Cocoa increases RUNX2 and osteoclast bone-resorbing activity

J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 857-864, September-October 2022.


Original Article

Effect of cocoa administration during orthodontic tooth movement on RUNX2, calcium levels, and osteoclast bone-resorbing activity in rats

[Efecto de la administración de cacao durante el movimiento dental ortodóncico sobre RUNX2, los niveles de calcio y la actividad de reabsorción ósea de los osteoclastos en ratas]

Ananto Ali Alhasyimi*, Pinandi Sri Pudyani

Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Indonesia.



Context: Cocoa contains caffeine-rich methylxanthine, which promotes accelerated orthodontic tooth movement. Caffeine affects calcium ion equilibrium, causing low bone density and shortening orthodontic treatment. It is unclear how cocoa affects periodontal tissue reconstruction when orthodontic stress is applied.

Aims: To evaluate the effect of cocoa administration during active orthodontic tooth movement (OTM) on RUNX2, calcium levels, and osteoclast bone-resorbing activity in rats.

Methods: A total of 48 Sprague Dawley rats were used. It was divided into four subgroups depending on the observation day: 0, 1, 7, and 14 (n = 3) for each group of 12 animals: group A (positive control, 2.3 mg of caffeine), group B (cocoa dose 1.37 g), group C (cocoa dose 2.05 g), and group D (cocoa dose 2.74 g).). The upper incisors of both groups were banded with a 3-spin loop spring that exerted 35 g of orthodontic force under anesthesia. Cocoa was given orally to the treatment group once a day based on the dose utilized. RUNX2 levels during OTM were determined by ELISA. Furthermore, lacuna resorption measured osteoclast bone-resorbing activity and the atomic absorption spectrophotometer assessed calcium levels. Data gathered were analyzed using two-way ANOVA and post hoc LSD (p<0.05).

Results: RUNX2 levels in the compression side were significantly different between the groups. Similarly, lacuna resorption depth was significantly different between the groups (p<0.05), but daily cocoa administration does not significantly downregulate calcium levels in rats during active OTM (p>0.05).

Conclusions: Cocoa supplementation during active OTM increases the RUNX2 levels and osteoclast bone-resorbing activity in rats.

Keywords: extraction; calcium; cocoa; orthodontic; osteoclast; RUNX2.



Contexto: El cacao contiene metilxantina rica en cafeína, que promueve el movimiento ortodóncico acelerado de los dientes. La cafeína afecta el equilibrio de los iones de calcio, provocando una baja densidad ósea y acortando el tratamiento de ortodoncia. No está claro cómo el cacao afecta la reconstrucción del tejido periodontal cuando se aplica estrés de ortodoncia.

Objetivos: Evaluar el efecto de la administración de cacao durante el movimiento dental ortodóncico activo (OTM) sobre RUNX2, los niveles de calcio y la actividad de reabsorción ósea de los osteoclastos en ratas.

Métodos: Se utilizaron un total de 48 ratas Sprague Dawley. Se dividió en cuatro subgrupos según el día de observación: 0, 1, 7 y 14 (n = 3) para cada grupo de 12 animales: grupo A (control positivo, 2,3 mg de cafeína), grupo B (dosis de cacao 1,37 g), grupo C (dosis de cacao 2,05 g), y grupo D (dosis de cacao 2,74 g). Los incisivos superiores de ambos grupos se vendaron con un resorte de bucle de 3 giros que ejerció 35 g de fuerza ortodóncica bajo anestesia. Se administró cacao por vía oral al grupo de tratamiento una vez al día en función de la dosis utilizada. Los niveles de RUNX2 durante OTM se determinaron mediante ELISA. Además, la reabsorción de la laguna midió la actividad de reabsorción ósea de los osteoclastos y el espectrofotómetro de absorción atómica evaluó los niveles de calcio. Los datos recopilados se analizaron mediante ANOVA de dos vías y LSD post hoc (p<0,05).

Resultados: Los niveles de RUNX2 en el lado de compresión fueron significativamente diferentes entre los grupos. De manera similar, la profundidad de reabsorción de la laguna fue significativamente diferente entre los grupos (p<0,05), pero la administración diaria de cacao no regula significativamente los niveles de calcio en ratas durante la OTM activa (p>0,05).

Conclusiones: La suplementación con cacao durante la OTM activa aumenta los niveles de RUNX2 y la actividad de reabsorción ósea de los osteoclastos en ratas.

Palabras Clave: cacao; calcio; ortodoncia; osteoclasto; RUNX2.


Citation Format: Alhasyimi AA, Pudyani PS (2022) Effect of cocoa administration during orthodontic tooth movement on RUNX2, calcium levels, and osteoclast bone-resorbing activity in rats. J Pharm Pharmacogn Res 10(5): 857–864.

Alhasyimi AA, Pudyani PS, Asmara W, Ana ID (2018) Enhancement of post-orthodontic tooth stability by carbonated hydroxyapatite-incorporated advanced platelet-rich fibrin in rabbits. Orthod Craniofac Res 21(2): 112–118.

Alhasyimi AA, Rosyida NF (2019) Cocoa administration may accelerate orthodontic tooth movement by inducing osteoclastogenesis in rats. Iran J Basic Med Sci 22(2): 206–210.

Ardani IGAW, Nugraha AP, Suryani NM, Pamungkas RH, Vitamamy DG, Susanto RA, Sarno R, Fajar A, Kharisma VD, Nugraha AP, Noor TNEBTA (2022) Molecular docking of polyether ether ketone and nano-hydroxyapatite as biomaterial candidates for orthodontic mini-implant fabrication. J Pharm Pharmacogn Res 10(4): 676686.

Arianda TA, Rezqita P, Pudyani PS, Rosyida NF, Alhasyimi AA (2020) Effect of cocoa administration on osteoblast counts and alkaline phosphatase levels during orthodontic tooth movement in rats. J Orofac Sci 12: 101–106.

Baniwal SK, Shah PK, Shi Y, Haduong JH, Declerck YA, Gabet Y, Frenkel B (2012) Runx2 promotes both osteoblastogenesis and novel osteoclastogenic signals in ST2 mesenchymal progenitor cells. Osteoporos Int 23(4): 1399–1413.

Brahmanta A, Prameswari N, Handayani B, Syahdinda MR (2021) The effect of hyperbaric oxygen 2.4 absolute atmospheres on transforming growth factor-β and matrix metalloproteinase-8 expression during orthodontic tooth movement in vivo. J Pharm Pharmacogn Res 9(4): 517–524.

FDA – United States Food and Drug Administration (2018) Spilling the beans: how much caffeine is too much? [Consulted January 16, 2022].

Figueiredo M, Cunha S, Martins G, Freitas J, Judas F, Figueiredo H (2011) Influence of hydrochloric acid concentration on the demineralization of cortical bone. Chem Eng Res Des 89: 116–124.

Franco R, Oñatibia-Astibia A, Martínez-Pinilla E (2013) Health benefits of methylxanthines in cacao and chocolate. Nutrients 5: 4159–4173.

Goldie RS, King GJ (1984) Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod 85: 424–430.

Han J, Xu X, Zhang B, Chen B, Hang W (2015) Expression of ATF4 and RUNX2 in periodontal tissue of pressure side during orthodontic tooth movement in rat. Int J Clin Exp Med 8(1): 934–938.

Heaney RP (2002) Effects of caffeine on bone and the calcium economy. Food Chem Toxicol 40(9): 1263–1270.

Herniyati, Harmono H, Devi LS (2018) NFATc1 and RUNX2 expression on orthodontic tooth movement post robusta coffee extract administration. J Int Dent Medical Res 11(1): 270–275.

Katchooi M, Cohanim B, Tai S, Bayirli B, Spiekerman C, Huang G (2018) Effect of supplemental vibration on orthodontic treatment with aligners: A randomized trial. Am J Orthod Dentofacial Orthop 153(3): 336–346.

Kong X, Cao M, Ye R, Ding Y (2010) Orthodontic force accelerates dentine mineralization during tooth development in juvenile rats. Tohoku J Exp Med 221: 265–270.

Liu SH, Chen C, Yang RS, Yen YP, Yang YT, Tsai C (2011) Caffeine enhances osteoclast differentiation from bone marrow hematopoietic cells and reduces bone mineral density in growing rats. J Orthop Res 29(6): 954–960.

Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28(3): 221–240.

Mostafa YA, Fayed MMS, Mehanni S, ElBokle NN, Heider AM (2009) Comparison of corticotomy-facilitated vs standard toothmovement techniques in dogs with miniscrews as anchor units. Am J Orthod Dentofacial Orthop 136: 570–577.

Narmada IB, Rubianto M, Putra ST (2019) The role of low-intensity biostimulation laser therapy in transforming growth factor β1, bone alkaline phosphatase and osteocalcin expression during orthodontic tooth movement in Cavia porcellus. Eur J Dent 13(1): 102–107.

Pal S, Khan K, China SP, Mittal M, Porwal K, Shrivastava R, Taneja I, Hossain Z, Mandalapu D, Gayen JR, Wahajuddin M, Sharma VL, Trivedi AK, Sanyal S, Bhadauria S, Godbole MM, Gupta SK, Chattopadhyay N (2016) Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats. Toxicol Appl Pharmacol 295: 12–25.

Qin X, Jiang Q, Miyazaki T, Komori T (2018) Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt, and Pthlh signaling pathway gene expression in suture mesenchymal cells. Hum Mol Genet 28: 896–911.

Shirazi M, Vaziri H, Salari B, Motahhari P, Etemad-Moghadam S, Dehpour AR (2017) The effect of caffeine on orthodontic tooth movement in rats. Iran J Basic Med Sci 20: 260–264.

Sitasari PI, Narmada IB, Hamid T, Triwardhani A, Nugraha AP, Rahmawati D (2020) East Java green tea methanolic extract can enhance RUNX2 and osterix expression during orthodontic tooth movement in vivo. J Pharm Pharmacogn Res 8(4): 290–298.

Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, Iwamoto M (2020) Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res 79: 1717–1724.

Suparwitri S, Rosyida NF, Alhasyimi AA (2019) Wheat seeds can delay orthodontic tooth movement by blocking osteoclastogenesis in rats. Clin Cosmet Investig Dent 9(11): 243–249.

Xin Y, Liu Y, Liu D, Li J, Zhang C, Wang Y, Zheng S (2020) New function of Runx2 in regulating osteoclast differentiation via the AKT/NFATc1/CTSK axis. Calcif Tissue Int 106(5): 553–566.

Yi J, Zhang L, Yan B, Yang L, Li Y, Zhao Z (2012) Drinking coffee may help accelerate orthodontic tooth movement. Dent Hypotheses 3: 72–75.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)