Epidermal growth factor receptor mutant inhibitors as NSCLC drugs

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 881-891, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1740_12.5.881 Original Article Epidermal growth factor receptor mutant T790M-L858R-V948R inhibitor from Calophyllum inophyllum L. leaf as potential non-small cell lung cancer drugs [Inhibidor del receptor del factor de crecimiento epidérmico mutante T790M-L858R-V948R de la hoja de Calophyllum inophyllum L. como posible fármaco … Continue reading Epidermal growth factor receptor mutant inhibitors as NSCLC drugs

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 881-891, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1740_12.5.881

Original Article

Epidermal growth factor receptor mutant T790M-L858R-V948R inhibitor from Calophyllum inophyllum L. leaf as potential non-small cell lung cancer drugs

[Inhibidor del receptor del factor de crecimiento epidérmico mutante T790M-L858R-V948R de la hoja de Calophyllum inophyllum L. como posible fármaco contra el cáncer de pulmón de células no pequeñas]

Precella Silvia, Jeremi Ongko, Yulanda Antonius*

Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya 60293, Indonesia.

*E-mail: yulandaantonius@staff.ubaya.ac.id

Abstract

Context: Non-Small Cell Lung Cancer (NSCLC) is the most common lung cancer type, with 80-85% prevalence. Usually, NSCLC is treated by chemotherapy and radiotherapy in collaboration with gefitinib or other anticancer drugs. Those treatments have many adverse effects, such as shortness of breath, bleeding, fever, hair loss, and radiation pneumonitis. Lack of treatment options and numerous mutations greatly contribute to lung cancer's shocking death toll. Therefore, potential EGFR mutant inhibitors need to be analyzed.

Aims: To identify potential inhibitors of an epidermal growth factor receptor (EGFR) mutant derived from Calophyllum inophyllum L. leaf using an in silico approach.

Methods: In silico analysis and literature study were carried out. Secondary metabolite compounds from C. inophyllum were obtained through the PubChem database, and their biological activity and ADMET were analyzed. Molecular docking with EGFR wild-type (5FED) and mutant (5HG7) was carried out using PyRx. Furthermore, amino acid residues were analyzed using Discovery Studio.

Results: Based on overall screening and molecular docking, a non-toxic compound with a low binding affinity with EGFR mutant protein is 4-[2-(4-nitrophenyl)ethylcarbamoyl]benzenesulfonyl. Moreover, interactions and hydrogen bonds at Ala743, Gly796, Leu718, Phe856, Leu844, and Val726 are known to play a crucial role in ATP binding inhibition toward the tyrosine kinase domain, resulting in EGFR mutant inhibition.

Conclusions: 4-[2-(4-nitrophenyl)ethylcarbamoyl]benzenesulfonyl is one of the potential candidates as an EGFR mutant protein by ATP binding inhibition. However, in vitro and in vivo research needs to be performed to confirm these results.

Keywords: anticancer drug; lung cancer; NSCLC; secondary metabolites; virtual screening.

PDF Download

Resumen

Contexto: El cáncer de pulmón no microcítico (CPNM) es el tipo de cáncer de pulmón más frecuente, con una prevalencia del 80-85%. Por lo general, el CPNM se trata mediante quimioterapia y radioterapia en colaboración con gefitinib u otros medicamentos contra el cáncer. Esos tratamientos tienen muchos efectos adversos, como dificultad para respirar, hemorragias, fiebre, caída del cabello y neumonitis por radiación. La falta de opciones de tratamiento y las numerosas mutaciones contribuyen en gran medida a que el cáncer de pulmón se cobre un número de víctimas alarmante. Por lo tanto, es necesario analizar los posibles inhibidores mutantes del EGFR.

Objetivos: Identificar inhibidores potenciales del receptor del factor de crecimiento epidérmico (EGFR) mutante derivado de la hoja de Calophyllum inophyllum L. mediante un enfoque in silico.

Métodos: Se llevó a cabo un análisis in silico y un estudio bibliográfico. Los compuestos de metabolitos secundarios de C. inophyllum se obtuvieron a través de la base de datos PubChem, y se analizó su actividad biológica y ADMET. El acoplamiento molecular con el EGFR de tipo salvaje (5FED) y mutante (5HG7) se llevó a cabo utilizando PyRx. Además, se analizaron los residuos de aminoácidos con Discovery Studio.

Resultados: Basándose en el cribado general y el acoplamiento molecular, un compuesto no tóxico con una baja afinidad de unión con la proteína mutante EGFR es 4-[2-(4-nitrofenil)etilcarbamoil]bencenosulfonil. Además, se sabe que las interacciones y los enlaces de hidrógeno en Ala743, Gly796, Leu718, Phe856, Leu844 y Val726 desempeñan un papel crucial en la inhibición de la unión del ATP hacia el dominio tirosina cinasa, lo que resulta en la inhibición del mutante EGFR.

Conclusiones: El 4-[2-(4-nitrofenil)etilcarbamoil]bencenosulfonil es uno de los candidatos potenciales como proteína mutante del EGFR por inhibición de la unión al ATP. Sin embargo, es necesario realizar investigaciones in vitro e in vivo para confirmar estos resultados.

Palabras Clave: cáncer de pulmón; CPNM; cribado virtual; fármaco anticanceroso; metabolitos secundarios.

PDF Download
 
Citation Format: Silvia P, Ongko J, Antonius Y (2024) Epidermal growth factor receptor mutant T790M-L858R-V948R inhibitor from Calophyllum inophyllum L. leaf as potential non-small cell lung cancer drugs. J Pharm Pharmacogn Res 12(5): 881–891. https://doi.org/10.56499/jppres23.1740_12.5.881
References

Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM (2021) Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules 26(21): 6677. https://doi.org/10.3390/molecules26216677

Aini NS, Ansori ANM, Kharisma VD, Murtadlo AAA, Tamam MB, Sucipto TH, Jakhmola V, Rebezov M, Saklani T, & Zainul R (2023) An in silico study: Phytochemical compounds screening of Garcinia atroviridis Griff. ex T. Anders as anti-DENV. J Pure Appl Microbiol 17: 2467–2478. https://doi.org/10.22207/JPAM.17.4.45

Al-Sahlawi F, Al-Ani I, El-Tanani M, Farooq HA (2024) Preparation and evaluation of biological activity of ZSM-5 nanoparticles loaded with gefitinib for the treatment of non-small cell lung carcinoma. Pharmacia 71: 1–12. https://doi.org/10.3897/pharmacia.71.e112449

Amelia T, Kartasasmita RE, Ohwada T, Tjahjono DH (2022) Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules 27: 819. https://doi.org/10.3390/molecules27030819

Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: A Webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(1): 257–263. https://doi.org/10.1093/nar/gky318

Bareschino MA, Schettino C, Rossi A, Maione P, Sacco PC, Zeppa R, Gridelli C (2011) Treatment of advanced non small cell lung cancer. J Thorac Dis 3(2): 122–133. https://doi.org/10.3978/j.issn.2072-1439.2010.12.08

Cersosimo RJ (2006) Gefitinib: An adverse effects profile. Expert Opin Drug Saf 5(3): 469–479. https://doi.org/10.1517/14740338.5.3.469

Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC (2016) Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev 96(3): 1025–1069. https://doi.org/10.1152/physrev.00030.2015

Cheng H, Nair SK, Murray BW, Almaden C, Bailey S, Baxi S, Behenna D, Schultz SC, Dalvie D, Dinh DM, Edwards MP, Feng JL, Ferre RA, Gajiwala KS, Hemkens MD, Fisher AJ, Jalaie M, Johnson TO, Kania RS, Kephart S, Lafontaine J, Lunney B, Liu KKC, Liu Z, Matthews J, Nagata A, Niessen S, Ornelas MA, Orr  STM, Pairish M, Planken S, Ren S, Richter D, Ryan K, Sach N, Shen H, Smeal, Solowiej J, Sutton S, Tran K, Tseng E, Vernier W, Walls M, Wang S, Weinrich SL, Xin S, Xu H, Yin MJ, Zientek M, Zhou R, Kath JC (2016) Discovery of1‐{(3R,4R)‐3-[({5-Chloro-2-[(1-methyl‐1H‐pyrazol-4-yl)amino]‐7H‐pyrrolo[2,3‐d]pyrimidin-4-yl}oxy)methyl]-4-methoxypyrrolidin-1-yl}prop-2-en-1-one (PF-06459988), a potent, WT sparing, irreversible inhibitor of T790M-containing EGFR mutants. J Med Chem 59: 2005–2024. https://doi.org/10.1021/acs.jmedchem.5b01633

Choy YB, Prausnitz M R (2011) The Rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm Res 28: 943–948. https://doi.org/10.1007/s11095-010-0292-6

Daina A, Michielin O, and Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friencliness of small molecules. Sci Rep 7: 42717. https://doi.org/10.1038/srep42717

Dallakyan S, Olson AJ (2015) Small-Molecule Library Screening by Docking with PyRx. In: Hempel J, Williams C, Hong C (eds). Chemical Biology. Methods in Molecular Biology, vol 1263. New York, NY: Humana Press. https://doi.org/10.1007/978-1-4939-2269-7_19

Deshmukh MM, Gadre SR (2009) Estimation of N-H⋯O=C intramolecular hydrogen bond energy in polypeptides. J Phys Chem 113(27): 7927–7932. https://doi.org/10.1021/jp9031207

Emilda (2019) Nyamplung (Calophyllum inophyllum Linn) and its bioactivities. SIMBIOSA 8(2): 136–147. https://doi.org/10.33373/sim-bio.v8i2.2000

Fadhillah MA, Irianti R, Mahrudin (2023) Etnobotani nyamplung (Calophyllum inophyllum) di desa pagatan besar kabupaten tanah laut. BIOMA 5(1): 89–104. https://doi.org/10.31605/bioma.v5i1.2512

Giménez BG, Santos MS, Ferrarini M, Fernandes JPS (2010) Evaluation of blockbuster drugs under the Rule-of- five. Pharmazie 65(2): 148-152. https://doi.org/10.1691/ph.2010.9733

Haryati H, Mayasari AP (2020) Immune-checkpoint inhibitor treatment of non-small cell lung cancer patients. J Resp 6(1): 21–26. https://doi.org/10.20473/jr.v6-I.1.2020.21-26

Hor YZ, Salvamani S, Gunasekaran B, Yian KR (2023) CRNDE: A pivotal oncogenic long non-coding RNA in cancers. Yale J Biol Med 96(4): 511–526. https://doi.org/10.59249/VHYE2306

Hsieh C, Lin YW, Chen CH, Ku W, Ma F, Yu H, Chu C (2018) Yellow and green pigment from Calophyllum inophyllum L. seed oil induce cell death in colon and lung cancer cells. Oncol Lett 15(4): 5915–5923. https://doi.org/10.3892/ol.2018.8052

Jacek K, Hanna P, Anna M, Beata D, Bernard MK (2012) The log P parameter as a molecular descriptor in the computer-aided drug design – An overview. CMST 18(2): 81–88. https://doi.org/10.12921/cmst.2012.18.02.81-88

Jagannathan R (2019) Characterization of drug-like chemical space for cytotoxic marine metabolites using multivariate methods. ACS Omega 4: 5402–5411. https://doi.org/10.1021/acsomega.8b01764

Joanna B, Remko M, Breza M, Madura I, Kaczmarek K, Zabroki J, Wolf W (2020) A supramolecular approach to structure-based design with a focus on synthons hierarchy in ornithine-derived ligands: Review, synthesis, experimental and in silico studies. Molecules 25(5): 1135. https://doi.org/10.3390/molecules25051135

Kharisma VD, Agatha A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Kharisma VD, Ansori ANM, Antonius Y, Rosadi I, Murtadlo AAA, Jakhmola V, Rebezov M, Maksimiuk N, Kolesnik E, Burkov P, Derkho M, Scherbakov P, Ullah ME, Sucipto TH, Purnobasuki H (2023) Garcinoxanthones from Garcinia mangostana L. against SARS-CoV-2 infection and cytokine storm pathway inhibition: A viroinformatics study. J Pharm Pharmacogn Res 11(5): 743–756. https://doi.org/10.56499/jppres23.1650_11.5.743

Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: Prediction of activity spectra for biologically active substances. Bioinform 16: 747–748. https://doi.org/10.1093/bioinformatics/16.8.747

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3): 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

Lipinski CA (2004) Lead-and-drug-like compounds: the rule-of-five revolution. Drug Discov Today 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Luthfiana D, Soleha M, Prasetiyo A, Kusuma WA, Fatriani R, Nurfadhila L, Yunitasari N, Ahkam AH, Wargasetia TL, Irfandi R, Ansori ANM, Kharisma VD, Naw SW, Ullah E, Jakhmola V, Zainul R (2023) Network pharmacology and molecular docking study to reveal the potential anticancer activity of oscillatoxin D, E, and F marine cytotoxins. Food Syst 6(3): 365–389. https://doi.org/10.21323/2618-9771-2023-6-3-365-389

Matsson P, Kihlberg J (2017) How big is too big for cell permeability? J Med Chem 60: 1662–1664. https://doi.org/10.1021/acs.jmedchem.7b00237

Metro G, Crino L (2012) Advances on EGFR mutation for lung cancer. Transl Lung Cancer Res 1(1): 5–13. https://doi.org/10.3978/j.issn.2218-6751.2011.12.01

Nand M, Maiti P, Chandra S, Pande V (2016) In silico identification of novel EGFR tyrosine kinase inhibitors associated with non-small cell lung cancer from phytochemical library. Int Res J Pharm 7(3): 22–25. https://doi.org/10.7897/2230-8407.07323

Nusantoro YR, Fadlan A (2020) Analysis of drug-like properties, ADMET prediction, and molecular bonding of isatinyl-2-aminobenzoylhydrazone and transition metal complexes Co(II), Ni(II), Cu(II), Zn(II) against BCL2-XL (Analisis sifat mirip obat, prediksi ADMET, dan penambatan molekular isatinil-2-aminobenzoilhidrazon dan kompleks logam transisi Co(II), Ni(II), Cu(II), Zn(II) terhadap BCL2-XL). Indones Chim Acta 5: 114. https://doi.org/10.12962/j25493736.v5i2.7881

Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3): 73. https://doi.org/10.1371/journal.pmed.0020073

Periyasamy S, Jaikumar K, Mohamed SN, Wyson J, Deventhiran M, Babu A, Anand D (2017) In silico docking analysis of bioactive compounds from C. inophyllum L. ethanol leaf extract against EGFR protein. Asian J Pharm Clin Res 10(8): 214. https://doi.org/10.22159/ajpcr.2017.v10i8.18972

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem 25(13): 1605–1612. https://doi.org/10.1002/jcc.20084

Pratama MRF (2015) In silico study of secondary metabolites from Brucea javanica as EGFR mutant T790M-L858R-V948R inhibitor (Studi in silico metabolit sekunder Brucea javanica sebagai inhibitor EGFR mutan T790M-L858R-V948R). Prosiding Seminar Nasional Kefarmasian (Hotel Aria Barito, Banjarmasin, Indonesia, 8 October).

Saputri KE, Fakhmi N, Kusumaningtyas E, Priyatama D, Santoso B (2016) Molecular docking potential of antidiabetic type 2 from zerumbon derivatives as aldose redictase inhibitor with Autodock-Vina (Docking molekular potensi anti diabetes melitus tipe 2 turunan zerumbon sebagai inhibitor aldosa reduktase dengan Autodock-Vina). Chim Nat Acta 4(1): 16–20.

Sembiring YE, Effendi WI, Dillon JJ, Soebroto H, Winarno DJS, Puruhito P, Putra IGAMA, Sebayang ANO, Negoro SPWB (2023) Lung cancer: A literature review. J Resp 9(3): 246–251. https://doi.org/10.20473/jr.v9-I.3.2023.246-251

Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC (2023) Precision medicine in nasopharyngeal carcinoma: Comprehensive review of past, present, and future prospect. J Transl Med 21(1): 786. https://doi.org/10.1186/s12967-023-04673-8

Suhargo L, Winarni D, Fatimah, Kharisma VD, Ansori ANM (2023) Antidiabetic activity of daun wungu (Graptophyllum pictum L. Griff) extract via inhibition mechanism of TNF-α, IL-6, and IL-8: Molecular docking and dynamic study. Res J Pharm Technol 16(5): 2291–2296. https://doi.org/10.52711/0974-360X.2023.00376

Tungary E, Ongko J, Sukweenadhi J, Antonius Y (2022) Molecular docking of active compounds from traditional medicinal plants as ACE-2 protein (1R4L) inhibitor in searching for COVID-19 drug. Res J Pharm Technol 15(9): 4235-0. https://doi.org/10.52711/0974-360X.2022.00712

Wang J, Wu Y, Dong M, H, He X, Wang Z, Li J, Wang Y (2021) Observation of hepatotoxicity during long-term gefitinib administration in patients with non-small cell lung cancer. Anticancer Drugs 27(3): 245–250. https://doi.org/10.1097/CAD.0000000000000323

WHO (2022) World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer [Consulted July 11, 2023].

Widyananda MH, Kurniasari CA, Alam FM, Rizky WC, Dings TGA, Ansori ANM, Antonius Y (2023b) Exploration of potentially bioactive compounds from fingerroot (Boesenbergia rotunda L.) as inhibitor of atherosclerosis-related proteins (CETP, ACAT1, OSC, sPLA2): An in silico study. Jordan J Pharm Sci 16(3): 550–564.  https://doi.org/10.35516/jjps.v16i3.1609

Widyananda MH, Pratama SK, Ansori ANM, Antonius Y, Kharisma VD, Murtadlo AAA, Jakhmola V, Rebezov M, Khayrullin M, Derkho M, Ullah ME, Susilo RJK, Hayaza S, Nugraha AP, Proboningrat A, Fadholly A, Sibero MT, Zainul R (2023a) Quercetin as an anticancer candidate for glioblastoma multiforme by targeting AKT1, MMP9, ABCB1, and VEGFA: An in silico study. Karbala Int J Mod Sci 9(3): 450–459. https://doi.org/10.33640/2405-609X.3312

Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Antonius Y (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res 9(4): 484–496. https://doi.org/10.56499/jppres21.1047_9.4.484

Zubair T, Bandyopadhyay D (2023) Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities. Int J Mol Sci 24(3): 2651. https://doi.org/10.3390/ijms24032651

© 2024 Journal of Pharmacy & Pharmacognosy Research

Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 972-993, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres24.1956_12.5.972 Original Article Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions [Efecto antiinflamatorio de la mezcla de extracto de Ageratum conyzoides L. e hidrolizados de membrana de cáscara de huevo, … Continue reading Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation
SS-31 for diabetic nephropathy
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 956-971, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1904_12.5.956 Review SS-31 protects diabetic nephropathy progression: A systematic review of in vivo and in vitro studies [El SS-31 protege la progresión de la nefropatía diabética: Una revisión sistemática de estudios in vivo e in vitro] Jonathan Christianto Sutadji1#, Dian Anggraini Permatasari … Continue reading SS-31 for diabetic nephropathy
Hypertension knowledge and its associated factors in primary care
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 943-955, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres24.1955_12.5.943 Original Article Hypertension knowledge and its associated factors among hypertensive patients in primary care settings in Central Vietnam: A cross-sectional study [Conocimiento de la hipertensión y sus factores asociados entre pacientes hipertensos en entornos de atención primaria en el centro de … Continue reading Hypertension knowledge and its associated factors in primary care

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio