 4(6): 692–702. https://doi.org/10.5935/1984-6835.20120052
Liu K, Abdullah AA, Huang M, Nishioka T, Altaf-Ul-Amin M, Kanaya S (2017) Novel approach to classify plants based on metabolite-content similarity. BioMed Res Int 2017: 12. https://doi.org/10.1155/2017/5296729
Llanos-Cuentas A, Tulliano G, Araujo-Castillo R, Miranda-Verastegui C, Santamaria-Castrellon G, Ramirez L, Lazo M, De Doncker S, Boelaert M, Robays J, Dujardin JC, Arevalo J, Chappuis F (2008) Clinical and parasite species risk factors for pentavalent antimonial treatment failure in cutaneous leishmaniasis in Peru. Clin Infect Dis 46(2): 223–231. https://doi.org/10.1086/524042
Lozano YY, Giraldo SE, Castro HS, Sánchez RM (2022) Plantas medicinales con potencial actividad neuroprotectora estudiadas en cepas transgénicas de Caenorhabditis elegans. J Pharm Pharmacogn Res 10(5): 812–836. https://doi.org/10.56499/jppres22.1379_10.5.812
Lucas CM, Franke ED, Cachay MI, Tejada A, Cruz ME, Kreutzer RD, Barker DC, McCann SH, Watts DM (1998) Geographic distribution and clinical description of leishmaniasis cases in Peru. Am J Trop Med Hyg 59(2): 312–317. https://doi.org/10.4269/ajtmh.1998.59.312
Luize PS, Tiuman TS, Morello LG, Maza PK, Ueda-Nakamura T, Dias Filho BP, Cortez DAG, De Mello JCP, Nakamura CV (2005) Effects of medicinal plant extracts on growth of Leishmania (L.) amazonensis and Trypanosoma cruzi. Rev Bras Cienc Farm 41(1): 85–94. https://doi.org/10.1590/S1516-93322005000100010
Macêdo CG, Fonseca MYN, Caldeira AD, Castro SP, Pacienza-Lima W, Borsodi MPG, Sartoratto A, da Silva MN, Salgado CG, Rossi-Bergmann B, Castro KCF (2020) Leishmanicidal activity of Piper marginatum Jacq. from Santarém-PA against Leishmania amazonensis. Exp Parasitol 210: 107847. https://doi.org/10.1016/j.exppara.2020.107847
Machado M, Santoro G, Sousa MC, Salgueiro L, Cavaleiro C (2010) Activity of essential oils on the growth of Leishmania infantum promastigotes 25(3): 156–160. https://doi.org/10.1002/ffj.1987
Machado R, Júnior W, Lesche B, Coimbra E, Bellotti de Souza N, Abramo C, Soares G, Kaplan M (2012) Essential oil from leaves of Lantana camara: A potential source of medicine against leishmaniasis. Rev Bras Farmacogn 22(5): 1011–1017. https://doi.org/10.1590/S0102-695X2012005000057
Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah A-u-H, Adnan Ali Shah S, Wadood A, Nadhman A (2019) β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against Leishmania tropica: Docking and molecular insights. Steroids 148: 56–62. https://doi.org/10.3390/pr7040208
Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, Suarez JA (2021) A review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep 8(2): 121–132. https://doi.org/10.1007/s40475-021-00232-7
Manta B, Comini M, Medeiros A, Hugo M, Trujillo M, Radi R (2013) Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta 1830(5): 3199–3216. https://10.1016/j.bbagen.2013.01.013
Marcondes M, Day MJ (2019) Current status and management of canine leishmaniasis in Latin America. Res Vet Sci 123: 261–272. https://doi.org/10.1016/j.rvsc.2019.01.022
Marlow MA, da Silva Mattos M, Makowiecky ME, Eger I, Rossetto AL, Grisard EC, Steindel M (2013) Divergent profile of emerging cutaneous leishmaniasis in subtropical Brazil: New endemic areas in the southern frontier. PLoS One 8(2): e56177. https://doi.org/10.1371/journal.pone.0056177
Mat Sharil AT, Basma Ezzat M, Widya L, Amri Nurhakim MH, Nor Hikmah AR, Nabilah Zafira Z, Haris MS (2022) Systematic review of flaxseed (Linum usitatissimum L.) extract and formulation in wound healing. J Pharm Pharmacogn Res 10(1): 1–12. https://doi.org/10.56499/jppres21.1125_10.1.1
Matias JN, Achete de Souza G, Kumar Joshi R, Vaz de Marqui S, Landgraf Guiguer É, Cressoni Araújo A, Machado Bueno Otoboni AM, Marineli P, Barbalho SM (2021) Arrabidaea chica (Humb. and Bonpl.): A plant with multipurpose medicinal applications. Int J Herbal Med 9(1): 77–86.
Matos FJA, Machado MIL, Alencar JW, Craveiro AA (1993) Constituents of Brazilian chamomile oil. J Essent Oil Res 5(3): 337–339. https://doi.org/10.1080/10412905.1993.9698234
Mayaud L, Carricajo A, Zhiri A, Aubert G (2008) Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett Appl Microbiol 47(3): 167–173. https://doi.org/10.1111/j.1472-765X.2008.02406.x
McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L, Hunt HA, Hyde CJ, Korevaar DA, Leeflang MMG, Macaskill P, Reitsma JB, Rodin R, Rutjes AWS, Salameh JP, Stevens A, Takwoingi Y, Tonelli M, Weeks L, Whiting P, Willis BH (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 319(4): 388–396. https://10.1001/jama.2017.19163
McKay DL, Blumberg JB (2006) A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res 20(7): 519–530. https://doi.org/10.1002/ptr.1900
Ministério da Saúde (2022) Plantas Medicinais de Interesse ao SUS – Renisus — Português (Brasil). in: M. d. Saúde (Ed.), Brasil. https://www.gov.br/saude/pt-br/composicao/sectics/daf/pnpmf/ppnpmf/renisus
Misra P, Kumar A, Khare P, Gupta S, Kumar N, Dube A (2009) Pro-apoptotic effect of the landrace Bangla Mahoba of Piper betle on Leishmania donovani may be due to the high content of eugenol. J Med Microbiol 58(Pt 8): 1058–1066. https://doi.org/10.1099/jmm.0.009290-0
Moghaddam M, Mehdizadeh L (2017) Chapter 13 – Chemistry of Essential Oils and Factors Influencing Their Constituents. In: Grumezescu AM and Holban AM (eds.), Soft Chemistry and Food Fermentation, Academic Press. pp. 379–419. https://doi.org/10.1016/B978-0-12-811412-4.00013-8
Monção NB, Costa LM, Arcanjo DD, Araújo BQ, Lustosa Mdo C, Rodrigues KA, Carvalho FA, Costa AP, Lopes Citó AM (2014) Chemical constituents and toxicological studies of leaves from Mimosa caesalpiniifolia Benth., a Brazilian honey plant. Pharmacogn Mag 10(Suppl 3): S456–462. https://doi.org/10.4103/0973-1296.139773
Montrieux E, Perera WH, García M, Maes L, Cos P, Monzote L (2014) In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol Res 113(8): 2925–2932. https://doi.org/10.1007/s00436-014-3954-1
Monzote L, García M, Pastor J, Gil L, Scull R, Maes L, Cos P, Gille L (2014) Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp Parasitol 136: 20–26. https://doi.org/10.1016/j.exppara.2013.10.007
Monzote L, Herrera I, Satyal P, Setzer WN (2019) In-vitro evaluation of 52 commercially-available essential oils against Leishmania amazonensis. Molecules 24(7): 1248. https://doi.org/10.3390/molecules24071248
Monzote L, Montalvo AM, Almanonni S, Scull R, Miranda M, Abreu J (2006) Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy 52(3): 130–136. https://doi.org/10.1159/000092858
Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança A (2019) Asteraceae plants as sources of compounds against Leishmaniasis and Chagas disease. Front Pharmacol 10: 477. https://doi.org/10.3389/fphar.2019.00477
Mororó GT, de Oliveira Ferreira JR, de Morais Alves MM, Nery Monção NB, de Carvalho-Gonçalves LCT, Graças Lopes Citó AMd, Pinheiro Ferreira PM, de Amorim Carvalho FA, Ramos Gonçalves JC (2018) Study of the antileukemic activity of Mimosa caesalpiniifolia Benth. ethanolic extract and fractions. J Trend Phytochem Res 2(3): 127–134. https://tpr.shahrood.iau.ir/article_543322.html
Nakamura C, Santos A, Vendrametto M, Luize P, Filho B, Cortez D, Ueda-Nakamura T (2006) Antileishmanial activity of hydroalcoholic extract and fractions obtained from leaves of Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.). Rev Bras Farmacogn 16: 61–66. https://doi.org/10.1590/S0102-695X2006000100011
Nissen L, Zatta A, Stefanini I, Grandi S, Sgorbati B, Biavati B, Monti A (2010) Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 81(5): 413–419. https://doi.org/10.1016/j.fitote.2009.11.010
Nogueira RC, Rocha VP, Nonato FR, Tomassini TC, Ribeiro IM, dos Santos RR, Soares MB (2013) Genotoxicity and antileishmanial activity evaluation of Physalis angulata concentrated ethanolic extract. Environ Toxicol Pharmacol 36(3): 1304–1311. https://doi.org/10.1016/j.etap.2013.10.013
Nok AJ, Ibrahim S, Arowosafe S, Longdet I, Ambrose A, Onyenekwe PC, Whong CZ (1994) The trypanocidal effect of Cannabis sativa constituents in experimental animal trypanosomiasis. Vet Hum Toxicol 36(6): 522–524. https://pubmed.ncbi.nlm.nih.gov/7900270/
Nunes TAL, Costa LH, De Sousa JMS, De Souza VMR, Rodrigues RRL, Val M, Pereira A, Ferreira GP, Da Silva MV, Da Costa J, Veras LMC, Diniz RC, Rodrigues K (2021) Eugenia piauhiensis Vellaff. essential oil and gamma-elemene its major constituent exhibit antileishmanial activity, promoting cell membrane damage and in vitro immunomodulation. Chem Biol Interact 339: 109429. https://doi.org/10.1016/j.cbi.2021.109429
Obón C, Rivera D, Verde A, Fajardo J, Valdés A, Alcaraz F, Carvalho AM (2012) Arnica: A multivariate analysis of the botany and ethnopharmacology of a medicinal plant complex in the Iberian Peninsula and the Balearic Islands. J Ethnopharmacol 144(1): 44–56. https://doi.org/10.1016/j.jep.2012.08.024
Ocazionez RE, Meneses R, Torres FA, Stashenko E (2010) Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Mem Inst Oswaldo Cruz 105(3): 304–309. https://doi.org/10.1590/s0074-02762010000300010
Odonne G, Herbette G, Eparvier V, Bourdy G, Rojas R, Sauvain M, Stien D (2011) Antileishmanial sesquiterpene lactones from Pseudelephantopus spicatus, a traditional remedy from the Chayahuita Amerindians (Peru). Part III. J Ethnopharmacol 137(1): 875–879. https://doi.org/10.1016/j.jep.2011.07.008
Oliveira FAS, Passarini GM, Medeiros DSS, Santos APA, Fialho SN, Gouveia AJ, Latorre M, Freitag EM, Medeiros PSM, Teles CBG, Facundo VA (2018) Antiplasmodial and antileishmanial activities of compounds from Piper tuberculatum Jacq fruits. Rev Soc Bras Med Trop 51(3): 382–386. https://doi.org/10.1590/0037-8682-0309-2017
Oryan A (2015). Plant-derived compounds in treatment of leishmaniasis. Iran J Vet Res 16(1): 1–19. https://pubmed.ncbi.nlm.nih.gov/27175144
Paduch R, Kandefer-Szerszeń M, Trytek M, Fiedurek J (2007) Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp 55(5): 315–327. https://doi.org/10.1007/s00005-007-0039-1
Pan American Health Organization (PAHO) – OPS/OMS (2017) Plan de acción para fortalecer la vigilancia y control de las leishmaniasis en las Américas 2017-2022, in: D. d. E. T. y. A. d. Salud (Ed.). https://iris.paho.org/handle/10665.2/34144
Pan American Health Organization (PAHO) – OPS/OMS (2022) Leishmaniasis. https://www.paho.org/en/topics/leishmaniasis (accessed 16 April 2023).
Peixoto JF, Ramos YJ, de Lima Moreira D, Alves CR, Gonçalves-Oliveira LF (2021) Potential of Piper spp. as a source of new compounds for the leishmaniases treatment. Parasitol Res 120(8): 2731-2747. https://doi.org/10.1007/s00436-021-07199-4
Pérez S, Ramos-Lopez M, Sánchez-Miranda E, Fresán-Orozco M, Pérez-Ramos J (2012) Antiprotozoa activity of some essential oils. J Med Plant Res 6(15): 2901–2908. https://doi.org/10.5897/JMPR11.1572
Pérez-Loyola M, Valdés-González M, Garrido G (2022) Modified pectins with activity against colon cancer: A systematic review from 2010-2021. J Pharm Pharmacogn Res 10(4): 616–651. https://doi.org/10.56499/jppres22.1387.10.4.616
Perigo CV, Torres RB, Bernacci LC, Guimarães EF, Haber LL, Facanali R, Vieira MAR, Quecini V, Marques MOM (2016) The chemical composition and antibacterial activity of eleven Piper species from distinct rainforest areas in Southeastern Brazil. Ind Crops Prod 94: 528–539. https://doi.org/10.1016/j.indcrop.2016.09.028
Pires M, Wright B, Kaye PM, da Conceição V, Churchill RC (2019) The impact of leishmaniasis on mental health and psychosocial well-being: A systematic review. PLoS One 14(10): e0223313. https://doi.org/10.1371/journal.pone.0223313
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 11(12): e0006052. https://doi.org/10.1371/journal.pntd.0006052
POWO (2022) Piper marginatum Jacq. Plants of the World Online. Royal Botanic Gardens, Kew. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:682138-1 (Consulted 16 April 2023).
Pramanik PK, Chakraborti S, Bagchi A, Chakraborti T (2020) Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Sci Rep 10(1): 20440. https://doi.org/10.1038/s41598-020-77066-2
Qaid MAN, Algabr MN, Khamis AO, Wang H (2017) Anticancer, antimicrobial and antioxidant activities of the essential oils of some aromatic medicinal plants (Pulicaria inuloides-Asteraceae). J Food Nutr Res 5(7): 490–495. https://10.12691/jfnr-5-7-6
Quirino Araújo B, Monção N, Oliveira L, Santana L, Arcanjo D, Rodrigues K, Carvalho F, Citó AMGL (2020) 3-O-Acyl triterpenoids and antileishmanial effect of the ethanolic extract from Mimosa caesalpiniifolia inflorescences. Curr Bioact Compd 16(8): 1225–1230. http://dx.doi.org/10.2174/2212796814666200124120712
Radwan MM, Elsohly MA, Slade D, Ahmed SA, Khan IA, Ross SA (2009) Biologically active cannabinoids from high-potency Cannabis sativa. J Nat Prod 72(5): 906–911. https://doi.org/10.1021/np900067k
Radwan MM, Ross SA, Slade D, Ahmed SA, Zulfiqar F, Elsohly MA (2008) Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med 74(3): 267–272. https://doi.org/10.1055/s-2008-1034311
Raimundo VD, Carvalho RPR, Machado-Neves M, Marques-da-Silva EA (2022) Effects of terpenes in the treatment of visceral leishmaniasis: A systematic review of preclinical evidence. Pharmacol Res 177: 106117. https://doi.org/10.1016/j.phrs.2022.106117
Ramalho Carvalho PE (2007) Sabiá – Mimosa caesalpiniifolia. In: Florestas CE (ed.), Brasil. pp. 10.
Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P (2005) Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med 71(12): 1123–1127. https://doi.org/10.1055/s-2005-873175
Reichling J, Schnitzler P, Suschke U, Saller R (2009) Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – An overview. Forsch Komplementmed 16(2): 79–90. https://doi.org/10.1159/000207196
Rhayour K, Bouchikhi T, Tantaoui-Elaraki A, Sendide K, Remmal A (2003) The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J Essent Oil Res 15(5): 356–362. https://doi.org/10.1080/10412905.2003.9698611
Ribeiro N, Camara C, Ramos C (2016) Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chilean J Agric Res 76: 71–76. http://dx.doi.org/10.4067/S0718-58392016000100010
Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, Franca JR, Lage PS, Duarte MC, Andrade PH, Martins VT, Costa LE, Arruda AL, Faraco AA, Coelho EA, Castilho RO (2014) Antileishmanial activity and cytotoxicity of Brazilian plants. Exp Parasitol 143: 60–68. https://doi.org/10.1016/j.exppara.2014.05.004
Rizk YS, Fischer A, Cunha MdC, Rodrigues PO, Marques MC, Matos MdF, Kadri MC, Carollo CA, Arruda CC (2014) In vitro activity of the hydroethanolic extract and biflavonoids isolated from Selaginella sellowii on Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 109(8): 1050–1056. https://doi.org/10.1590/0074-0276140312
Robledo S, Restrepo A, Yepes L, Fernández M, Vélez I (2017) Studies in vitro and in vivo of antileishmanial activity and differential cytotoxicity of Cannabis spp. Plant Med Int Open 4(S 01): S1–S202. https://doi.org/10.1055/s-0037-1608170
Robledo SM, Murillo J, Arbeláez N, Montoya A, Ospina V, Jürgens FM, Vélez ID, Schmidt TJ (2022) Therapeutic efficacy of Arnica in hamsters with cutaneous leishmaniasis caused by Leishmania braziliensis and L. tropica. Pharmaceuticals (Basel) 15(7): 776. https://doi.org/10.3390/ph15070776
Roby MHH, Sarhan MA, Selim KA-H, Khalel KI (2013) Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind Crops Prod 44: 437–445. https://doi.org/10.1016/j.indcrop.2012.10.012
Rocha VPC, Quintino da Rocha C, Ferreira Queiroz E, Marcourt L, Vilegas W, Grimaldi GB, Furrer P, Allémann É, Wolfender JL, Soares MBP (2018) Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules 24(1): 1. https://doi.org/10.3390/molecules24010001
Rodrigues de Moraes PL (2007) Taxonomy of Cryptocarya species of Brazil. Belgian Development Cooperation 3:199.
Rodrigues IA, Azevedo MM, Chaves FC, Alviano CS, Alviano DS, Vermelho AB (2014) Arrabidaea chica hexanic extract induces mitochondrion damage and peptidase inhibition on Leishmania spp. Biomed Res Int 2014: 985171. https://doi.org/10.1155/2014/985171
Rodrigues KA, Amorim LV, de Oliveira JM, Dias CN, Moraes DF, Andrade EH, Maia JG, Carneiro SM, Carvalho FA (2013) Eugenia uniflora L. essential oil as a potential anti-leishmania agent: Effects on Leishmania amazonensis and possible mechanisms of action. Evid Based Complement Alternat Med 2013: 279726. https://doi.org/10.1155/2013/279726
Rodrigues-Silva D, Nakamura CV, Dias Filho BP, Ueda-Nakamura T, Ranieri-Cortez D, Cortez D (2009) In vitro Antileishmanial Activity of Hydroalcoholic Extract, Fractions, and Compounds Isolated from Leaves of Piper ovatum Vahl against Leishmania amazonensis. Planta Med 75: PD29. https://doi.org/10.1055/s-0029-1234508
Rodríguez-Chaves D, Bagnarello-Madrigal V, Alpizar-Cordero J, Calvo-Vargas A, Cordero-Villalobos M, Chinchilla-Carmona M, Valerio-Campos I, Sánchez Porras R (2018) Actividad in vitro anti-Leishmania (Trypanosomatidae) del epóxido trans-Z-α-bisaboleno y del safrol, en frutos de Piper auritum (Piperaceae). Rev Biol Trop 66(2): 826–835. http://dx.doi.org/10.15517/rbt.v66i2.33412
Romero GA, Vinitius De Farias Guerra M, Gomes Paes M, de Oliveira Macêdo V (2001) Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: Clinical findings and diagnostic approach. Clin Infect Dis 32(9): 1304–1312. https://doi.org/10.1086/319990
Rottini MM, Amaral AC, Ferreira JL, Silva JR, Taniwaki NN, Souza Cda S, d’Escoffier LN, Almeida-Souza F, Hardoim DdJ, Gonçalves da Costa SC, Calabrese KdS (2015) In vitro evaluation of (-) α-bisabolol as a promising agent against Leishmania amazonensis. Exp Parasitol 148: 66–72. https://doi.org/10.1016/j.exppara.2014.10.001
Russo EB (2007) History of cannabis and its preparations in saga, science, and sobriquet. Chem Biodivers 4(8): 1614–1648. https://doi.org/10.1002/cbdv.200790144
Salgado-Almario J, Hernández CA, Ovalle CE (2019) Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica 39(2): 278–290. https://doi.org/10.7705/biomedica.v39i3.4312
Sánchez Y, Correa TM, Abreu Y, Martínez B, Duarte Y, Pino O (2011) Caracterización química y actividad antimicrobiana del aceite esencial de Piper marginatum Jacq. Rev Prot Veg 26(3):170–176.
Santin MR, dos Santos AO, Nakamura CV, Dias Filho BP, Ferreira IC, Ueda-Nakamura T (2009) In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res 105(6): 1489–1496. https://doi.org/10.1007/s00436-009-1578-7
Santos ME, Moura LH, Mendes MB, Arcanjo DD, Monção NB, Araújo BQ, Lopes JA, Silva-Filho JC, Fernandes RM, Oliveira RC, Citó AM, Oliveira AP (2015) Hypotensive and vasorelaxant effects induced by the ethanolic extract of the Mimosa caesalpiniifolia Benth. (Mimosaceae) inflorescences in normotensive rats. J Ethnopharmacol 164: 120–128. https://doi.org/10.1016/j.jep.2015.02.008
Saravia NG, Holguín AF, McMahon-Pratt D, D’Alessandro A (1985) Mucocutaneous leishmaniasis in Colombia: Leishmania braziliensis subspecies diversity. Am J Trop Med Hyg 34(4): 714–720. https://doi.org/10.4269/ajtmh.1985.34.714
Schmeda-Hirschmann G, Razmilic I, Sauvain M, Moretti C, Muñoz V, Ruiz E, Balanza E, Fournet A (1996) Antiprotozoal activity of jatrogrossidione from Jatropha grossidentata and jatrophone from Jatropha isabellii. Phytother Res 10(5): 375–378. https://doi.org/10.1002/(SICI)1099-1573(199608)10:5%3C375::AID-PTR847%3E3.0.CO;2-%23
Schmidt TJ, Nour AM, Khalid SA, Kaiser M, Brun R (2009) Quantitative structure–antiprotozoal activity relationships of sesquiterpene lactones. Molecules 14(6): 2062–2076. https://doi.org/10.3390/molecules14062062
Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2): 201–222. https://doi.org/10.1128/mr.59.2.201-222.1995
Silva L, Araújo A, Dutra V (2022) Flora of Espírito Santo: Mimosa (Leguminosae: Caesalpinioideae: mimosoid clade). Rodriguésia 73: 24. https://doi.org/10.1590/2175-7860202273005
Silva MJd, Endo LH, Dias ALT, Silva GAd, Santos MHd (2012) Avaliacáo da atividade antioxidante e antimicrobiana dos extratos e fracoes orgánicas de Mimosa caesalpiniifolia Benth. (Mimosaceae). Rev de Ciênc Farm Básica Apl 33(2): 267–274.
Silva-Silva JV, Moragas-Tellis CJ, Chagas MSS, Souza PVR, Moreira DL, de Souza CSF, Teixeira KF, Cenci AR, de Oliveira AS, Almeida-Souza F, Behrens MD, Calabrese KS (2021) Carajurin: A anthocyanidin from Arrabidaea chica as a potential biological marker of antileishmanial activity. Biomed Pharmacother 141: 111910. https://doi.org/10.1016/j.biopha.2021.111910
Singh O, Khanam Z, Misra N, Srivastava MK (2011) Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn Rev 5(9): 82–95. https://doi.org/10.4103/0973-7847.79103
Siqueira C, Oliani J, Sartoratto A, Queiroga C, Moreno P, Reimão J, Tempone A, Fischer D (2011) Chemical constituents of the volatile oil from leaves of Annona coriacea and in vitro antiprotozoal activity. Rev Bras Farmacogn 21(1): 33–40. https://doi.org/10.1590/S0102-695X2011005000004
Siraichi JT, Felipe DF, Brambilla LZ, Gatto MJ, Terra VA, Cecchini AL, Cortez LE, Rodrigues-Filho E, Cortez DA (2013) Antioxidant capacity of the leaf extract obtained from Arrabidaea chica cultivated in Southern Brazil. PLoS One 8(8): e72733. https://doi.org/10.1371/journal.pone.0072733
Sitara U, Niaz I, Naseem J, Sultana N (2008) Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pak J Bot 40(1): 409–414.
Sosa AM, Amaya S, Salamanca Capusiri E, Gilabert M, Bardón A, Giménez A, Vera NR, Borkosky SA (2016) Active sesquiterpene lactones against Leishmania amazonensis and Leishmania braziliensis. Nat Prod Res 30(22): 2611–2615. https://doi.org/10.1080/14786419.2015.1126260
Sousa Júnior JR, Albuquerque UP, Peroni N (2013) Traditional knowledge and management of Caryocar coriaceum Wittm. (Pequi) in the Brazilian Savanna, Northeastern Brazil. Econ Bot 67(3): 225–233. https://doi.org/10.1007/s12231-013-9241-8
Souza AA, Wiest JM (2007) Atividade antibacteriana de Aloysia gratissima (Gill et Hook) Tronc. (garupá, erva-santa) usada na medicina tradicional no Rio Grande do Sul-Brasil. Rev Bras Pl Med 9(3): 23–29.
Sülsen VP, Frank FM, Cazorla SI, Anesini CA, Malchiodi EL, Freixa B, Vila R, Muschietti LV, Martino VS (2008) Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrob Agents Chemother 52(7): 2415–2419. https://doi.org/10.1128/aac.01630-07
Thiem DA, Sneden AT, Khan SI, Tekwani BL (2005) Bisnortriterpenes from Salacia madagascariensis. J Nat Prod 68(2): 251–254. https://doi.org/10.1021/np0497088
Tiuman TS, Ueda-Nakamura T, Garcia Cortez DA, Dias Filho BP, Morgado-Díaz JA, de Souza W, Nakamura CV (2005) Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob Agents Chemother 49(1): 176–182. https://doi.org/10.1128/aac.49.11.176-182.2005
Tomiotto-Pellissier F, Alves DR, Miranda-Sapla MM, de Morais SM, Assolini JP, da Silva Bortoleti BT, Gonçalves MD, Cataneo AHD, Kian D, Madeira TB, Yamauchi LM, Nixdorf SL, Costa IN, Conchon-Costa I, Pavanelli WR (2018) Caryocar coriaceum extracts exert leishmanicidal effect acting in promastigote forms by apoptosis-like mechanism and intracellular amastigotes by Nrf2/HO-1/ferritin dependent response and iron depletion: Leishmanicidal effect of Caryocar coriaceum leaf exracts. Biomed Pharmacother 98: 662–672. https://doi.org/10.1016/j.biopha.2017.12.083
Torres-Santos EC, Moreira DL, Kaplan MA, Meirelles MN, Rossi-Bergmann B (1999) Selective effect of 2′,6′-dihydroxy-4′-methoxychalcone isolated from Piper aduncum on Leishmania amazonensis. Antimicrob Agents Chemother 43(5): 1234–1241. https://doi.org/10.1128/aac.43.5.1234
Trovati G, Chierice GO, Sanches EA, Galhiane MS (2009) Essential oil composition of Aloysia gratissima from Brazil. J Essent Oil Res 21(4): 325–326. https://doi.org/10.1080/10412905.2009.9700183
Uliana SRB, Trinconi CT, Coelho AC (2018) Chemotherapy of leishmaniasis: Present challenges. Parasitology 145(4): 464–480. https://doi.org/10.1017/S0031182016002523
Vargas W (2021) First record of the genus Cryptocarya (Lauraceae) for Colombia. Caldasia 43(1): 218–220. https://doi.org/10.15446/caldasia.v43n1.82492
Viola H, Wasowski C, Levi de Stein M, Wolfman C, Silveira R, Dajas F, Medina JH, Paladini AC (1995) Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med 61(3): 213–216. https://doi.org/10.1055/s-2006-958058
Waizel-Bucay J, Cruz-Juárez MdL (2014) Arnica montana L., relevant European medicinal plant. Rev Mex Cienc Forestales 5(25): 98–109.
Wamai RG, Kahn J, McGloin J, Ziaggi G (2020) Visceral leishmaniasis: a global overview. J Glob Health Sci 2(1): e3. https://doi.org/10.35500/jghs.2020.2.e3
Weniger B, Robledo S, Arango GJ, Deharo E, Aragón R, Muñoz V, Callapa J, Lobstein A, Anton R (2001) Antiprotozoal activities of Colombian plants. J Ethnopharmacol 78(2–3): 193–200. https://doi.org/10.1016/S0378-8741(01)00346-4
World Health Organization (2021) Leishmaniasis, Status of endemicity. (Accessed 16 April 2023).
World Health Organization (2022) Leishmaniasis. (Accessed 16 April 2023).
Wulsten IF, Costa-Silva TA, Mesquita JT, Lima ML, Galuppo MK, Taniwaki NN, Borborema SET, Da Costa FB, Schmidt TJ, Tempone AG (2017) Investigation of the anti-Leishmania (Leishmania) infantum activity of some natural sesquiterpene lactones. Molecules 22(5): 685. https://doi.org/10.3390/molecules22050685
Youssefi MR, Moghaddas E, Tabari MA, Moghadamnia AA, Hosseini SM, Farash BRH, Ebrahimi MA, Mousavi NN, Fata A, Maggi F, Petrelli R, Dall’Acqua S, Benelli G, Sut S (2019) In vitro and in vivo effectiveness of carvacrol, thymol and linalool against Leishmania infantum. Molecules 24(11): 2072. https://doi.org/10.3390/molecules24112072
Zapata UYA, Echeverri F, Quiñones W, Torres F, Nacher M, Rivas LI, Meira CDS, Gedamu L, Escobar G, Archbold R, Vélez ID, Robledo SM (2020) Mode of action of a formulation containing hydrazones and saponins against leishmania spp. Role in mitochondria, proteases and reinfection process. Int J Parasitol Drugs Drug Resist 13: 94–106. https://doi.org/10.1016/j.ijpddr.2020.06.004
Zeni AL, Zomkowski AD, Dal-Cim T, Maraschin M, Rodrigues AL, Tasca CI (2011) Antidepressant-like and neuroprotective effects of Aloysia gratissima: investigation of involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway. J Ethnopharmacol 137(1): 864–874. https://doi.org/10.1016/j.jep.2011.07.009
Zhao G, Cao Z, Zhang W, Zhao H (2015) The sesquiterpenoids and their chemotaxonomic implications in Senecio L. (Asteraceae). Biochem Syst Ecol 59: 340–347. https://doi.org/10.1016/j.bse.2015.02.001
© 2023 Journal of Pharmacy & Pharmacognosy Research