Chitosan-alginate scaffold with Zingiber officinale for neural tissue engineering

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 11, no. 2, pp. 229-242, March-April 2023. DOI: https://doi.org/10.56499/jppres22.1505_11.2.229 Original Article Chitosan–alginate porous scaffold incorporated with hydroalcoholic Zingiber officinale Roscoe extract for neural tissue engineering [Estructura porosa de quitosano-alginato incorporada con extracto hidroalcohólico de Zingiber officinale Roscoe para la ingeniería del tejido neural] Hassan Sohrabian Kafraj1, Maryam Alipour2, Abdolhosein Shiravi1, Vida … Continue reading Chitosan-alginate scaffold with Zingiber officinale for neural tissue engineering

J. Pharm. Pharmacogn. Res., vol. 11, no. 2, pp. 229-242, March-April 2023.

DOI: https://doi.org/10.56499/jppres22.1505_11.2.229

Original Article

Chitosanalginate porous scaffold incorporated with hydroalcoholic Zingiber officinale Roscoe extract for neural tissue engineering

[Estructura porosa de quitosano-alginato incorporada con extracto hidroalcohólico de Zingiber officinale Roscoe para la ingeniería del tejido neural]

Hassan Sohrabian Kafraj1, Maryam Alipour2, Abdolhosein Shiravi1, Vida Hojati1, Mojtaba Khaksarian2*

1Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.

2Razi Herbal Medicines Research Center and Department of Physiology, Lorestan University of Medical Sciences, Khorramabad, Iran.

*E-mail: mojkhaksar@lums.ac.ir, mojkhaksar@yahoo.com

Abstract

Context: Preparing a suitable substrate for the culture of neural stem cells and their proliferation in neural tissue engineering is of paramount importance.

Aims: To evaluate the effect of the hydroalcoholic Zingiber officinale extract incorporated in the chitosan-alginate scaffold (Chi-Alg-Zo) on nerve tissue.

Methods: The porous scaffolds developed in the present study were investigated in terms of their surface properties, chemical interaction, crystallinity, thermal stability, porosity percentage, pore sizes, degradability, and water absorption properties. To this end, the following tests were performed: Field emission scanning electron microscope (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), porosity based on liquid replacement, Image-J analysis, and water degradation and absorption test. Mouse neural stem/progenitor cells (NS/PCs) were harvested from the embryonic mouse brain. NSCs were seeded on scaffolds incorporated with hydroalcoholic Z. officinale extract. The MTT assay was done for the survival and the proliferation of neural stem/progenitor cells (NS/PCs) on scaffolds.

Results: Results indicated the good capacity of Chi-Alg-Zo for proliferation and differentiation into glial (astrocytes and oligodendrocytes) lineages. A suitable surface, which was provided for cellular interaction, led to the advancement of cell survival, connectivity, proliferation, and separation of NSCs.

Conclusions: The present study evaluated the separation of stem cells on the scaffold, finding that the expression of the glial fibrillary acidic protein (GFAP) and Oligo4 markers was higher in Chi-Alg scaffolds containing hydroalcoholic Z. officinale extract. Chi-Alg-Zo scaffolds could be suitable candidates for neural tissue engineering.

Keywords: neural tissue engineering; neural stem/progenitor cells; chitosan-alginate scaffold; ginger extract.

jppres_pdf_free

Resumen

Contexto: La preparación de un sustrato adecuado para el cultivo de las células madre neurales y su proliferación en la ingeniería del tejido neural es de suma importancia.

Objetivos: Evaluar el efecto del extracto hidroalcohólico de Zingiber officinale incorporado al andamio de quitosano-alginato (Chi-Alg-Zo) en el tejido nervioso.

Métodos: Los andamios porosos desarrollados en el presente estudio fueron investigados en cuanto a sus propiedades superficiales, interacción química, cristalinidad, estabilidad térmica, porcentaje de porosidad, tamaño de los poros, degradabilidad y propiedades de absorción de agua. Para ello, se realizaron las siguientes pruebas: Microscopio electrónico de barrido de emisión de campo (FE-SEM), espectroscopia infrarroja por transformada de Fourier (FTIR), difracción de polvo de rayos X (XRD), análisis termo gravimétrico (TGA), porosidad basada en la sustitución de líquidos, análisis Image-J, y ensayo de degradación y absorción de agua. Las células madre/progenitoras neurales de ratón (NSC/PCs) fueron cosechadas del cerebro embrionario de ratón. Las NSC se sembraron en andamios incorporados con extracto hidroalcohólico de Z. officinale. Se realizó el ensayo MTT para la supervivencia y la proliferación de las células madre/progenitoras neurales (NS/PCs) en los andamios.

Resultados: Los resultados indicaron la buena capacidad de Chi-Alg-Zo para la proliferación y diferenciación en linajes gliales (astrocitos y oligodendrocitos). Una superficie adecuada, que se proporcionó para la interacción celular condujo al avance de la supervivencia celular, la conectividad, la proliferación y la separación de las NSC.

Conclusiones: El presente estudio evaluó la separación de las células madre en el andamio, encontrando que la expresión de los marcadores de proteína ácida fibrilar glial (GFAP) y Oligo4 era mayor en los andamios Chi-Alg que contenían extracto hidroalcohólico de Z. officinale. Los andamios Chi-Alg-Zo podrían ser candidatos adecuados para la ingeniería del tejido neural.

Palabras Clave: ingeniería de tejidos neurales; células madre/progenitoras neurales; andamio de quitosano-alginato; extracto de jengibre.

jppres_pdf_free

Citation Format: Sohrabian Kafraj H, Alipour M, Shiravi A, Hojati V, Khaksarian M (2022) Chitosan-alginate porous scaffold incorporated with hydroalcoholic Zingiber officinale Roscoe extract for neural tissue engineering. J Pharm Pharmacogn Res 11(2): 229–242. https://doi.org/10.56499/jppres22.1505_11.2.229
References

Akbari A, Nasiri K, Heydari M, Mosavat SH, Iraji A (2017) The protective effect of hydroalcoholic extract of Zingiber officinale Roscoe (Ginger) on ethanol-induced reproductive toxicity in male rats. J Evid Based Complement Alternat Med 22(4): 609–617. https://doi.org/10.1177/2156587216687696

Aligholi H, Rezayat SM, Azari H, Mehr SE, Akbari M, Mousavi SMM, Gorji A (2016) Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study. Brain Res 1642: 197–208. https://doi.org/10.1016/j.brainres.2016.03.043

Alipour M, Bigdelie M, Bigdeli R, Aligholi H, Rasoulian B, Khaksarian M (2020) Sustained release of silibinin‐loaded chitosan nanoparticle induced apoptosis in glioma cells. J Biomed Materials Res Part A 108(3): 458–469. https://doi.org/10.1002/jbm.a.36827

Asnani V, Verma RJ (2007) Antioxidative effect of rhizome of Zingiber officinale on paraben induced lipid peroxidation: An in vitro study. Acta Pol Pharm 64(1): 35-37.

Becker TA, Kipke DR, Brandon T (2001) Calcium alginate gel: A biocompatible and mechanically stable polymer for endovascular embolization. J Biomed Mat Res 54(1): 76–86.‏ https://doi.org/10.1002/1097-4636(200101)54:1<76::aid-jbm9>3.0.co;2-v

Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Nair SV (2010) Role of nanofibrous poly (caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators. Tissue Eng Part A 16(2): 393–404. https://doi.org/10.1089/ten.TEA.2009.0242

Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. Eur Polymer J 45(1): 141–148. https://doi.org/10.1016/j.eurpolymj.2008.10.004

El-Kady AM, Saad EA, Abd El-Hady BM, Farag MM (2010) Synthesis of silicate glass/poly (l-lactide) composite scaffolds by freeze-extraction technique: characterization and in vitro bioactivity evaluation. Ceramics Int 36(3): 995–1009. https://doi.org/10.1016/j.ceramint.2009.11.012

Freier T, Montenegro R, Koh HS, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26(22): 4624–4632. https://doi.org/10.1016/j.biomaterials.2004.11.040

Ghasemi‐Mobarakeh L, Prabhakaran MP, Morshed M, Nasr‐Esfahani MH, Baharvand H, Kiani S, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regener Med 5(4): 17–35. https://doi.org/10.1002/term.383

Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerveregeneration. Biomaterials 35(24): 6143–6156. https://doi.org/10.1016/j.biomaterials.2014.04.064

Habib SHM, Makpol S, Hamid NAA, Das S, Ngah WZ W, Yusof YAM (2008) Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 63(6): 807–813.‏ https://doi.org/10.1590/S1807-59322008000600017

Han YA, Song CW, Koh WS, Yon GH, Kim YS, Ryu SY, Lee, KH (2013) Anti‐inflammatory effects of the Zingiber officinale Roscoe constituent 12‐dehydrogingerdione in lipopolysaccharide‐stimulated RAW264.7 cells. Phytother Res 27(8): 1200–1205. https://doi.org/10.1002/ptr.4847

Hassanzadeh Khanmiri H, Amer Mohammad A, Yousif RS, Jasim SA, Kzar HH, Lafta MH, Turki Jalil A, Romero Parra RM, Darvishi M (2022) SARS-CoV2 neuroinvasive potential in respiratory failure in COVID-19 patients. Casp J Environ Sci. https://doi.org/10.22124/cjes.2022.5964

Khan W, Ashfaq UA, Aslam S, Saif S, Aslam T, Tusleem K, Maryam A, Qamar MT (2017) Anticancer screening of medicinal plant phytochemicals against cyclin-dependent kinase-2 (CDK2): An in-silico approach. Adv Life Sci 4(4): 113–120.

Leena RS, Vairamani M, Selvamurugan N (2017) Alginate/Gelatin scaffolds incorporated with silibinin-loaded chitosan nanoparticles for bone formation in vitro. Colloids and Surf B: Biointerfaces 158: 308–318. https://doi.org/10.1016/j.colsurfb.2017.06.048

Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M (2010) Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31(3): 404–412.‏ https://doi.org/10.1016/j.biomaterials.2009.09.070

Levene HB, Lhommeau CM, Kohn JB (2000) Porous polymer scaffolds for tissue engineering, Google Patents, US6103255A.

Mani MP, Jaganathan SK, Ismail AF (2019) Appraisal of electrospun textile scaffold comprising polyurethane decorated with ginger nanofibers for wound healing applications. J Indust Text 49(5): 648–662. https://doi.org/10.1177/1528083718795911

Panawes S, Ekabutr P, Niamlang P, Pavasant P, Chuysinuan P, Supaphol P (2017) Antimicrobial mangosteen extract infused alginate-coated gauze wound dressing. J Drug Delivery Sci Technol 41: 182–190. ‏https://doi.org/10.1016/j.jddst.2017.06.021

Pereira R, Mendes A, Bártolo P (2013) Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 5: 210–215.‏‏ https://doi.org/10.1016/j.procir.2013.01.042

Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AK T, Soniya EV, Anto RJ (2014) Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PloS One 9(8): 104401. https://doi.org/10.1371/journal.pone.0104401

Schmidt CE, Leach JB (2003) Neural tissue engineering: Strategies for repair and regeneration. Ann Rev Biomed Engin 5(1): 293–347.‏ https://doi.org/10.1146/annurev.bioeng.5.011303.120731

Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B: Biointerfaces 109: 294–300. https://doi.org/10.1016/j.colsurfb.2013.04.006

Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci 16: 108. https://doi.org/10.1186/1423-0127-16-108

‏Venkatesan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biolog Macromol 98: 515–525. https://doi.org/10.1016/j.ijbiomac.2017.01.120

Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12(1): 300–316. https://doi.org/10.3390/md12010300

Waggas AM (2009) Neuroprotective evaluation of extract of ginger (Zingiber officinale) root in monosodium glutamate-induced toxicity in different brain areas male albino rats. Pak J Biolog Sci 12(3): 201–221. https://doi.org/10.3923/pjbs.2009.201.212

Wang S, Guan S, Zhu Z, Li W, Liu T, Ma X (2017) Hyaluronic acid doped-poly (3, 4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. Mater Sci Eng C 71: 308–316. https://doi.org/10.1016/j.msec.2016.10.029

Yuan NY, Tsai RY, Ho MH, Wang DM, Lai JY, Hsieh HJ (2008) Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination 234(1-3): 166–174. https://doi.org/10.1016/j.desal.2007.09.083

Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8): 3691–3697. https://doi.org/10.1158/0008-5472.CAN-06-3912

© 2023 Journal of Pharmacy & Pharmacognosy Research

Alcohol gel and chlorhexidine in microbiota on hands
J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 184-192, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1733_12.1.184 Original Article Alcohol in gel is as effective as chlorhexidine in the reduction of microbiota on hands in hospital nurses [El alcohol en gel es tan eficaz como la clorhexidina en la reducción de la microbiota de las manos en enfermeras … Continue reading Alcohol gel and chlorhexidine in microbiota on hands
Piperine-HPMC 2910 solid dispersion freeze drying
J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 175-183, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1734_12.1.175 Original Article Enhancing the solubility and dissolution rate of piperine via preparation of piperine–hydroxypropyl methylcellulose 2910 solid dispersion system using freeze-drying method [Mejora de la solubilidad y la velocidad de disolución de la piperina mediante la preparación de un sistema de … Continue reading Piperine-HPMC 2910 solid dispersion freeze drying
Metabolomic of propolis in hypertension
J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 166-174, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1705_12.1.166 Original Article Metabolomic study on the effect of Indonesian propolis in hypertensive rats [Estudio metabolómico del efecto del propóleo indonesio en ratas hipertensas] Ade Heri Mulyati1*, Henny Dwi Yanti1, Siti Warnasih1, Ahmad Sulaeman2, Mohamad Rafi3 1Department of Chemistry, Faculty of Mathematics … Continue reading Metabolomic of propolis in hypertension

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio