J. Pharm. Pharmacogn. Res., vol. 11, no. 2, pp. 229-242, March-April 2023.
DOI: https://doi.org/10.56499/jppres22.1505_11.2.229
Original Article
Chitosan–alginate porous scaffold incorporated with hydroalcoholic Zingiber officinale Roscoe extract for neural tissue engineering
[Estructura porosa de quitosano-alginato incorporada con extracto hidroalcohólico de Zingiber officinale Roscoe para la ingeniería del tejido neural]
Hassan Sohrabian Kafraj1, Maryam Alipour2, Abdolhosein Shiravi1, Vida Hojati1, Mojtaba Khaksarian2*
1Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
2Razi Herbal Medicines Research Center and Department of Physiology, Lorestan University of Medical Sciences, Khorramabad, Iran.
*E-mail: mojkhaksar@lums.ac.ir, mojkhaksar@yahoo.com
Abstract
Context: Preparing a suitable substrate for the culture of neural stem cells and their proliferation in neural tissue engineering is of paramount importance.
Aims: To evaluate the effect of the hydroalcoholic Zingiber officinale extract incorporated in the chitosan-alginate scaffold (Chi-Alg-Zo) on nerve tissue.
Methods: The porous scaffolds developed in the present study were investigated in terms of their surface properties, chemical interaction, crystallinity, thermal stability, porosity percentage, pore sizes, degradability, and water absorption properties. To this end, the following tests were performed: Field emission scanning electron microscope (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), porosity based on liquid replacement, Image-J analysis, and water degradation and absorption test. Mouse neural stem/progenitor cells (NS/PCs) were harvested from the embryonic mouse brain. NSCs were seeded on scaffolds incorporated with hydroalcoholic Z. officinale extract. The MTT assay was done for the survival and the proliferation of neural stem/progenitor cells (NS/PCs) on scaffolds.
Results: Results indicated the good capacity of Chi-Alg-Zo for proliferation and differentiation into glial (astrocytes and oligodendrocytes) lineages. A suitable surface, which was provided for cellular interaction, led to the advancement of cell survival, connectivity, proliferation, and separation of NSCs.
Conclusions: The present study evaluated the separation of stem cells on the scaffold, finding that the expression of the glial fibrillary acidic protein (GFAP) and Oligo4 markers was higher in Chi-Alg scaffolds containing hydroalcoholic Z. officinale extract. Chi-Alg-Zo scaffolds could be suitable candidates for neural tissue engineering.
Keywords: neural tissue engineering; neural stem/progenitor cells; chitosan-alginate scaffold; ginger extract.
Resumen
Contexto: La preparación de un sustrato adecuado para el cultivo de las células madre neurales y su proliferación en la ingeniería del tejido neural es de suma importancia.
Objetivos: Evaluar el efecto del extracto hidroalcohólico de Zingiber officinale incorporado al andamio de quitosano-alginato (Chi-Alg-Zo) en el tejido nervioso.
Métodos: Los andamios porosos desarrollados en el presente estudio fueron investigados en cuanto a sus propiedades superficiales, interacción química, cristalinidad, estabilidad térmica, porcentaje de porosidad, tamaño de los poros, degradabilidad y propiedades de absorción de agua. Para ello, se realizaron las siguientes pruebas: Microscopio electrónico de barrido de emisión de campo (FE-SEM), espectroscopia infrarroja por transformada de Fourier (FTIR), difracción de polvo de rayos X (XRD), análisis termo gravimétrico (TGA), porosidad basada en la sustitución de líquidos, análisis Image-J, y ensayo de degradación y absorción de agua. Las células madre/progenitoras neurales de ratón (NSC/PCs) fueron cosechadas del cerebro embrionario de ratón. Las NSC se sembraron en andamios incorporados con extracto hidroalcohólico de Z. officinale. Se realizó el ensayo MTT para la supervivencia y la proliferación de las células madre/progenitoras neurales (NS/PCs) en los andamios.
Resultados: Los resultados indicaron la buena capacidad de Chi-Alg-Zo para la proliferación y diferenciación en linajes gliales (astrocitos y oligodendrocitos). Una superficie adecuada, que se proporcionó para la interacción celular condujo al avance de la supervivencia celular, la conectividad, la proliferación y la separación de las NSC.
Conclusiones: El presente estudio evaluó la separación de las células madre en el andamio, encontrando que la expresión de los marcadores de proteína ácida fibrilar glial (GFAP) y Oligo4 era mayor en los andamios Chi-Alg que contenían extracto hidroalcohólico de Z. officinale. Los andamios Chi-Alg-Zo podrían ser candidatos adecuados para la ingeniería del tejido neural.
Palabras Clave: ingeniería de tejidos neurales; células madre/progenitoras neurales; andamio de quitosano-alginato; extracto de jengibre.
Citation Format: Sohrabian Kafraj H, Alipour M, Shiravi A, Hojati V, Khaksarian M (2022) Chitosan-alginate porous scaffold incorporated with hydroalcoholic Zingiber officinale Roscoe extract for neural tissue engineering. J Pharm Pharmacogn Res 11(2): 229–242. https://doi.org/10.56499/jppres22.1505_11.2.229
References
Akbari A, Nasiri K, Heydari M, Mosavat SH, Iraji A (2017) The protective effect of hydroalcoholic extract of Zingiber officinale Roscoe (Ginger) on ethanol-induced reproductive toxicity in male rats. J Evid Based Complement Alternat Med 22(4): 609–617. https://doi.org/10.1177/2156587216687696
Aligholi H, Rezayat SM, Azari H, Mehr SE, Akbari M, Mousavi SMM, Gorji A (2016) Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study. Brain Res 1642: 197–208. https://doi.org/10.1016/j.brainres.2016.03.043
Alipour M, Bigdelie M, Bigdeli R, Aligholi H, Rasoulian B, Khaksarian M (2020) Sustained release of silibinin‐loaded chitosan nanoparticle induced apoptosis in glioma cells. J Biomed Materials Res Part A 108(3): 458–469. https://doi.org/10.1002/jbm.a.36827
Asnani V, Verma RJ (2007) Antioxidative effect of rhizome of Zingiber officinale on paraben induced lipid peroxidation: An in vitro study. Acta Pol Pharm 64(1): 35-37.
Becker TA, Kipke DR, Brandon T (2001) Calcium alginate gel: A biocompatible and mechanically stable polymer for endovascular embolization. J Biomed Mat Res 54(1): 76–86. https://doi.org/10.1002/1097-4636(200101)54:1<76::aid-jbm9>3.0.co;2-v
Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Nair SV (2010) Role of nanofibrous poly (caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators. Tissue Eng Part A 16(2): 393–404. https://doi.org/10.1089/ten.TEA.2009.0242
Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. Eur Polymer J 45(1): 141–148. https://doi.org/10.1016/j.eurpolymj.2008.10.004
El-Kady AM, Saad EA, Abd El-Hady BM, Farag MM (2010) Synthesis of silicate glass/poly (l-lactide) composite scaffolds by freeze-extraction technique: characterization and in vitro bioactivity evaluation. Ceramics Int 36(3): 995–1009. https://doi.org/10.1016/j.ceramint.2009.11.012
Freier T, Montenegro R, Koh HS, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26(22): 4624–4632. https://doi.org/10.1016/j.biomaterials.2004.11.040
Ghasemi‐Mobarakeh L, Prabhakaran MP, Morshed M, Nasr‐Esfahani MH, Baharvand H, Kiani S, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regener Med 5(4): 17–35. https://doi.org/10.1002/term.383
Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerveregeneration. Biomaterials 35(24): 6143–6156. https://doi.org/10.1016/j.biomaterials.2014.04.064
Habib SHM, Makpol S, Hamid NAA, Das S, Ngah WZ W, Yusof YAM (2008) Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 63(6): 807–813. https://doi.org/10.1590/S1807-59322008000600017
Han YA, Song CW, Koh WS, Yon GH, Kim YS, Ryu SY, Lee, KH (2013) Anti‐inflammatory effects of the Zingiber officinale Roscoe constituent 12‐dehydrogingerdione in lipopolysaccharide‐stimulated RAW264.7 cells. Phytother Res 27(8): 1200–1205. https://doi.org/10.1002/ptr.4847
Hassanzadeh Khanmiri H, Amer Mohammad A, Yousif RS, Jasim SA, Kzar HH, Lafta MH, Turki Jalil A, Romero Parra RM, Darvishi M (2022) SARS-CoV2 neuroinvasive potential in respiratory failure in COVID-19 patients. Casp J Environ Sci. https://doi.org/10.22124/cjes.2022.5964
Khan W, Ashfaq UA, Aslam S, Saif S, Aslam T, Tusleem K, Maryam A, Qamar MT (2017) Anticancer screening of medicinal plant phytochemicals against cyclin-dependent kinase-2 (CDK2): An in-silico approach. Adv Life Sci 4(4): 113–120.
Leena RS, Vairamani M, Selvamurugan N (2017) Alginate/Gelatin scaffolds incorporated with silibinin-loaded chitosan nanoparticles for bone formation in vitro. Colloids and Surf B: Biointerfaces 158: 308–318. https://doi.org/10.1016/j.colsurfb.2017.06.048
Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M (2010) Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31(3): 404–412. https://doi.org/10.1016/j.biomaterials.2009.09.070
Levene HB, Lhommeau CM, Kohn JB (2000) Porous polymer scaffolds for tissue engineering, Google Patents, US6103255A.
Mani MP, Jaganathan SK, Ismail AF (2019) Appraisal of electrospun textile scaffold comprising polyurethane decorated with ginger nanofibers for wound healing applications. J Indust Text 49(5): 648–662. https://doi.org/10.1177/1528083718795911
Panawes S, Ekabutr P, Niamlang P, Pavasant P, Chuysinuan P, Supaphol P (2017) Antimicrobial mangosteen extract infused alginate-coated gauze wound dressing. J Drug Delivery Sci Technol 41: 182–190. https://doi.org/10.1016/j.jddst.2017.06.021
Pereira R, Mendes A, Bártolo P (2013) Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 5: 210–215. https://doi.org/10.1016/j.procir.2013.01.042
Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AK T, Soniya EV, Anto RJ (2014) Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PloS One 9(8): 104401. https://doi.org/10.1371/journal.pone.0104401
Schmidt CE, Leach JB (2003) Neural tissue engineering: Strategies for repair and regeneration. Ann Rev Biomed Engin 5(1): 293–347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731
Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B: Biointerfaces 109: 294–300. https://doi.org/10.1016/j.colsurfb.2013.04.006
Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci 16: 108. https://doi.org/10.1186/1423-0127-16-108
Venkatesan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biolog Macromol 98: 515–525. https://doi.org/10.1016/j.ijbiomac.2017.01.120
Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12(1): 300–316. https://doi.org/10.3390/md12010300
Waggas AM (2009) Neuroprotective evaluation of extract of ginger (Zingiber officinale) root in monosodium glutamate-induced toxicity in different brain areas male albino rats. Pak J Biolog Sci 12(3): 201–221. https://doi.org/10.3923/pjbs.2009.201.212
Wang S, Guan S, Zhu Z, Li W, Liu T, Ma X (2017) Hyaluronic acid doped-poly (3, 4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. Mater Sci Eng C 71: 308–316. https://doi.org/10.1016/j.msec.2016.10.029
Yuan NY, Tsai RY, Ho MH, Wang DM, Lai JY, Hsieh HJ (2008) Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination 234(1-3): 166–174. https://doi.org/10.1016/j.desal.2007.09.083
Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8): 3691–3697. https://doi.org/10.1158/0008-5472.CAN-06-3912
© 2023 Journal of Pharmacy & Pharmacognosy Research