Colchicine antifibrotic effects in ischemia

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 296-302, Mar-Apr 2024. DOI: https://doi.org/10.56499/jppres23.1819_12.2.296 Original Article Antifibrotic effects of colchicine on 3T3 cell line ischemia to mitigate detrimental remodeling [Efectos antifibróticos de la colchicina sobre la isquemia de la línea celular 3T3 para mitigar la remodelación perjudicial] Tri Astiawati1*, Mohammad S. Rohman2, Titin A. Wihastuti3, … Continue reading Colchicine antifibrotic effects in ischemia

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 296-302, Mar-Apr 2024.

DOI: https://doi.org/10.56499/jppres23.1819_12.2.296

Original Article

Antifibrotic effects of colchicine on 3T3 cell line ischemia to mitigate detrimental remodeling

[Efectos antifibróticos de la colchicina sobre la isquemia de la línea celular 3T3 para mitigar la remodelación perjudicial]

Tri Astiawati1*, Mohammad S. Rohman2, Titin A. Wihastuti3, Hidayat Sujuti4, Agustina A. Endharti5,      Djanggan Sargowo6, Delvac Oceandy7

1Doctoral Program in Medical Sciences, Brawijaya University, Malang, East Java, Indonesia; Dr. Iskak General Hospital, Tulungagung, East Java, Indonesia.

2Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia.

. 3Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia.

4Department of Biochemistry, Faculty of Medicine, Brawijaya University, Malang, Indonesia.

5Doctoral Study Program in Medical Science, Faculty of Medicine Brawijaya University, Malang, Indonesia.

6Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia.

7Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.

*E-mail: dr.astiawatitri@gmail.com, triastia_dr@yahoo.com

Abstract

Context: Acute myocardial infarction (AMI) is one of the clinical manifestations of coronary heart disease caused by the cessation of coronary blood flow. The development of the management of AMI has resulted in a reduction in the mortality rate of AMI patients. Nevertheless, the apparent inflammation triggers detrimental remodeling, so antifibrotic such as colchicine are needed.

Aims: To analyze the impact of colchicine administration on the reduction of ventricular remodeling through the NLRP3 inflammasome, TGF-β, and α-SMA in a 3T3 cell line culture under ischemic conditions.

Methods: The 3T3 cell line culture underwent ischemia treatment using CoCl2 and subsequent treatment with colchicine. This treatment was conducted for 24 hours with a concentration of 300 μM CoCl2, followed by the administration of colchicine at a concentration of 1 μM after the ischemia treatment. The expression levels of NLRP3, TGF-β, and α-SMA were assessed using flow cytometry, and the data were analyzed through one-way ANOVA.

Results: Administration of colchicine for 24 hours following ischemia resulted in a significant decrease in the relative levels of NLRP3, TGF-β, and α-SMA (p<0.05) compared to the ischemia group.

Conclusions: In vitro administration of colchicine can reduce post-ischemic remodeling, including the NLRP3 inflammasome, TGF-β, and α-SMA.

Keywords: colchicine; inflammasome; ischemia; ventricular remodeling.

jppres_pdf_free

Resumen

Contexto: El infarto agudo de miocardio (IAM) es una de las manifestaciones clínicas de la enfermedad coronaria causada por el cese del flujo sanguíneo coronario. El desarrollo del tratamiento del IAM ha dado lugar a una reducción de la tasa de mortalidad de los pacientes con IAM. Sin embargo, la inflamación aparente desencadena una remodelación perjudicial, por lo que se necesitan antifibrinolíticos como la colchicina.

Objetivos: Analizar el impacto de la administración de colchicina en la reducción del remodelado ventricular a través del inflamasoma NLRP3, TGF-β y α-SMA en un cultivo de línea celular 3T3 en condiciones isquémicas.

Métodos: El cultivo de la línea celular 3T3 fue sometido a un tratamiento de isquemia mediante CoCl2 y posterior tratamiento con colchicina. Este tratamiento se realizó durante 24 horas con una concentración de 300 μM de CoCl2, seguido de la administración de colchicina a una concentración de 1 μM tras el tratamiento de isquemia. Los niveles de expresión de NLRP3, TGF-β y α-SMA se evaluaron mediante citometría de flujo, y los datos se analizaron mediante ANOVA unidireccional.

Resultados: La administración de colchicina durante 24 horas después de la isquemia dio lugar a una disminución significativa de los niveles relativos de NLRP3, TGF-β, y α-SMA (p<0,05) en comparación con el grupo de isquemia.

Conclusiones: La administración in vitro de colchicina puede reducir el remodelado postisquémico, incluidos el inflamasoma NLRP3, el TGF-β y el α-SMA.

Palabras Clave: colchicina; inflamasoma; isquemia; remodelado ventricular.

jppres_pdf_free
 
Citation Format: Astiawati T, Rohman MS, Wihastuti TA, Sujuti H, Endharti AT, Sargowo D, Oceandy D (2024) Antifibrotic effects of colchicine on 3T3 cell line ischemia to mitigate detrimental remodeling. J Pharm Pharmacogn Res 12(2): 296–302. https://doi.org/10.56499/jppres23.1819_12.2.296
References

Bakhta O, Blanchard S, Guihot AL, Tamareille S, Mirebeau-Prunier D, Jeannin P, Prunier F (2018) Cardioprotective role of colchicine against inflammatory injury in a rat model of acute myocardial infarction. J Cardiovasc Pharmacol Ther 23(5): 446–455. https://doi.org/10.1177/1074248418763611

Ban Q, Qiao L, Xia H, Xie B, Liu J, Ma Y, Zhang L, Zhang M, Liu LG, Jiao W, Yang S, Li Z, Zheng S, Liu D, Xia J, Qi Z (2020) β-catenin regulates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice by modulating PTEN pathways. Am J Transl Res 12(8): 4757–4771. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7476114/

Bonaventura A, Vecchié A, Dagna L, Tangianu F, Abbate A, Dentali F (2022) Colchicine for COVID-19: targeting NLRP3 inflammasome to blunt hyperinflammation. Inflamm Res 71(3): 293–307. https://doi.org/10.1007/s00011-022-01540-y

Chacón-Diaz M, Custodio-Sánchez P, Rojas De la Cuba P, Yábar-Galindo G, Rodríguez-Olivares R, Miranda-Noé D, López-Rojas LM, Hernández-Vásquez A (2022) Outcomes in ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention or pharmacoinvasive strategy in a Latin American country. BMC Cardiovasc Disord 22(1): 296. https://doi.org/10.1186/s12872-022-02730-6

Dragsbæk K, Neergaard JS, Hansen HB, Byrjalsen I, Alexandersen P, Kehlet SN, Bay-Jensen AC, Christiansen C, Karsdal MA (2015) Matrix metalloproteinase mediated type I collagen degradation — An Independent risk factor for mortality in women. EBioMedicine 2(7): 723–729. https://doi.org/10.1016/j.ebiom.2015.04.017

Fang L, Moore XL, Dart AM, Wang LM (2015) Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol 12(3): 305–312. https://doi.org/10.11909/j.issn.1671-5411.2015.03.020

Frangogiannis NG (2022) Transforming growth factor-β in myocardial disease. Nat Rev Cardiol 19: 435–455. https://doi.org/10.1038/s41569-021-00646-w

Fujisue K, Sugamura K, Kurokawa H, Matsubara J, Ishii M, Izumiya Y, Kaikita K, Sugiyama S (2017) Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circ J 81(8): 1174–1182. https://doi.org/10.1253/circj.cj-16-0949

García-García C, Oliveras T, Serra J, Vila J, Rueda F, Cediel G, Labata C, Ferrer M, Carrillo X, Dégano IR, De Diego O, El Ouaddi N, Montero S, Mauri J, Elosua R, Lupón J, Bayes-Genis A; Ruti‐STEMI Investigators (2020) Trends in short‐ and long‐term ST‐segment–elevation myocardial infarction prognosis over 3 decades: A Mediterranean population‐based ST‐segment–elevation myocardial infarction registry. J Am Heart Assoc 9(20): e017159. https://doi.org/10.1161/JAHA.120.017159

Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J (2021) Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 48(1): 743–761. https://doi.org/10.1007/s11033-020-06036-8

Gyöngyösi M, Winkler J, Ramos I, Do QT, Firat H, McDonald K, González A, Thum T, Díez J, Jaisser F, Pizard A, Zannad F (2017) Myocardial fibrosis: Biomedical research from bench to bedside. Eur J Heart Fail 19(2): 177–191. https://doi.org/10.1002/ejhf.696

Hanna A, Frangogiannis NG (2019) The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med 6: 140. https://doi.org/10.3389/fcvm.2019.00140

Humeres C, Frangogiannis NG (2019) Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci 4(3): 449–467. https://doi.org/10.1016/j.jacbts.2019.02.006

Jo EK, Kim JK, Shin DM, Sasakawa C (2016) Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular and Molecular Immunology 13(2): 148–159. https://doi.org/10.1038/cmi.2015.95

Kutryb-Zajac B, Kawecka A, Braczko A, Franczak M, Slominska EM, Giovannoni R, Smolenski RT (2022) CoCl2-mimicked endothelial cell hypoxia induces nucleotide depletion and functional impairment that is reversed by nucleotide precursors. Biomedicines 10(7): 1540. https://doi.org/10.3390/biomedicines10071540

Li YW, Chen SX, Yang Y, Zhang ZH, Zhou WB, Huang YN, Huang ZQ, He JQ, Chen TF, Wang JF, Liu ZY, Chen YX (2022) Colchicine inhibits NETs and alleviates cardiac remodeling after acute myocardial infarction. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-022-07326-y

Liu Y, Xu S, Zu T, Li F, Sang S, Liu C, An Y, Mi B, Orgill DP, Murphy GF, Lian CG (2019) Reversal of TET-mediated 5-hmC loss in hypoxic fibroblasts by ascorbic acid. Lab Invest 99(8): 1193–1202. https://doi.org/10.1038/s41374-019-0235-8

Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081): 237–241. https://doi.org/10.1038/nature04516

Mewton N, Roubille F, Bresson D, Prieur C, Bouleti C, Bochaton T, Ivanes F, Dubreuil O, Biere L, Hayek A, Derimay F, Akodad M, Alos B, Haider L, El Jonhy N, Daw R, De Bourguignon C, Dhelens C, Finet G, Bonnefoy-Cudraz E, Bidaux G, Boutitie F, Maucort-Boulch D, Croisille P, Rioufol G, Prunier F, Angoulvant D (2021) Effect of colchicine on myocardial injury in acute myocardial infarction. Circulation 144(11): 859–869. https://doi.org/10.1161/circulationaha.121.056177

Mezzaroma E, Abbate A, Toldo S (2021) NLRP3 inflammasome inhibitors in cardiovascular diseases. Molecules 26(4): 976. https://doi.org/10.3390/molecules26040976

Muflihah U, Chinnawong T, Kritpracha C (2021) Complementary therapies used by Indonesians with myocardial infarction. Holist Nurs Pract 35(1): 19–28. https://doi.org/10.1097/hnp.0000000000000422

Oates EH, Antoniewicz MR (2023) 13C-Metabolic flux analysis of 3T3-L1 adipocytes illuminates its core metabolism under hypoxia. Metab Eng 76: 158–166. https://doi.org/10.1016/j.ymben.2023.02.002

Otani K, Watanabe T, Shimada S, Takeda S, Itani S, Higashimori A, Nadatani Y, Nagami Y, Tanaka F, Kamata N, Yamagami H, Tanigawa T, Shiba M, Tominaga K, Fujiwara Y, Arakawa T (2016) Colchicine prevents NSAID-induced small intestinal injury by inhibiting activation of the NLRP3 inflammasome. Sci Rep 6: 32587. https://doi.org/10.1038/srep32587

Rahayu S, Rifai M, Qosimah D, Widyarti S, Lestari ND, Jatmiko YD, Putra WE, Tsuboi H (2022) Benefits of Coriandrum sativum L. seed extract in maintaining immunocompetent cell homeostasis. Sains Malaysiana 51(8): 2425–2434. https://doi.org/10.17576/jsm-2022-5108-07

Robertson S, Martínez GJ, Payet CA, Barraclough JY, Celermajer DS, Bursill C, Patel S (2016) Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond) 130(14): 1237–1246. https://doi.org/10.1042/CS20160090

Scopelliti F, Cattani C, Dimartino V, Mirisola C, Cavani A (2022) Platelet derivatives and the immunomodulation of wound healing. Int J Mol Sci 23(15): 8370. https://doi.org/10.3390/ijms23158370

Shinde AV, Humeres C, Frangogiannis NG (2017) The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis 1863(1): 298–309. https://doi.org/10.1016/j.bbadis.2016.11.006

Takahashi M (2019) Role of NLRP3 inflammasome in cardiac inflammation and remodeling after myocardial infarction. Biol Pharm Bull 42(4): 518–523. https://doi.org/10.1248/bpb.b18-00369

Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, López-Sendón J, Ostadal P, Koenig W, Angoulvant D, Grégoire JC, Lavoie MA, Dubé MP, Rhainds D, Provencher M, Blondeau L, Orfanos A, L'Allier PL, Guertin MC, Roubille F (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26): 2497–2505. https://doi.org/10.1056/NEJMoa1912388

Travers JG, Tharp CA, Rubino M, McKinsey TA (2022) Therapeutic targets for cardiac fibrosis: From old school to next-gen. J Clin Invest 132(5): e148554. https://doi.org/10.1172/jci148554

Tripathi VK, Subramaniyan SA, Hwang I (2019) Molecular and cellular response of co-cultured cells toward cobalt chloride (CoCl2)-induced hypoxia. ACS Omega 4(25): 20882–20893. https://doi.org/10.1021/acsomega.9b01474

Vázquez-Oliva G, Zamora A, Ramos R, Marti R, Subirana I, Grau M, Dégano IR, Marrugat J, Elosua R (2018) Acute myocardial infarction population incidence and mortality rates, and 28-day case-fatality in older adults. The REGICOR study. Rev Esp Cardiol (Engl Ed) 71(9): 718–725. https://doi.org/10.1016/j.rec.2017.10.019

Venugopal H, Hanna A, Humeres C, Frangogiannis NG (2022) Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells 11(9): 1386. https://doi.org/10.3390/cells11091386

Xing Y, Yang SD, Wang MM, Feng YS, Dong F, Zhang F (2020) The beneficial role of exercise training for myocardial infarction treatment in elderly. Front Physiol 11: 270. https://doi.org/10.3389/fphys.2020.00270

Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H, Ghasemi Y, Mahjoubin-Tehran M, Nikoozadeh A, Savardashtaki A, Mirzaei H, Hamblin MR (2020) TGF-β and WNT signaling pathways in cardiac fibrosis: Non-coding RNAs come into focus. Cell Commun Signal 18(1): 87. https://doi.org/10.1186/s12964-020-00555-4

Zhao C, Moreno-Nieves U, Di Battista JA, Fernandes MJ, Touaibia M, Bourgoin SG (2015) Chemical hypoxia brings to light altered autocrine sphingosine-1-phosphate signalling in rheumatoid arthritis synovial fibroblasts. Mediators Inflamm 2015: 436525. https://doi.org/10.1155/2015/436525

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio