Coriandrum sativum extract effect in the heart of obese rat

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1111-1120, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.1957_12.6.1111 Original Article The effect of ethanol-based coriander (Coriandrum sativum L.) seed extract on oxidative stress, antioxidant level and cellular senescence in the heart of obese rat [El efecto del extracto de semilla de cilantro (Coriandrum sativum L.) a base de etanol … Continue reading Coriandrum sativum extract effect in the heart of obese rat

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1111-1120, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres24.1957_12.6.1111

Original Article

The effect of ethanol-based coriander (Coriandrum sativum L.) seed extract on oxidative stress, antioxidant level and cellular senescence in the heart of obese rat

[El efecto del extracto de semilla de cilantro (Coriandrum sativum L.) a base de etanol sobre el estrés oxidativo, el nivel de antioxidantes y la senescencia celular en el corazón de ratas obesas]

Irah Namirah1,2, Kayla S. Wimbanu3, Albertus M.E. Rompies3, Yosafat S. Prayogo3, Wawaimuli Arozal4, Fadilah5, Muhammad Hanafi6, Novi S. Hardiany7,8,9*

1Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.

2Chemistry Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Banten, 42117, Indonesia.

3Undergraduate Medical Program, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.

4Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.

5Department of Medical Chemistry, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.

6Research Center of Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency-BRIN PUSPITEK, Tangerang Selatan, 15314, Indonesia.

7Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.

8Center of Hypoxia and Oxidative Stress Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.

9Molecular Biology & Proteomic Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia.

*E-mail: novi.silvia@ui.ac.id

Abstract

Context: High-fat diets contribute to oxidative stress and trigger cellular senescence through an imbalance in reactive oxygen species. The potential of coriander (Coriandrum sativum) seed, known for its therapeutic properties against oxidative stress and senescence in obese hearts, has been relatively unexplored.

Aims: To evaluate the impact of ethanol-based C. sativum seed extract on oxidative stress, antioxidant levels, and senescence parameters in the hearts of obese rats induced by a high-fat diet.

Methods: Twenty-nine male Wistar rats were divided into five groups, fed different diets for 24 weeks, and received C. sativum extract treatment for 12 weeks. This experiment assessed malondialdehyde (MDA) as an oxidative stress marker, antioxidant level by measuring catalase and glutathione (GSH), cellular senescence state by measuring senescence-associated β-galactosidase (SA-β-Gal) activity, and p21 levels in heart tissue.

Results: C. sativum seed extract demonstrated a significant reduction in MDA levels in the hearts of obese rats when compared to the control groups. Furthermore, the extract led to a significant increase in catalase and GSH levels in the hearts of non-obese rats, whether on a normal or high-fat diet. Although the C. sativum-treated groups exhibited a downward trend in senescence markers (SA-β-Gal and p21), the observed differences did not reach statistical significance.

Conclusions: Ethanol-based C. sativum seed extract exhibited promising potential in mitigating oxidative stress in the hearts of obese rats and enhancing antioxidant levels in the hearts of non-obese rats subjected to both normal and high-fat diets. This underscores the preventive role of C. sativum seed extract in alleviating oxidative stress, particularly in the context of a high-fat diet. However, there was insufficient evidence to conclusively demonstrate a significant improvement in cellular senescence with the use of ethanol-based C. sativum seed extract.

Keywords: antioxidant; cellular senescence; coriander; high-fat diet; oxidative stress.

PDF Download

Resumen

Contexto: Las dietas ricas en grasas contribuyen al estrés oxidativo y desencadenan la senescencia celular a través de un desequilibrio en las especies reactivas de oxígeno. El potencial de la semilla de cilantro (Coriandrum sativum), conocida por sus propiedades terapéuticas contra el estrés oxidativo y la senescencia en corazones obesos, ha sido relativamente inexplorado.

Objetivos: Evaluar el impacto del extracto de semilla de C. sativum a base de etanol sobre el estrés oxidativo, los niveles de antioxidantes y los parámetros de senescencia en los corazones de ratas obesas inducidas por una dieta rica en grasas.

Métodos: Veintinueve ratas Wistar macho se dividieron en cinco grupos, se alimentaron con diferentes dietas durante 24 semanas y recibieron tratamiento con extracto de C. sativum durante 12 semanas. Este experimento evaluó el malondialdehído (MDA) como marcador de estrés oxidativo, el nivel de antioxidante midiendo catalasa y glutatión (GSH), el estado de senescencia celular midiendo la actividad de la β-galactosidasa (SA-β-Gal) asociada a la senescencia y los niveles de p21 en el tejido cardíaco.

Resultados: El extracto de semilla de C. sativum demostró una reducción significativa en los niveles de MDA en los corazones de ratas obesas en comparación con los grupos de control. Además, el extracto provocó un aumento significativo de los niveles de catalasa y GSH en el corazón de ratas no obesas, ya sea con una dieta normal o rica en grasas. Aunque los grupos tratados con C. sativum mostraron una tendencia a la baja en los marcadores de senescencia (SA-β-Gal y p21), las diferencias observadas no alcanzaron significación estadística.

Conclusiones: El extracto de semilla de C. sativum a base de etanol mostró un potencial prometedor para mitigar el estrés oxidativo en los corazones de ratas obesas y mejorar los niveles de antioxidantes en los corazones de ratas no obesas sometidas a dietas tanto normales como ricas en grasas. Esto subraya el papel preventivo del extracto de semilla de C. sativum para aliviar el estrés oxidativo, particularmente en el contexto de una dieta rica en grasas. Sin embargo, no hubo pruebas suficientes para demostrar de manera concluyente una mejora significativa en la senescencia celular con el uso de extracto de semilla de C. sativum a base de etanol.

Palabras Clave: antioxidante; senescencia celular; cilantro; dieta rica en grasas; estrés oxidativo.

PDF Download
 
Citation Format: Namirah I, Wimbanu KS, Rompies AME, Prayogo YS, Arozal W, Fadilah, Hanafi M, Hardiany NS (2024) The effect of ethanol-based coriander (Coriandrum sativum L.) seed extract on oxidative stress, antioxidant level and cellular senescence in the heart of obese rat. J Pharm Pharmacogn Res 12(6): 1111–1120. https://doi.org/10.56499/jppres24.1957_12.6.1111
References

Abrescia P, Treppiccione L, Rossi M, and Bergamo P (2020) Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Prog Lipid Res 80: 101066. https://doi.org/10.1016/j.plipres.2020.101066

Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014: 360438. https://doi.org/10.1155/2014/360438

Azevedo-Martins AK, Curi R (2008) Fatty acids decrease catalase activity in human leukaemia cell lines. Cell Biochem Funct 26: 87–94. https://doi.org/10.1002/cbf.1404

Bhandari U, Kumar V, Khanna N, Panda BP (2011) The effect of high-fat diet-induced obesity on cardiovascular toxicity in Wistar albino rats. Hum Exp Toxicol 30: 1313-1321. https://doi.org/10.1177/0960327110389499

Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Ocorr K, Bodmer R, Oldham S (2010) High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12: 533–544. https://doi.org/10.1016/j.cmet.2010.09.014

Chen MS, Lee RT, Garbern JC (2022) Senescence mechanisms and targets in the heart. Cardiovasc Res 118: 1173–1187. https://doi.org/10.1093/cvr/cvab161

Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34: 663–673. https://doi.org/10.1016/j.molcel.2009.04.029

Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016: 3565127. https://doi.org/10.1155/2016/3565127

Fang CX, Dong F, Thomas DP, Ma H, He L, Ren J (2008) Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol 295: H1206-H1215. https://doi.org/10.1152/ajpheart.00319.2008

Hamsanathan S, Gurkar AU (2022). Lipids as regulators of cellular senescence. Front Physiol 13: 796850. https://doi.org/10.3389/fphys.2022.796850

Hardiany NS, Karman A, Calista A, Anindyanari BG, Rahardjo DE, Novira PR, Taufiq RR, Imtiyaz S, Antarianto RD (2022a) The effect of fasting on oxidative stress in the vital organs of New Zealand white rabbit. Rep Biochem Mol Biol 11: 190–199. https://doi.org/10.52547/rbmb.11.2.190

Hardiany NS, Lima FVId, Dewi S, Namirah I, Fadilah (2022b) The role of coriander seed extract (Coriandrum sativum L.) on cholesterol and blood plasma glucose of obese rats. [Indonesian]. J Biotek Medisiana Indonesia 2: 93-101.

Hsu HC, Chen CY, Lee BC, Chen MF (2016) High-fat diet induces cardiomyocyte apoptosis via the inhibition of autophagy. Eur J Nutr 55: 2245-2254. https://doi.org/10.1007/s00394-015-1034-7

Jana S, Patra K, Jana J, Mandal DP, Bhattacharjee S (2018) Nrf-2 transcriptionally activates P21Cip/WAF1 and promotes A549 cell survival against oxidative stress induced by H2O2. Chem Biol Interact 285: 59–68. https://doi.org/10.1016/j.cbi.2018.02.030

Jiang S, Liu H, Li C (2021) Dietary regulation of oxidative stress in chronic metabolic diseases. Foods 10: 1854. https://doi.org/10.3390/foods10081854

Kartinah NT, Komara N, Noviati ND, Dewi S, Yolanda S, Radhina A, Heriyanto H, Sianipar IR (2021) Potential of Hibiscus sabdariffa Linn. in managing FGF21 resistance in diet-induced-obesity rats via miR-34a regulation. Vet Med Sci 8: 309–317. https://doi.org/10.1002/vms3.653

Lankin VZ, Tikhaze AK, Melkumyants AM (2022) Malondialdehyde as an important key factor of molecular mechanisms of vascular wall damage under heart diseases development. Int J Mol Sci 24: 128. https://doi.org/10.3390/ijms24010128

Lawless C, Jurk D, Gillespie CS, Shanley D, Saretzki G, von Zglinicki T, Passos JF (2012) A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations. PLoS One 7: e32117. https://doi.org/10.1371/journal.pone.0032117

Li W, Tang R, Ouyang S, Ma F, Liu Z, Wu J (2017) Folic acid prevents cardiac dysfunction and reduces myocardial fibrosis in a mouse model of high-fat diet-induced obesity. Nutr Metab (Lond) 14: 68. https://doi.org/10.1186/s12986-017-0224-0

Lim JH, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, Xiang YK, Puigserver P (2013) Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem 288: 7117–7126. https://doi.org/10.1074/jbc.M112.415729

Ma L, Liu J, Lin Q, Gu Y, Yu W (2021) Eugenol protects cells against oxidative stress via Nrf2. Exp Ther Med 21: 107. https://doi.org/10.3892/etm.2020.9539

Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, Sarker MMR, Al-Worafi YM, Goh BH, Thuraisingam S, Goh HP (2021) Coriandrum sativum L.: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules 27: 209. https://doi.org/10.3390/molecules27010209

Mária J, Ingrid Z (2017) Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct 8: 2394–2418. https://doi.org/10.1039/c7fo00161d

Mima Y, Izumo N, Chen J-R, Yang S-C, Furukawa M, Watanabe Y (2020) Effects of Coriandrum sativum seed extract on aging-induced memory impairment in Samp8 mice. Nutrients 12: 455. https://doi.org/10.3390/nu12020455

Mohamed-Yassin MS, Baharudin N, Abdul-Razak S, Ramli AS, Lai NM (2021) Global prevalence of dyslipidaemia in adult populations: A systematic review protocol. BMJ Open 11: e049662. https://doi.org/10.1136/bmjopen-2021-049662

Ngo V, Duennwald ML (2022) Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants (Basel) 11: 2345. https://doi.org/10.3390/antiox11122345

Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, Yilmaz MI, Sayal A, Isimer A, Ozdemir IC (2002) Increased oxidative stress and hypozincemia in male obesity. Clin Biochem 35: 627-631. https://doi.org/10.1016/S0009-9120(02)00363-6

Prijanti AR, Marissa N, Paramita R, Humaira S, Nabila EN, Wijaya AE, Fadila AN, Purwosunu Y (2018) Analysis of oxidative stress markers malondialdehyde, glutathione, nitric oxide, and prorenin level in preeclampsia placental tissues. Asian J Pharm Clin Res 11: 158–161. https://doi.org/10.22159/ajpcr.2018.v11i1.18330

Santos AL, Sinha S (2021) Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 67: 101268. https://doi.org/10.1016/j.arr.2021.101268

Shimizu I, Minamino T (2019) Cellular senescence in cardiac diseases. J Cardiol 74: 313-319. https://doi.org/10.1016/j.jjcc.2019.05.002

Silva A, Silva S, Macedo J, Moreira P, Baptista D, Bicker J, Fortuna A, Liberal J, Rodrigues B, Resende R, Santos AE, Pereira C, Cruz MT (2023) Targeting Alzheimer's disease hallmarks with the Nrf2 activator isoeugenol, Qeios https://doi.org/10.32388/LUXM7W

Tan BL, Norhaizan ME (2019) Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients 11: 2579. https://doi.org/10.3390/nu11112579

Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero S, Kroemer G (2008) Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review. Gerontology 54: 92–99. https://doi.org/10.1159/000129697

Wang Y, Wang XJ, Zhao LM, Pang ZD, She G, Song Z, Cheng X, Du XJ, Deng XL (2019) Oxidative stress induced by palmitic acid modulates K(Ca)2.3 channels in vascular endothelium. Exp Cell Res 383: 111552. https://doi.org/10.1016/j.yexcr.2019.111552

Wang Z, Li L, Zhao H, Peng S, Zuo Z (2015) Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice. Metabolism 64: 917–925. https://doi.org/10.1016/j.metabol.2015.04.010

Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L (2022) New insight into dyslipidemia-induce cellular senescence in atherosclerosis. Biol Rev 97: 1844-1867. https://doi.org/10.1111/brv12866

Zhou Y, Li H, Xia N (2021) The interplay between adipose tissue and vasculature: Role of oxidative stress in obesity. Front Cardiovasc Med 8: 650214. https://doi.org/10.3389/fcvm.2021.650214

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio