Echinacea purpurea and reproductive hormones


J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 255-263, Mar-Apr 2024. DOI: Original Article Clinical effect of Echinacea purpurea as an antiviral and its effect on reproductive hormones [Efecto clínico de Echinacea purpurea como antiviral y su efecto sobre hormonas reproductoras] Revi G.H. Novika1,2*, Nurul J. Wahidah1, Ahmad Yunus3,4, Lanjar Sumarno5, Muhana F. … Continue reading Echinacea purpurea and reproductive hormones

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 255-263, Mar-Apr 2024.


Original Article

Clinical effect of Echinacea purpurea as an antiviral and its effect on reproductive hormones

[Efecto clínico de Echinacea purpurea como antiviral y su efecto sobre hormonas reproductoras]

Revi G.H. Novika1,2*, Nurul J. Wahidah1, Ahmad Yunus3,4, Lanjar Sumarno5, Muhana F. Ilyas6,7

1Midwefy Study Program, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.

2Master Program in Public Health, Graduate School, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.

3Department of Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.

4Center for Research and Development of Biotechnology and Biodiversity, LPPM Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.

5Research Center for Agroindustry, National Research and Innovation Agency, Bogor, West Java, Indonesia.

6Department of Neurology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.

7Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.



Context: Echinacea purpurea, a well-known herbal remedy, is believed to possess immunomodulatory properties and has been traditionally utilized for a wide range of health benefits. However, its antiviral activities, particularly against SARS-CoV-2, and its modulation of reproductive hormones remain unknown.

Aims: To investigate the utilization of E. purpurea herbal preparations as an antiviral by evaluating the Transmembrane Serine Protease 2 (TMPRSS2) expression and investigating its effect on reproductive hormones by measuring androgen in males and estrogen in females.

Methods: Forty male and female participants were randomly assigned to different groups. Daily administration of 400 mg of E. purpurea herbal preparations for 28 days constituted the intervention. The gathering of demographic data was documented. Before and after the intervention, samples were collected for investigation, which included the ELISA-based assessment of androgen, estrogen, and TMPRSS2 expression.

Results: This study indicated that administration of E. purpurea can significantly down-regulate TMPRSS2 expression in both males (8.39 ± 1.13 to 4.16 ± 1.53; p=0.000) and females (14.18 ± 1.93 to 5.25 ± 1.13; p=0.000). The androgen was also significantly down-regulated in the male intervention group (22.73 ± 1.75 to 12.72 ± 2.26; p=0.000). In addition, estrogen levels were also significantly up-regulated in the female intervention group (72.33 ± 11.12 to 161.14 ± 35.13; p=0.000).

Conclusions: E. purpurea may be capable of down-regulating androgen in males, up-regulating estrogen in females, and down-regulating TMPRSS2 expression. This study contributes to the growing body of literature exploring the effects of E. purpurea as an antiviral property, especially for SARS-CoV-2, and its effect on reproductive hormones.

Keywords: androgens; Echinacea; estrogens; reproduction.



Contexto: Se cree que la Echinacea purpurea, un conocido remedio herbal, posee propiedades inmunomoduladoras y se ha utilizado tradicionalmente para una amplia gama de beneficios para la salud. Sin embargo, aún se desconocen sus actividades antivirales, en particular contra el SARS-CoV-2, y su modulación de las hormonas reproductivas.

Objetivos: Investigar la utilización de preparados herbales de E. purpurea como antiviral mediante la evaluación de la expresión de la proteasa transmembrana de serina 2 (TMPRSS2) e investigar su efecto sobre las hormonas reproductivas mediante la medición de andrógenos en varones y estrógenos en mujeres.

Métodos: Cuarenta participantes masculinos y femeninos fueron asignados aleatoriamente a diferentes grupos. La intervención consistió en la administración diaria de 400 mg de preparados herbales de E. purpurea durante 28 días. Se documentó la recogida de datos demográficos. Antes y después de la intervención, se recogieron muestras para la investigación, que incluyó la evaluación basada en ELISA de la expresión de andrógenos, estrógenos y TMPRSS2.

Resultados: Este estudio indicó que la administración de E. purpurea puede reducir significativamente la expresión de TMPRSS2 tanto en hombres (8,39 ± 1,13 a 4,16 ± 1,53; p=0,000) como en mujeres (14,18 ± 1,93 a 5,25 ± 1,13; p=0,000). El andrógeno también se redujo significativamente en el grupo de intervención masculino (22,73 ± 1,75 a 12,72 ± 2,26; p=0,000). Además, los niveles de estrógeno también aumentaron significativamente en el grupo de intervención femenino (72,33 ± 11,12 a 161,14 ± 35,13; p=0,000).

Conclusiones: E. purpurea puede ser capaz de regular a la baja los andrógenos en los varones, regular al alza los estrógenos en las mujeres y regular a la baja la expresión de TMPRSS2. Este estudio contribuye al creciente cuerpo de literatura que explora los efectos de E. purpurea como propiedad antiviral, especialmente para el SARS-CoV-2, y su efecto sobre las hormonas reproductivas.

Palabras Clave: andrógenos; Echinacea; estrógenos; reproducción.



Citation Format: Novika RGH, Wahidah NJ, Yunus A, Sumarno L, Ilyas MF (2024) Clinical effect of Echinacea purpurea as an antiviral and its effect on reproductive hormones. J Pharm Pharmacogn Res 12(2): 255–263.

Agrawal AD (2011) Pharmacological activities of flavonoids: A review. Int J Pharm Sci Nanotechnol 4(2): 1394–1398.

Attarzadeh M, Balouchi H, Rajaie M, Dehnavi MM, Salehi A (2020) Improving growth and phenolic compounds of Echinacea purpurea root by integrating biological and chemical resources of phosphorus under water deficit stress. Ind Crops Prod 154: 112763.

Attarzadeh M, Balouchi H, Rajaie M, Movahhedi Dehnavi M, Salehi A (2019) Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes. J Environ Manage 231: 182–188.

Awad AB, Fink CS (2000) Phytosterols as anticancer dietary components: Evidence and mechanism of action. J Nutr 130(9): 2127–2130.

Balciunaite G, Juodsnukyte J, Savickas A, Ragazinskiene O, Siatkute L, Zvirblyte G, Mistiniene E, Savickiene N (2015) Fractionation and evaluation of proteins in roots of Echinacea purpurea (L.) Moench. Acta Pharm 65(4): 473–479.

Bergeron C, Gafner S (2007) Quantitative analysis of the polysaccharide and glycoprotein fractions in Echinacea purpurea and Echinacea angustifolia by HPLC-ELSD for quality control of raw material. Pharm Biol 45(2): 98–105.

Bodinet C, Beuscher N (1991) Antiviral and immunological activity of glycoproteins from Echinacea purpurea radix. Planta Med 57(S 2): A33–A34.

Bonkhoff H (2018) Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression. Prostate 78(1): 2–10.

Bruni R, Brighenti V, Caesar LK, Bertelli D, Cech NB, Pellati F (2018) Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J Pharm Biomed Anal 160: 443–477.

Cai C, Chen Y, Zhong S, Ji B, Wang J, Bai X, Shi G (2014) Anti-Inflammatory activity of n-butanol extract from Ipomoea stolonifera in vivo and in vitro. PLoS One 9(4): e95931.

Cech NB, Kandhi V, Davis JM, Hamilton A, Eads D, Laster SM (2010) Echinacea and its alkylamides: Effects on the influenza A-induced secretion of cytokines, chemokines, and PGE2 from RAW 264.7 macrophage-like cells. Int Immunopharmacol 10(10): 1268–1278.

Cioccarelli C, Sánchez-Rodríguez R, Angioni R, Venegas FC, Bertoldi N, Munari F, Cattelan A, Molon B, Viola A (2021) IL1β Promotes TMPRSS2 expression and SARS-CoV-2 cell entry through the p38 MAPK-GATA2 axis. Front Immunol 12: 781352.

Dalby-Brown L, Barsett H, Landbo A-KR, Meyer AS, Mølgaard P (2005) Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J Agric Food Chem 53(24): 9413–9423.

Del-Rio-Navarro BE, Espinosa-Rosales FJ, Flenady V, Sienra-Monge JJ (2006) Immunostimulants for preventing respiratory tract infection in children. Cochrane Database of Syst Rev

El-Ashmawy NE, El-Zamarany EA, Salem ML, El-Bahrawy HA, Al-Ashmawy GM (2015) In vitro and in vivo studies of the immunomodulatory effect of Echinacea purpurea on dendritic cells. J Genet Eng Biotechnol 13(2): 185–192.

Fast DJ, Balles JA, Scholten JD, Mulder T, Rana J (2015) Echinacea purpurea root extract inhibits TNF release in response to Pam3Csk4 in a phosphatidylinositol-3-kinase dependent manner. Cell Immunol 297(2): 94–99.

Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS (2020) IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 53: 13–24.

Guiotto P, Woelkart K, Grabnar I, Voinovich D, Perissutti B, Invernizzi S, Granzotto M, Bauer R (2008) Pharmacokinetics and immunomodulatory effects of phytotherapeutic lozenges (bonbons) with Echinacea purpurea extract. Phytomedicine 15(8): 547–554.

Haria EN, Perera MADN, Senchina DS (2016) Immunomodulatory effects of Echinacea laevigata ethanol tinctures produced from different organs. Biosci Horiz 9: hzw001.

Indalao IL, Sawabuchi T, Takahashi E, Kido H (2017) IL-1β is a key cytokine that induces trypsin upregulation in the influenza virus–cytokine–trypsin cycle. Arch Virol 162(1): 201–211.

Iwata-Yoshikawa N, Kakizaki M, Shiwa-Sudo N, Okura T, Tahara M, Fukushi S, Maeda K, Kawase M, Asanuma H, Tomita Y, Takayama I, Matsuyama S, Shirato K, Suzuki T, Nagata N, Takeda M (2022) Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nat Commun 13(1): 6100.

Jiang W, Zhu H, Xu W, Liu C, Hu B, Guo Y, Cheng Y, Qian H (2021) Echinacea purpurea polysaccharide prepared by fractional precipitation prevents alcoholic liver injury in mice by protecting the intestinal barrier and regulating liver-related pathways. Int J Biol Macromol 187: 143–156.

Kakimov A, Muratbayev A, Zharykbasova K, Amanzholov S, Mirasheva G, Kassymov S, Utegenova A, Jumazhanova M, Shariati MA (2021) Heavy metals analysis, GCMS-QP quantification of flavonoids, amino acids and saponins, analysis of tannins and organoleptic properties of powder and tincture of Echinacea purpurea (L.) and Rhapónticum carthamoídes. Potr S J F Sci 15: 330–339.

Kim H-R, Oh S-K, Lim W, Lee HK, Moon B-I, Seoh J-Y (2014) Immune enhancing effects of Echinacea purpurea root extract by reducing regulatory t cell number and function. Nat Prod Commun 9(4): 511–514.

Kumar KM, Ramaiah S (2011) Pharmacological importance of Echinacea purpurea. Int J Pharma Biosci 2(4): 304–314.

Kurkin VA, Akushskaya AS, Avdeeva EV, Velmyaikina EI, Daeva ED, Kadentsev VI (2011) Flavonoids from Echinacea purpurea. Russ J Bioorg Chem 37(7): 905–906.

Leach DA, Mohr A, Giotis ES, Cil E, Isac AM, Yates LL, Barclay WS, Zwacka RM, Bevan CL, Brooke GN (2021) The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nat Commun 12(1): 4068.

Lemeshow S, David WH (1997) Large Samples in Health Research. Yogyakarta: Gadjah Mada University Press.

Li Y, Wang Y, Wu Y, Wang B, Chen X, Xu Xin, Chen H, Li W, Xu X (2017) Echinacea pupurea extracts promote murine dendritic cell maturation by activation of JNK, p38 MAPK and NF-κB pathways. Dev Comp Immunol 73: 21–26.

Liu X, Liu B, Shang Y, Cao P, Hou J, Chen F, Zhang B, Fan Y, Tan K (2022) Decreased TMPRSS2 expression by SARS-CoV-2 predicts the poor prognosis of lung cancer patients through metabolic pathways and immune infiltration. Aging 14(1): 73–108.

Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, Morrissey C, Corey E, Montgomery B, Mostaghel E, Clegg N, Coleman I, Brown CM, Schneider EL, Craik C, Simon JA, Bedalov A, Nelson PS (2014) The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 4(11): 1310–1325.

Maggini V, De Leo M, Granchi C, Tuccinardi T, Mengoni A, Gallo ER, Biffi S, Fani R, Pistelli L, Firenzuoli F, Bogani P (2019) The influence of Echinacea purpurea leaf microbiota on chicoric acid level. Sci Rep 9(1): 10897.

Mahapatra S, Rattan R, Mohanty CBK (2021) Convalescent plasma therapy in the management of COVID-19 patients-The newer dimensions. Transfus Clin Biol 28(3): 246–253.

Mahmoud IS, Jarrar YB (2021) Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges. Mol Biol Rep 48(5): 4667–4675.

Manna PR, Dyson MT, Stocco DM (2009) Regulation of the steroidogenic acute regulatory protein gene expression: Present and future perspectives. Mol Hum Reprod 15(6): 321–333.

Mao C-F, Sudirman S, Lee C-C, Tsou D, Kong Z-L (2021) Echinacea purpurea ethanol extract improves male reproductive dysfunction with streptozotocin–nicotinamide-induced diabetic rats. Front Vet Sci 8: 651286.

Mindnich R, Haller F, Halbach F, Moeller G, de Angelis MH, Adamski J (2005) Androgen metabolism via 17β-hydroxysteroid dehydrogenase type 3 in mammalian and non-mammalian vertebrates: Comparison of the human and the zebrafish enzyme. J Mol Endocrinol 35(2): 305–316.

Mohamed Sharif KO, Tufekci EF, Ustaoglu B, Altunoglu YC, Zengin G, Llorent-Martínez EJ, Guney K, Baloglu MC (2021) Anticancer and biological properties of leaf and flower extracts of Echinacea purpurea (L.) Moench. Food Biosci 41: 101005

Mudge E, Lopes-Lutz D, Brown P, Schieber A (2011) Analysis of alkylamides in Echinacea plant materials and dietary supplements by ultrafast liquid chromatography with diode array and mass spectrometric detection. J Agric Food Chem 59(15): 8086–8094.

Nagoor Meeran MF, Javed H, Sharma C, Goyal SN, Kumar S, Jha NK, Ojha S (2021) Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019. Heliyon 7(2): e05990.

Novika RGH, Wahidah NJ, Rahmawati NY, Ansori ANM (2022) Apium graveolens and Eucalyptus globulus decrease stress and protect folliculogenesis marker on woman reproductive health during COVID-19 pandemic. Indones J Pharm 33: 592–601.

Nyalambisa M, Oyemitan IA, Matewu R, Oyedeji OO, Oluwafemi OS, Songca SP, Nkeh-Chungag BN, Oyedeji AO (2017) Volatile constituents and biological activities of the leaf and root of Echinacea species from South Africa. Saudi Pharm J 25(3): 381–386.

Pallag A, Bungau S, Tit DM, Jurca T, Sirbu V, Honiges A, Horhogea C (2016) Comparative study of polyphenols, flavonoids and chlorophylls in Equisetum arvense L. populations. Rev Chim 67: 530–533.

Powers CN, Setzer WN (2015) A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements. In Silico Pharmacol 3(1): 4.

Qiao Y, Wang X-M, Mannan R, Pitchiaya S, Zhang Y, Wotring JW, Xiao L, Robinson DR, Wu Y-M, Tien JC-Y, Cao X, Simko SA, Apel IJ, Bawa P, Kregel S, Narayanan SP, Raskind G, Ellison SJ, Parolia A, Zelenka-Wang S, McMurry L, Su F, Wang R, Cheng Y, Delekta AD, Mei Z, Pretto CD, Wang S, Mehra R, Sexton JZ, Chinnaiyan AM (2021) Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. Proc Natl Acad Sci USA 118(1): e2021450118.

Ramezannezhad R, Aghdasi M, Fatemi M (2019) Enhanced production of cichoric acid in cell suspension culture of Echinacea purpurea by silver nanoparticle elicitation. Plant Cell Tiss Organ Cult 139(2): 261–273.

Renteria AE, Mfuna Endam L, Adam D, Filali-Mouhim A, Maniakas A, Rousseau S, Brochiero E, Gallo S, Desrosiers M (2020) Azithromycin downregulates gene expression of IL-1β and pathways involving TMPRSS2 and TMPRSS11D required by SARS-CoV-2. Am J Respir Cell Mol Biol 63(5): 707–709.

Rios MY, Olivo HF (2014) Natural and synthetic alkamides: Applications in pain therapy. Studies in Natural Products Chemistry 43: 79-121.

Roesler J, Emmendörffer A, Steinmüller C, Luettig B, Wagner H, Lohmann-Matthes M-L (1991) Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system. Int J Immunopharmacol 13(7): 931–941.

Saeidnia S, Manayi A, Vazirian M (2015) Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn Rev 9(17): 63.

Skaudickas D, Kondrotas A, Baltrusaitis K (2004) The effect of Echinacea purpurea extract on sexual glands of male rats. Medicina (Kaunas, Lithuania) 40(12): 1211–1218.

Skaudickas D, Kondrotas AJ, Baltrusaitis K, Vaitiekaitis G (2003) Effect of Echinacea (Echinacea purpurea L. Moench) preparations on experimental prostate gland. Medicina (Kaunas, Lithuania) 39(8): 761–6.

Tabar RS, Moieni A, Monfared SR (2019) Improving biomass and chicoric acid content in hairy roots of Echinacea purpurea L. Biologia 74(8): 941–951.

Trautwein EA, Demonty I (2007) Phytosterols: natural compounds with established and emerging health benefits. OCL 14(5): 259–266.

Treppiedi D, Marra G, Di Muro G, Catalano R, Mangili F, Esposito E, Barbieri AM, Arosio M, Mantovani G, Peverelli E (2022) TMPRSS2 Expression and activity modulation by sex-related hormones in lung Calu-3 cells: Impact on gender-specific SARS-CoV-2 infection. Front Endocrinol 13: 862789.

Vendramin V, Viel A, Vincenzi S (2021) Caftaric acid isolation from unripe grape: A “green” alternative for hydroxycinnamic acids recovery. Molecules 26(4): 1148.

Vieira SF, Gonçalves VMF, Llaguno CP, Macías F, Tiritan ME, Reis RL, Ferreira H, Neves NM (2022) On the bioactivity of Echinacea purpurea extracts to modulate the production of inflammatory mediators. Int J Mol Sci 23(21): 13616.

Vimalanathan S, Shehata M, Sadasivam K, Delbue S, Dolci M, Pariani E, D’Alessandro S, Pleschka S (2022) Broad antiviral effects of Echinacea purpurea against SARS-CoV-2 variants of concern and potential mechanism of action. Microorganisms 10(11): 2145.

Wahab F, Atika B, Ullah F, Shahab M, Behr R (2018) Metabolic impact on the hypothalamic kisspeptin-Kiss1r signaling pathway. Front Endocrinol 9: 123.

Wettstein L, Kirchhoff F, Münch J (2022) The transmembrane protease TMPRSS2 as a therapeutic target for COVID-19 treatment. Int J Mol Sci 23(3): 1351.

World Health Organization (1999) WHO monographs on selected medicinal plants. Geneva: World Health Organization.

World Medical Association (2013) World Medical Association Declaration of Helsinki. JAMA 310(20): 2191.

Xu W, Hu B, Cheng Y, Guo Y, Yao W, Qian H (2022) Echinacea purpurea suppresses the cell survival and metastasis of hepatocellular carcinoma through regulating the PI3K/Akt pathway. Int J Biochem Cell Biol 142: 106-115.

Yang G, Li K, Liu C, Peng P, Bai M, Sun J, Li Q, Yang Z, Yang Y, Wu H (2018) A comparison of the immunostimulatory effects of polysaccharides from tetraploid and diploid Echinacea purpurea. BioMed Res Int 2018: 8628531 .

Yao L, Bai L, Tan Y, Sun J, Qu Q, Shi D, Guo S, Liu C (2019) The immunoregulatory effect of sulfated Echinacea purpurea polysaccharide on chicken bone marrow-derived dendritic cells. Int J Biol Macromol 139: 1123–1132.

Zava DT, Dollbaum CM, Blen M (1998) Estrogen and progestin bioactivity of foods, herbs, and spices. Exp Biol Med 217(3): 369–378.

Zhai Z, Liu Y, Wu L, Senchina DS, Wurtele ES, Murphy PA, Kohut ML, Cunnick JE (2007) Enhancement of innate and adaptive immune functions by multiple Echinacea species. J Med Food 10(3): 423–434.

© 2024 Journal of Pharmacy & Pharmacognosy Research

Periodontal disease in people with HIV infection
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 27-45, Jan-Feb 2025. DOI: Review Research trends in periodontal disease in people with HIV infection: A bibliometric analysis [Tendencias de investigación en enfermedad periodontal en personas con infección por VIH: Un análisis bibliométrico] Roberto Ojeda-Gómez1*, Julio C. Romero-Gamboa1, Melissa Pineda-Vega1, Pablo A. Millones-Gómez1, John E. … Continue reading Periodontal disease in people with HIV infection
Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio