Curcumin derivatives against Staphylococcus aureus

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 1008-1020, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres24.1945_12.5.1008 Original Article Hansch analysis by QSAR model of curcumin and eight of its transformed derivatives with antimicrobial activity against Staphylococcus aureus [Análisis Hansch mediante modelo QSAR de curcumina y ocho de sus derivados transformados con actividad antimicrobiana contra Staphylococcus aureus] Dini … Continue reading Curcumin derivatives against Staphylococcus aureus

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 1008-1020, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres24.1945_12.5.1008

Original Article

Hansch analysis by QSAR model of curcumin and eight of its transformed derivatives with antimicrobial activity against Staphylococcus aureus

[Análisis Hansch mediante modelo QSAR de curcumina y ocho de sus derivados transformados con actividad antimicrobiana contra Staphylococcus aureus]

Dini Kesuma1, Galih Satrio Putra2*, Yahmin Yahmin2, Sumari Sumari2, Anisa Oktaviana Putri2, Farida Anwari3, Novynanda Salmasfatah4, Melanny Ika Sulistyowaty5

1Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Surabaya, Surabaya, Indonesia.

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Malang, Indonesia.

3Pharmaceutical Chemistry Department, University of Anwar Medika, Sidoarjo, Indonesia.

4Institute of Technology, Science and Health RS Dr. Soepraoen, Malang, Indonesia.

5Department of Pharmaceutical Sciences, Faculty of Pharmacy Airlangga University, Surabaya, Indonesia.

*E-mail: galih.satrio.fmipa@um.ac.id

Abstract

Context: In the last decade, antimicrobial resistance cases have been widespread. The discovery and development of new drugs need to be done to overcome the case. Some research has found that some compounds, which are curcumin transformation derivatives, are able to inhibit the growth of Staphylococcus aureus.

Aims: To evaluate the development of antimicrobial candidates of curcumin versus S. aureus.

Methods: The in silico approach method, along with the QSAR technique, plays an important role in the process of discovery and development of new drugs. In this study, we focused on developing curcumin transformation derivatives that are much more potent by making the best QSAR equation of curcumin and eight curcumin transformation derivatives that have been tested in vitro for their antimicrobial activity against Staphylococcus aureus.

Results: The best QSAR equation was obtained from curcumin transformation derivatives as antimicrobial activity against S. aureus, with pMIC = 0.812 (± 0.162)EHOMO +5.443 (± 1.659) (n = 9; Sig = 0.002; R = 0.884; R2 = 0.782; F = 25.153; Q2 = 0.57.

Conclusions: In this study, an increase in the antimicrobial activity of curcumin transformation derivatives against S. aureus by increasing EHOMO was observed. The best QSAR equation can be a tool to obtain a more potential new chemical structure model and reduce trials and errors.

Keywords: antibacterial; curcumin; molecular docking; QSAR; transformation.

PDF Download

Resumen

Contexto: En la última década se han generalizado los casos de resistencia a los antimicrobianos. Es necesario descubrir y desarrollar nuevos fármacos para superar el caso. Algunas investigaciones han descubierto que algunos compuestos, que son derivados de la transformación de la curcumina, son capaces de inhibir el crecimiento de Staphylococcus aureus.

Objetivos: Evaluar el desarrollo de candidatos antimicrobianos de la curcumina contra S. aureus.

Métodos: El método de aproximación in silico con la técnica QSAR desempeña un papel importante en el proceso de descubrimiento y desarrollo de nuevos fármacos. En este estudio, nos centramos en el desarrollo de derivados de transformación de la curcumina que sean mucho más potentes realizando la mejor ecuación QSAR de la curcumina y ocho derivados de transformación de la curcumina que han sido probados in vitro por su actividad antimicrobiana contra S. aureus.

Resultados: Se obtuvo la mejor ecuación QSAR de los derivados de transformación de la curcumina como actividad antimicrobiana contra S. aureus, con pMIC = 0,812 (± 0,162)EHOMO +5,443 (± 1,659) (n = 9; Sig = 0,002; R = 0,884; R2 = 0,782; F = 25,153; Q2 = 0,57.

Conclusiones: En este studio se observó un aumento de la actividad antimicrobiana de los derivados de transformación de curcumina frente a S. aureus mediante el aumento de EHOMO. La mejor ecuación QSAR puede ser una herramienta para obtener un nuevo modelo de estructura química más potencial y reducir los ensayos y errores.

Palabras Clave: antibacteriano; curcumina; acoplamiento molecular; QSAR; transformación.

PDF Download
 
Citation Format: Kesuma D, Putra GS, Yahmin Y, Sumari S, Putri AO, Anwari F, Salmasfatah N, Sulistyowaty MI (2024) Hansch analysis by QSAR model of curcumin and eight of its transformed derivatives with antimicrobial activity against Staphylococcus aureus. J Pharm Pharmacogn Res 12(5): 1008–1020. https://doi.org/10.56499/jppres24.1945_12.5.1008
References

Adeniji SE, Uba S, Uzairu A (2018) QSAR modeling and molecular docking analysis of some active compounds against Mycobacterium tuberculosis receptor (Mtb CYP121). J Pathog 2018: 1018694. https://doi.org/10.1155/2018/1018694

Boehlich GJ, de Vries J, Geismar O, Gudzuhn M, Streit WR, Wicha SG, Schützenmeister N (2020) Total synthesis of anti-MRSA active diorcinols and analogues. Chemistry. 26(44): 9846-9850. https://doi.org/doi:10.1002/chem.202002442

Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51: 2320–2335. http://doi.org/10.1021/ci200211n

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7: 42717. https://doi.org/10.1038/srep42717

Gordon ON, Luis PB, Sintim HO, Schneider C (2015) Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J Biol Chem 290(8): 4817-4828. https://doi.org/10.1074/jbc.M114.618785

Gramatica P (2007) Principles of QSAR models validation: Internal and external. QSAR Comb Sci 2(5): 694–701. https://doi.org/10.1002/qsar.200610151

Green BN, Johnson CD, Egan JT, Rosenthal M, Griffith EA, Evans MW (2012) Methicillin-resistant Staphylococcus aureus: An overview for manual therapists. J Chiropr Med 11(1): 64–76. https://doi.org/doi:10.1016/j.jcm.2011.12.001

Hamed OA, Mehdawi N, Taha AA, Hamed EM, Al-Nuri MA, Hussein AS (2013) Synthesis and antibacterial activity of novel curcumin derivatives containing heterocyclic moiety. Iran J Pharm Res 12(1): 47–56. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3813224/

Hansch C, Fujita T (1964) ρ-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86: 1616–1626. https://doi.org/10.1021/ja01062a035

Hardjono S, Siswodihardjo S, Pramono P, Darmanto W (2016) Quantitave structure-cytotoxic activity relationship 1-(benzoyloxy)urea and its derivative. Curr Drug Discov Technol 13(2): 101–108. https://doi.org/10.2174/1570163813666160525112327

Jayaram B, Tanya S, Goutam M, Abhinav M, Shashank S, Sanjeevini VS (2013) A freely accessible web-server for target directed lead molecule discovery. BMC Bioinf 13(Suppl 17): S7. https://doi.org/10.1186/1471-2105-13-S17-S7

Jhanwar B, Sharmaa V, Singlaa RK, Shrivastava B (2011) QSAR-Hansch analysis and related approaches in drug design. Pharmacologyonline 1: 306–344.

Kubinyi H (1993) QSAR-Hansch analysis and related approaches. In Methods and Principles in Medicinal Chemistry. Vol. I. New York: VCH Verlagsgesellschaf. https://doi.org/10.1002/9783527616824

Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, Deplano A, Vandendriessche S, Bolfíková BC, Hulva P, Arendrup M (2022) Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 602: 135–141. https://doi.org/10.1038/s41586-021-04265-w

Lovering AL, Gretes MC, Safadi SS, Danel F, de Castro L, Page MG, Strynadka NCJ (2012) Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J Biol Chem 287(38): 32096–32102. https://doi.org/doi:10.1074/jbc.m112.355644

Luo X, Shu M, Wang Y, Liu J, Yang W, Lin Z (2012) 3D-QSAR studies of dihydropyrazole and dihydropyrrole derivatives as inhibitors of human mitotic kinesin Eg5 based on molecular docking. Molecules 17(2): 2015–2029. https://doi.org/10.3390/molecules17022015

Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A (2022) Methicillin-resistant Staphylococcus aureus: docking-based virtual screening and molecular dynamics simulations to identify potential penicillin-binding protein 2a inhibitors from natural flavonoids. Int J Microbiol 2022: 9130700. https://doi.org/10.1155/2022/9130700

Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, Kang OH, Kwon DY (2014) Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 19(11): 18283–18295. https://doi.org/10.3390/molecules191118283

Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: Predicting small molecule pharmacokinetic and toxicity properties using graph based signatures. J Med Chem. 58(9): 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Putra GS, Sulistyowaty MI, Yuniarta TA, Yahmin Y, Sumari S, Saechan C, Yamauchi T (2023) QSAR study of benzylidene hydrazine benzamides derivatives with in-vitro anticancer activity against human lung cancer cell line A459. J Pharm Pharmacogn Res 11(6): 1123–1136. https://doi.org/10.56499/jppres23.1718_11.6.1123

Putra GS, Yuniarta TA, Syahrani A, Rudyanto M (2016) Synthesis, molecular docking study and brine shrimp lethality test of benzoxazine and aminomethyl derivatives from eugenol. Int J Pharm Sci Rev Res 5(4): 1–11.

Schneider C, Gordon ON, Edwards RL, Luis PB (2015) Degradation of curcumin: From mechanism to biological implications. J Agric Food Chem 63(35): 7606–7614. https://doi.org/10.1021/acs.jafc.5b00244

Schraufstatter E, Bernt H (1949) Antibacterial action of curcumin and related compounds. Nature 164(4167): 456–457. https://doi.org/10.1038/164456a0

Shargel L, Yu ABC (2016) Applied Biopharmaceutics & Pharmacokinetics, 7th ed. New York: The McGraw-Hill Companies. 928 pages.

Soni LK, Gupta AK, Kaskhedikar SG (2009) Exploration of QSAR modelling techniques and their combination to rationalize the physicochemical characters of nitrophenyl derivatives towards aldose reductase inhibition. J Enzyme Inhib Med Chem 24(4): 1002–1007. https://doi.org/10.1080/14756360802565486

Suhud F, Tjahjono DH, Yuniarta TA, Putra GS, Setiawan J (2019) Molecular docking, drug-likeness, and ADMET study of 1-benzyl-3-benzoylurea and its analogs against VEGFR-2. IOP Conf Ser: Earth Environ Sci 293: 012018. https://doi.org/doi:10.1088/1755-1315/293/1/012018

Sulistyowaty MI, Putra GS, Budiati T, Indrianingsih AW, Anwari F, Kesuma D, Matsunami K, Yamauchi T (2023) Synthesis, in silico study, antibacterial and antifungal activities of n-phenylbenzamides. Int J Mol Sci 24(3): 2745.https://doi.org/10.3390/ijms24032745

Sulistyowaty MI, Widyowati R, Putra GS, Budiati T, Matsunami K (2021) Synthesis, ADMET predictions, molecular docking studies, and in-vitro anticancer activity of some benzoxazines against A549 human lung cancer cells. J Basic Clin Physiol Pharmacol 32(4): 385–392. https://doi.org/10.1515/jbcpp-2020-0433

Teow SY, Liew K, Ali SA, Khoo ASB, Peh SC (2016) Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J Trop Med 2016: 2853045. https://doi.org/10.1155/2016/2853045

Thomas HA (1996) Merck Molecular Force Field. I. Basis, form, scope, parametrization, and performance of MMFF94. J Com Chem 17(5-6): 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P

Thomsen R, Christensen MH (2006) MolDock:  A new technique for high-accuracy molecular docking. J Med Chem 49(11): 3315–3321. https://doi.org/10.1021/jm051197e

Todeschini R, Consonni V (2009) Molecular Descriptors for Chemoinformatics. Volume I & II. In: Methods and Principles in Medicinal Chemistry (Series Nr. 41). Weinheim: Wiley-VCH Verlag. 1220 Pages.

Topliss JG, Costello RJ (1972) Chance correlations in structure-activity studies using multiple regression analysis. J Med Chem 15(10): 1066–1068. https://doi.org/10.1021/jm00280a017

Trevor AJ, Katzung BG, Kruidering-Hall M (2015) Katzung and Trevor’s. Pharmacology Examination & Board Review, 11th ed. New York: The McGraw-Hill Education. 592 pages.

Verma V, Singh K, Kumar D, Narasimhan B (2017) QSAR studies of antimicrobial activity of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines using topological descriptors. Arab J Chem 10(1): S747–S756. https://doi.org/10.1016/j.arabjc.2012.11.021

Zhang ZS, Huang YZ, Luo J, Wang BF, Jin Z, Liu YH, Tang YZ (2018) Synthesis and antibacterial activity against MRSA of pleuromutilin derivatives Possessing a mercaptoethylamine linker. Med Chem 14(6): 585–594. https://doi.org/doi:10.2174/1573406414666180416131737

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio