Effects of ETAS on cognitive impairment subjects

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 154-165, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1742_12.1.154 Original Article Evaluation of the beneficial effects of ETAS® on normal aging or mild cognitive impairment subjects: A pilot randomized controlled trial [Evaluación de los efectos beneficiosos de ETAS® en sujetos con envejecimiento normal o deterioro cognitivo leve: Un ensayo piloto … Continue reading Effects of ETAS on cognitive impairment subjects

J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 154-165, Jan-Feb 2024.

DOI: https://doi.org/10.56499/jppres23.1742_12.1.154

Original Article

Evaluation of the beneficial effects of ETAS® on normal aging or mild cognitive impairment subjects: A pilot randomized controlled trial

[Evaluación de los efectos beneficiosos de ETAS® en sujetos con envejecimiento normal o deterioro cognitivo leve: Un ensayo piloto controlado aleatorizado]

Natalia Mikhailichenko1,2*, Te-Jen Lai1,3, James Cheng-Chung Wei1,4, Tsukasa Takahashi5, Jun Takanari5, Kazunori Goto5

1Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.

2NEVRON International Medical Center, Vladivostok, 690078, Russia.

3Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan.

4Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.

5Amino Up Co., Ltd., Sapporo, Japan.

*E-mail: nevron.vl@gmail.com

Abstract

Context: Recently, new intervention tools at the mild cognitive impairment (MCI) stage are needed to prevent dementia, including Alzheimer's disease (AD).

Aims: To evaluate whether a standardized Asparagus officinalis stem (ETAS) extract, as a functional ingredient, effectively maintains cognitive functions in subjects with normal aging and MCI.

Methods: A pilot randomized controlled trial was conducted on thirty subjects that were randomly allocated to the experimental group (n = 15), which received ETAS supplementation (1,000 mg) daily, and a control group, which received placebo (dextrin) in the same form (n = 15) for a period of 12 months. All subjects were evaluated using neuropsychological questionnaires comprised of Mini-Mental State Examination (MMSE), Frontal Assessment Battery (FAB), Clock Drawing Test (CDT), and Hospital Anxiety and Depression Scale (HADS) at all visit times. Brain tests (MRI, EEG and EPB) and blood tests (hematology, hemochemistry, immunological status and HSP70) were also performed. Primary endpoints were the change in the neuropsychological questionnaire scores. Secondary endpoints such as immunological and molecular biomarkers of dementia, neurological imaging, and electrophysiological outcomes were measured.

Results: The ETAS group showed a significant improvement in scores on MMSE, FAB, and HADS, tended to improve in scores on CDT, and could show a slight increase in blood HSP70. The ETAS group also maintained normal levels of CD4/CD8 immune complex. No adverse events were detected during the study period.

Conclusions: ETAS supplementation could prevent the progression of cognitive decline and anxiety/depression expression associated with the prevention of AD.

Keywords: Alzheimer's disease; dietary supplements; functional food; heat-shock proteins; mild cognitive impairment.

jppres_pdf_free

Resumen

Contexto: Recientemente, se necesitan nuevas herramientas de intervención en la fase de deterioro cognitivo leve (DCL) para prevenir la demencia, incluida la enfermedad de Alzheimer (EA).

Objetivos: Evaluar si un extracto estandarizado de tallo de Asparagus officinalis (ETAS), como ingrediente funcional, mantiene eficazmente las funciones cognitivas en sujetos con envejecimiento normal y DCL.

Métodos: Se realizó un ensayo piloto controlado aleatorizado en treinta sujetos que fueron asignados al azar al grupo experimental (n = 15), que recibió suplementación de ETAS (1.000 mg) diariamente, y a un grupo de control, que recibió placebo (dextrina) en la misma forma (n = 15) durante un período de 12 meses. Todos los sujetos fueron evaluados mediante cuestionarios neuropsicológicos compuestos por el Mini-Mental State Examination (MMSE), la Frontal Assessment Battery (FAB), el Clock Drawing Test (CDT) y la Hospital Anxiety and Depression Scale (HADS) en todas las visitas. También se realizaron pruebas cerebrales (IRM, EEG y EPB) y análisis de sangre (hematología, hemoquímica, estado inmunológico y HSP70). Los criterios de valoración primarios fueron los cambios en las puntuaciones del cuestionario neuropsicológico. Se midieron criterios de valoración secundarios como los biomarcadores inmunológicos y moleculares de la demencia, las imágenes neurológicas y los resultados electrofisiológicos.

Resultados: El grupo ETAS mostró una mejora significativa en las puntuaciones en MMSE, FAB y HADS, tendió a mejorar en las puntuaciones en CDT, y pudo mostrar un ligero aumento de HSP70 en sangre. El grupo ETAS también mantuvo niveles normales del complejo inmunitario CD4/CD8. No se detectaron acontecimientos adversos durante el periodo de estudio.

Conclusiones: La suplementación con ETAS podría prevenir la progresión del deterioro cognitivo y la expresión de ansiedad/depresión asociada a la prevención de la EA.

Palabras Clave: alimentos funcionales; deterioro cognitivo leve; Enfermedad de Alzheimer; proteínas de choque térmico; suplementos dietéticos.

jppres_pdf_free
 
Citation Format: Mikhailichenko N, Lai TJ, Wei JC, Takahashi T, Takanari J, Goto K (2024) Evaluation of the beneficial effects of ETAS® on normal aging or mild cognitive impairment subjects: a pilot randomized controlled trial. J Pharm Pharmacogn Res 12(1): 154–165. https://doi.org/10.56499/jppres23.1742_12.1.154
References

Abbott A (2011) Dementia: A problem for our age. Nature 475: S2–S4 https://doi.org/10.1038/475S2a

American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders DSM-5, 5th ed. American Psychiatric Publishing: Arlington, VA, USA. https://doi.org/10.1176/appi.books.9780890425596

Bracco L, Piccini C, Amaducci L (1998) Rate of progression of mental decline in Alzheimer disease: summary of European studies. Alzheimer Dis Assoc Disord 12(4): 347–355. https://dx.doi.org/10.1097/00002093-199812000-00016

Chan YC, Wu CS, Wu TC, Lin YH, Chang SJ (2019) A standardized extract of Asparagus officinalis stem (ETAS®) ameliorates cognitive impairment, inhibits amyloid β deposition via BACE-1 and normalizes circadian rhythm signaling via MT1 and MT2. Nutrients 11(7): 1631. https://doi.org/10.3390/nu11071631

Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li, D, Reyderman L, Cohen S, Froelich L, Katayama S, Saddagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer L, Iwatsubo T (2023) Lecanemab in early Alzheimer’s disease. N Engl J Med 388: 9–21. https://dx.doi.org/10.1056/NEJMoa2212948

Hoshino T, Murao N, Namba T, Takehara M, Adachi H, Katsuno M, Sbue G, Matsushima T, Suzuki T, Mizushima T (2011) Suppression of Alzheimer's disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31(14): 5225–5234. https://dx.doi.org/10.1523/JNEUROSCI.5478-10.2011

Igarashi A, Ikeda S (2022) Value assessment of new interventions for Alzheimer’s disease dementia in Japan based on literature review and group interview. Expert Rev Pharmacoecon Outcomes Res 22: 1163–1170. https://dx.doi.org/10.1080/14737167.2022.2118113

Inoue S, Takanari J, Abe K, Nagayama A, Ikeya Y, Kohda N (2020) Isolation and structure determination of a heat shock protein inducer, asparagus-derived proline-containing 3-alkyldiketopiperazines (asparaprolines), from a standardized extract of Asparagus officinalis stem. Nat Prod Commun 15(3): 1–7. https://doi.org/10.1177/1934578X20914681

Ito T, Goto K, Takanari J, Miura T, Wakame K, Nishioka H, Tanaka A, Nishihira J (2014a) Effects of enzyme-treated asparagus extract on heat shock protein 70, stress indices, and sleep in healthy adult men. J Nutr Sci Vitaminol 60: 283–290. https://doi.org/10.3177/jnsv.60.283

Ito T, Ono T, Sato A, Goto K, Miura T, Wakame K, Nishioka H, Maeda T (2014b) Toxicological assessment of enzyme-treated asparagus extract in rat acute and subchronic oral toxicity studies and genotoxicity tests. Regul Toxicol Pharmacol 68(2): 240–249. https://dx.doi.org/10.1016/j.yrtph.2013.12.011

Kampinga HH, Craig EA (2010) The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11: 579–592. https://dx.doi.org/10.1038/nrm2941

Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48: 452–458. https://dx.doi.org/10.1038/bmt.2012.244

Koda T, Takanari J, Kitadate K, Imai H (2017) Enzyme-treated asparagus extract (ETAS) enhances memory in normal rats and induces neurite-outgrowth in PC12 cells. Nat Prod Commun 12(10): 1631–1633. https://doi.org/10.1177/1934578X1701201027

Larbi A, Pawelec G, Witkowski JM, Scipper HM, Derhovanessian E, Goldeck D, Fulop T (2009) Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer's disease. J Alzheimers Dis 17(1): 91–103. https://dx.doi.org/10.3233/JAD-2009-1015

Liu Y, Yu JT, Wang, HF, Han PR, Tan CC, Wand C, Meng XF, Risacher SL, Saykin AJ, Tan L (2015) APOE genotype and neuroimaging markers of Alzheimer's disease: Systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 86(2): 127–134. https://dx.doi.org/10.1136/jnnp-2014-307719

Magrané J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24(7): 1700–1706. https://dx.doi.org/10.1523/JNEUROSCI.4330-03.2004

Nakano S, Yamashita F, Matsuda H, Kodama C, Yamada T (2006) Relationship between delusions and regional cerebral blood flow in Alzheimer's disease. Dement Geriatr Cogn Disord 21(1): 16–21. https://dx.doi.org/10.1159/000089215

Parsey CM, Schmitter-Edgecombe M (2011) Quantitative and qualitative analyses of the clock drawing test in mild cognitive impairment and Alzheimer disease: evaluation of a modified scoring system. J Geriatr Psychiatry Neurol 24(2): 108–118. https://dx.doi.org/10.1177/0891988711402349

Pellicanò M, Larbi A, Goldeck D, Colonna-Ramano G, Buffa S, Bulati M, Rubino G, Lemolo F, Candore G, Caruso C, Derhovanessian E, Pawelec G (2012) Immune profiling of Alzheimer patients. J Neuroimmunol 242(1-2): 52–59. https://doi.org/10.1016/j.jneuroim.2011.11.005

Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3): 183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x

Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW (2010) Alzheimer’s disease neuroimaging initiative (ADNI). Clinical characterization. Neurology 74: 201–209. https://doi.org/10.1212/WNL.0b013e3181cb3e25

Rouleau I, Salmon DP, Butters N (1996) Longitudinal analysis of clock drawing in Alzheimer's disease patients. Brain Cogn 31(1): 17–34. https://dx.doi.org/10.1006/brcg.1996.0022

Sakurai T, Ito T, Wakame, K, Kitadate K, Arai T, Ogasawara J, Kizaki T, Sato S, Ishibashi Y, Fujiwara T, Akagawa K, Ishida H, Ohno H (2014) Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice. Nat Prod Commun 9(1): 101–106. https://doi.org/10.1177/1934578X1400900130

Selkoe DJ (2004) Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol 6: 1054–1061. http://dx.doi.org/10.1038/ncb1104-1054

Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8: 595–608. https://dx.doi.org/10.15252/emmm.201606210

Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537: 50–56. https://dx.doi.org/10.1038/nature19323

Shulman KI (2000) Clock-drawing: Is it the ideal cognitive screening test? Int J Geriatr Psychiatry 15(6): 548–561. https://dx.doi.org/10.1002/1099-1166(200006)15:6<548::aid-gps242>3.0.co;2-u

Steven AJ (2005) Sample size of 12 per group rule of thumb for a pilot study. Pharmaceut Statist 4: 287–291. https://doi.org/10.1002/pst.185

Sultzer DL, Brown CV, Mandelkern MA, Mahler ME, Mendez MF, Chen ST, Cummings JL (2003) Delusional thoughts and regional frontal/temporal cortex metabolism in Alzheimer's disease. Am J Psychiatry 160(2): 341–349. https://dx.doi.org/10.1176/appi.ajp.160.2.341

Tuokko H, Hadjistavropoulos T, Miller JA, Beattie BL (1992) The Clock Test: a sensitive measure to differentiate normal elderly from those with Alzheimer disease. J Am Geriatr Soc 40(6): 579–584. https://dx.doi.org/10.1111/j.1532-5415.1992.tb02106.x

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio