Effect of rhamnetin on HMG-CoA reductase and LDLR expression

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 47-54, January-February 2023. DOI: https://doi.org/10.56499/jppres22.1507_11.1.47 Original Article Rhamnetin decreases the expression of HMG-CoA reductase gene and increases LDL receptor in HepG2 cells [Ramnetina disminuye la expresión del gen de la HMG-CoA reductasa y aumenta los receptores de LDL en las células HepG2] Raghad R. Al-Yousef1, Manal M. … Continue reading Effect of rhamnetin on HMG-CoA reductase and LDLR expression

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 47-54, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1507_11.1.47

Original Article

Rhamnetin decreases the expression of HMG-CoA reductase gene and increases LDL receptor in HepG2 cells

[Ramnetina disminuye la expresión del gen de la HMG-CoA reductasa y aumenta los receptores de LDL en las células HepG2]

Raghad R. Al-Yousef1, Manal M. Abbas1,2, Razan Obeidat2, Manal A. Abbas1,2*

1Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.

2Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan.

*E-mail: m.abbas@ammanu.edu.jo

Abstract

Context: Rhamnetin is a naturally occurring methylated derivative of quercetin. This flavonoid is abundant in Syzygium aromaticum, Coriandrum sativum Prunus cerasus, and Rhamnus spp.

Aims: To evaluate the effects of rhamnetin on HMG-CoA reductase and low-density lipoprotein receptor (LDLR) gene and protein expressions in the HepG2 hepatoma cell line.

Methods: The expression of HMG-CoA reductase and LDLR genes and proteins were studied in HepG2 liver cancer cell line by PCR, Western blot, and indirect ELISA, as well as their antioxidant activity.

Results: Rhamnetin was non-toxic up to 200 μM on HepG2 at 24, 48, and 72 h. Rhamnetin (25 µM) upregulated LDLR gene expression by 1.66 folds compared to 3.12 folds exerted by the well-known hypocholesterolemic drug simvastatin. Rhamnetin (100 µM) increased the expression of LDLR protein at the cell membrane, while the other concentrations produced no significant change from the control (vehicle-treated). In HepG2 cell lysate, LDLR was increased by 50 µM of rhamnetin. Also, rhamnetin increased SOD activity significantly by 100.98, 86.28, and 100.98% by the concentrations 25, 50, and 100 µM, respectively. Using the same concentrations, rhamnetin reduced H2O2 levels by 50, 67, and 76.34%, respectively.

Conclusions: This study demonstrated for the first time that rhamnetin reduced HMG-CoA reductase gene expression and increased LDLR in HepG2 cells.

Keywords: HepG2; hydroxymethylglutaryl CoA reductase; LDL; rhamnetin; receptors.

Resumen

Contexto: La ramnetina es un derivado metilado natural de la quercetina. Este flavonoide abunda en las especies Syzygium aromaticum, Coriandrum sativum, Prunus cerasus y Rhamnus spp.

Objetivos: Evaluar los efectos de la ramnetina en las expresiones génicas y proteicas de la HMG-CoA reductasa y el receptor de la lipoproteína de baja densidad (LDLR) en la línea celular de hepatoma HepG2.

Métodos: Se estudió la expresión de los genes y proteínas de la HMG-CoA reductasa y del LDLR en la línea celular de hepatoma HepG2 mediante PCR, Western blot y ELISA indirecto, así como su actividad antioxidante.

Resultados: La ramnetina fue no tóxica hasta 200 μM en HepG2 a las 24, 48 y 72 h. La ramnetina (25 µM) aumentó la expresión del gen LDLR en 1,66 veces en comparación con 3,12 veces ejercida por el conocido fármaco hipocolesterolemiante simvastatina. La ramnetina (100 µM) aumentó la expresión de la proteína LDLR en la membrana celular, mientras que las demás concentraciones no produjeron cambios significativos con respecto al control (tratado con vehículo). En el lisado de células HepG2, el LDLR aumentó con 50 µM de ramnetina. Asimismo, la ramnetina aumentó significativamente la actividad de la SOD en 100,98; 86,28 y 100,98% mediante las concentraciones de 25, 50 y 100 µM, respectivamente. Utilizando las mismas concentraciones, la ramnetina redujo los niveles de H2O2 en 50, 67 y 76,34%, respectivamente.

Conclusiones: Este estudio demostró por primera vez que la ramnetina redujo la expresión del gen de la HMG-CoA reductasa y aumentó el LDLR en células HepG2.

Palabras Clave: HepG2; hidroximetilglutaril CoA reductasa; LDL; ramnetina; receptores.

Citation Format: Al-Yousef RR, Abbas MM, Obeidat R, Abbas MA (2023) Rhamnetin decreases the expression of HMG-CoA reductase gene and increases LDL receptors in HepG2 cells. J Pharm Pharmacogn Res 11(1): 47–54. https://doi.org/10.56499/jppres22.1507_11.1.47
References

Abbas MM, Kandil Yİ, Abbas MA (2020) R-(-)-carvone attenuated doxorubicin induced cardiotoxicity in vivo and potentiated its anticancer toxicity in vitro. Balkan Med J 37: 98–103. https://doi.org/10.4274/balkanmedj.galenos.2019.2019.7.117

Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47. https://doi.org/10.1126/science.3513311

Chaudhry N, Tariq P (2006) Bactericidal activity of black pepper, bay leaf, aniseed and coriander against oral isolates. Pak J Pharm Sci 19: 214-218.

Cuoco G, Mathe C, Vieillescazes C (2014) Liquid chromatographic analysis of flavonol compounds in green fruits of three Rhamnus species used in Stil de grain. Microchem J 115: 130-137. https://doi.org/10.1016/j.microc.2014.03.006

Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343: 425-430. https://doi.org/10.1038/343425a0

Grundy SM (2005) The issue of statin safety: where do we stand? Circulation 111: 3016-3019. https://doi.org/10.1161/CIRCULATIONAHA.105.557652

Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21: 1876-1890. https://doi.org/10.1161/hq1201.100220

Igarashi K, Ohmuma M (1995) Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci Biotechnol Biochem 59: 595-601. https://doi.org/10.1271/bbb.59.595

Jiang H, Zhan W, Liu X,  Jiang S (2008) Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge. Nat Prod Res 22: 1650-1656. https://doi.org/10.1080/14786410701875686

Jnawali HN, Lee E, Jeong K-W, Shin A, Heo Y-S, Kim Y (2014) Anti-inflammatory activity of rhamnetin and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. J Natl Prod 77: 258-263. https://doi.org/10.1021/np400803n

Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, Alblooshi FM, Almatrooshi ME, Alzaabi ME, Al Darmaki RS, Lootah SN (2020) Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus 12(7): e9349. https://doi.org/10.7759/cureus.9349

Kotseva K, Stagmo M, De Bacquer D, De Backer G, Wood D, Group EIS (2008) Treatment potential for cholesterol management in patients with coronary heart disease in 15 European countries: findings from the EUROASPIRE II survey. Atherosclerosis 197: P710-717. https://doi.org/10.1016/j.atherosclerosis.2007.07.004

Lee H, Kim HJ, Chae H, Yoon NE, Jung BH (2021) Aster glehni F. Schmidt extract modulates the activities of HMG-CoA reductase and fatty acid synthase. Plants 10: 2287. https://doi.org/10.3390/plants10112287

Lee KP, Kim J-E, Park W-H (2015) Cytoprotective effect of rhamnetin on miconazole-induced H9c2 cell damage. Nutr Res Pract 9: 586-591. https://doi.org/10.4162/nrp.2015.9.6.586

Mahdavi A, Bagherniya M, Fakheran O, Reiner Ž, Xu S, Sahebkar A (2020) Medicinal plants and bioactive natural compounds as inhibitors of HMG‐CoA reductase: A literature review. BioFactors 46: 906-926. https://doi.org/10.1002/biof.1684

Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, LaHaye SA, Mbikay M, Ooi TC, Chrétien M (2008) Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids in health and disease 7(1): 22. https://doi.org/10.1186/1476-511X-7-22

Mattarei A, Biasutto L, Rastrelli F, Garbisa S, Marotta E, Zoratti M, Paradisi C (2010) Regioselective O-derivatization of quercetin via ester intermediates. An improved synthesis of rhamnetin and development of a new mitochondriotropic derivative. Molecules 15: 4722-4736. https://doi.org/10.3390/molecules15074722

Morikawa S, Umetani M, Nakagawa S, Yamazaki H, Suganami H, Inoue K, Kitahara M, Hamakubo T, Kodama T, Saito Y (2000) Relative induction of mRNA for HMG CoA reductase and LDL receptor by five different HMG-CoA reductase inhibitors in cultured human cells. J Atheroscler Thromb 7(3): 138-144. https://doi.org/10.5551/jat1994.7.138

Nawrocki JW, Weiss SR, Davidson MH, Sprecher DL, Schwartz SL, Lupien P-J, Jones PH, Haber HE, Black DM (1995) Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol 15: 678-682. https://doi.org/10.1161/01.atv.15.5.678

Nimkuntod P, Tongdee P (2015) Plasma low-density lipoprotein cholesterol/high-density lipoprotein cholesterol concentration ratio and early marker of carotid artery atherosclerosis. J Med Assoc Thai 98: S58-63.

Novo Belchor M, Hessel Gaeta H, Fabri Bittencourt Rodrigues C, Ramos da Cruz Costa C, de Oliveira Toyama D, Domingues Passero LF, Dalastra Laurenti M, Hikari Toyama M (2017) Evaluation of rhamnetin as an inhibitor of the pharmacological effect of secretory phospholipase A2. Molecules 22: 1441. https://doi.org/10.3390/molecules22091441

Park E-S, Kang JC, Jang YC, Park JS, Jang SY, Kim D-E, Kim B, Shin HS (2014) Cardioprotective effects of rhamnetin in H9c2 cardiomyoblast cells under H2O2-induced apoptosis. J Ethnopharmacol 153: 552-560. https://doi.org/10.1016/j.jep.2014.02.019

Reiner Ž (2010) Combined therapy in the treatment of dyslipidemia. Fundam Clin Pharmacol 24: 19-28. https://doi.org/10.1111/j.1472-8206.2009.00764.x

Reiner Ž, De Bacquer D, Kotseva K, Prugger C, De Backer G, Wood D, EUROASPIRE III study group (2013) Treatment potential for dyslipidaemia management in patients with coronary heart disease across Europe: findings from the EUROASPIRE III survey. Atherosclerosis 231: P300-307. https://doi.org/10.1016/j.atherosclerosis.2013.09.020

Szabo ME, Gallyas E, Bak I, Rakotovao A, Boucher F, de Leiris J, Nagy N, Varga E, Tosaki A (2004) Heme oxygenase-1–related carbon monoxide and flavonoids in ischemic/reperfused rat retina. Invest Ophthalmol Vis Sci 45: 3727-3732. https://doi.org/10.1167/iovs.03-1324

Tacherfiout M, Petrov PD, Mattonai M, Ribechini E, Ribot J, Bonet ML, Khettal B (2018) Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in Triton-induced hyperlipidemic rats and human HepG2 cells. Biomed Pharmacother 101: 501-509. https://doi.org/10.1016/j.biopha.2018.02.106

Vogel RA (2012) PCSK9 inhibition: the next statin? Am Coll Cardiol 59: 2354-2355. https://doi.org/10.1016/j.jacc.2012.03.011

Vosgen B,  Herrmann K (1980) Flavonol glycosides of pepper (Piper nigrum), clove (Syzygium aromaticum) and allspice (Pimenta dioica). 3. Phenolics of spices. Z Lebensm Unters Forch 170: 204-207. https://doi.org/10.1007/BF01042541

Yang H-X, Zhang M, Long S-Y, Tuo Q-H, Tian Y, Chen J-X, Zhang CP, Liao DF (2020) Cholesterol in LDL receptor recycling and degradation. Clin Chim Acta 500: 81-86. https://doi.org/10.1016/j.cca.2019.09.022

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Phyllanthus emblica flavonoid glycosides against xanthine oxidase
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1067-1078, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.1959_12.6.1067 Original Article Antioxidant potential and xanthine oxidase inhibition of flavonol glycosides from Phyllanthus emblica L. leaves [Potencial antioxidante e inhibición de la xantina oxidasa de los glucósidos de flavonol de las hojas de Phyllanthus emblica L.] Husnunnisa1, Rika Hartati1, Rachmat Mauludin2, … Continue reading Phyllanthus emblica flavonoid glycosides against xanthine oxidase
Spray-drying Perilla frutescens extract optimization
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1056-1066, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2009_12.6.1056 Original Article Optimization of spray-drying conditions and quality assessment of dry extract from Perilla frutescens (L.) Britton leaves [Optimización de las condiciones de secado por atomización y evaluación de la calidad del extracto seco de hojas de Perilla frutescens (L.) Britton] … Continue reading Spray-drying Perilla frutescens extract optimization
Honey clinical applications in complementary medicine
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1040-1055, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.1870_12.6.1040 Review Honey clinical applications in complementary medicine: A critical review [Aplicaciones clínicas de la miel en la medicina complementaria: Una revisión crítica] Thai Hau Koo1, Andee Dzulkarnaen Zakaria2*, Mohd Zulkifli Mustafa3 1Department of Internal Medicine, School of Medical Sciences, Universiti Sains … Continue reading Honey clinical applications in complementary medicine

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio