In silico and in vitro neuroprotective flavonoids for Alzheimer


J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 204-217, Mar-Apr 2024. DOI: Original Article Uncovering potential neuroprotective flavonoids for Alzheimer's disease using cutting-edge molecular simulation and in vitro SHSY-5Y analysis [Descubrimiento de posibles flavonoides neuroprotectores para la enfermedad de Alzheimer mediante simulación molecular de vanguardia y análisis SHSY-5Y in vitro] Fadilah Fadilah1,3*, Immanuelle … Continue reading In silico and in vitro neuroprotective flavonoids for Alzheimer

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 204-217, Mar-Apr 2024.


Original Article

Uncovering potential neuroprotective flavonoids for Alzheimer's disease using cutting-edge molecular simulation and in vitro SHSY-5Y analysis

[Descubrimiento de posibles flavonoides neuroprotectores para la enfermedad de Alzheimer mediante simulación molecular de vanguardia y análisis SHSY-5Y in vitro]

Fadilah Fadilah1,3*, Immanuelle Kezia2, Linda Erlina1,3

1Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

2Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

3Bioinformatics Core Facilities, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.



Context: Alzheimer's disease (AD) is a debilitating neurodegenerative condition primarily afflicting the elderly, causing a progressive decline in cognitive function. It is marked by the presence of beta-amyloid protein plaques that trigger inflammation and neuronal death. Unfortunately, effective treatments for Alzheimer's remain elusive. One promising approach involves targeting the mitochondrial cascade to shield neurons from inflammation-induced cell death, and flavonoids have been identified for their potential neuroprotective properties.

Aims: To investigate the most potential bioactive compound that has neuroprotective effects, especially for Alzheimer's, through molecular simulation and in vitro studies.

Methods: The study employed molecular simulations to identify apigenin as a potential neuroprotective compound. Quercetin and donepezil were selected as control compounds. The MTT assay was conducted to evaluate the neuroprotective activity of apigenin, quercetin, and donepezil on the SHSY5Y cell line induced by beta-amyloid protein.

Results: The MTT assay demonstrated the neuroprotective activity of apigenin and reference compounds quercetin and donepezil against beta-amyloid-induced damage in the SHSY5Y cell line.

Conclusions: These findings suggest that apigenin could hold promise as a neuroprotective treatment for AD. However, further research is essential to elucidate its mechanism of action and evaluate its efficacy in more complex organisms. This study underscores the crucial role of bioinformatics tools and experimental validation in the quest for potential neuroprotective compounds for the treatment of AD.

Keywords: Alzheimer; bioinformatics; flavonoid; neuroprotective; SHSY-5Y cell line.



Contexto: La enfermedad de Alzheimer (EA) es una patología neurodegenerativa debilitante que afecta principalmente a las personas mayores y provoca un deterioro progresivo de la función cognitiva. Se caracteriza por la presencia de placas de proteína beta-amiloide que desencadenan inflamación y muerte neuronal. Por desgracia, los tratamientos eficaces siguen siendo difíciles de encontrar. Un enfoque prometedor implica dirigirse a la cascada mitocondrial para proteger a las neuronas de la muerte celular inducida por la inflamación, y se han identificado flavonoides por sus potenciales propiedades neuroprotectoras.

Objetivos: Investigar mediante simulación molecular y estudios in vitro el compuesto bioactivo con mayor potencial neuroprotector, especialmente para la enfermedad de Alzheimer.

Métodos: El estudio empleó simulaciones moleculares para identificar la apigenina como compuesto neuroprotector potencial. La quercetina y el donepezilo se seleccionaron como compuestos de control. Se realizó el ensayo MTT para evaluar la actividad neuroprotectora de la apigenina, la quercetina y el donepezilo en la línea celular SHSY5Y inducida por la proteína beta-amiloide.

Resultados: El ensayo MTT demostró la actividad neuroprotectora de la apigenina y de los compuestos de referencia quercetina y donepezilo frente al daño inducido por beta-amiloide en la línea celular SHSY5Y.

Conclusiones: Estos resultados sugieren que la apigenina podría ser prometedora como tratamiento neuroprotector para la EA. Sin embargo, es esencial seguir investigando para dilucidar su mecanismo de acción y evaluar su eficacia en organismos más complejos. Este estudio subraya el papel crucial de las herramientas bioinformáticas y la validación experimental en la búsqueda de potenciales compuestos neuroprotectores para el tratamiento de la EA.

Palabras Clave: Alzheimer; bioinformática; flavonoide; línea celular SHSY-5Y; neuroprotector.



Citation Format: Fadilah F, Kezia I, Erlina L (2024) Uncovering potential neuroprotective flavonoids for Alzheimer's disease using cutting-edge molecular simulation and in vitro SHSY-5Y analysis. J Pharm Pharmacogn Res 12(2): 204–217.

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2: 19–25.

Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer's disease. Mol Neurobiol 55(7): 6076–6093.

Amat -Ur-rasool H, Ahmed M, Hasnain S, Carter WG (2021) Anti-cholinesterase combination drug therapy as a potential treatment for Alzheimer's disease. Brain Sci 11(2): 184.

Arslan ME, Türkez H, Mardinoğlu A (2021) In vitro neuroprotective effects of farnesene sesquiterpene on Alzheimer's disease model of differentiated neuroblastoma cell line. Int J Neurosci 131(8): 745–754.

Arwansyah A, Arif AR, Ramli I, Hasrianti H, Kurniawan I, Ambarsari L, Sumaryada TI, Taiyeb M (2022) Investigation of active compounds of Brucea javanica in treating hypertension using a network pharmacology‐based analysis combined with homology modeling, molecular docking and molecular dynamics simulation. ChemestrySelect 7(!): e202102801.

Atri A (2019) The Alzheimer's disease clinical spectrum: Diagnosis and management. Med Clin North Am 103(2): 263–293.

Azminah A, Erlina L, Radji M, Mun'im A, Syahdi RR, Yanuar A (2019) In silico and in vitro identification of candidate SIRT1 activators from Indonesian medicinal plants compounds database. Computat Biol Chem 83: 107096.

Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20(11): 2783.

Bogetti-Salazar M, González-González C, Juárez-Cedillo T, Sánchez-García S, Rosas-Carrasco O (2016) Severe potential drug-drug interactions in older adults with dementia and associated factors. Clinics (Sao Paulo, Brazil) 71(1): 17–21.

Brandt RB, Laux JE, Yates SW (1987) Calculation of inhibitor Ki and inhibitor type from the concentration of inhibitor for 50% inhibition for Michaelis-Menten enzymes. Biochem Med Metab Biol 37(3): 344–349.

Budiarti M, Maruzy A, Mujahid R, Sari AN, Jokopriyambodo W, Widayat T, Wahyono S (2020) The use of antimalarial plants as traditional treatment in Papua Island, Indonesia. Heliyon 6(12): e05562.

Carmona V, Martín-Aragón S, Goldberg J, Schubert D, Bermejo-Bescós P (2020) Several targets involved in Alzheimer's disease amyloidogenesis are affected by morin and isoquercitrin. Nutr Neurosci 23(8): 575–590.

Castillo WO, Palomino NV, Takahashi CS, Giuliatti S (2020) Genistein and galantamine combinations decrease β-amyloid peptide (1–42)–induced genotoxicity and cell death in SH-SY5Y cell line: an in vitro and in silico approach for mimic of Alzheimer's disease. Neurotox Res 38(3): 691–706.

Centers for Disease Control and Prevention (2018) What is Alzheimer's Disease? | CDC.

Chi H, Chang HY, Sang TK (2018) Neuronal cell death mechanisms in major neurodegenerative diseases. Int J Mol Sci 19(10): 3082.

Cummings J, Feldman HH, Scheltens P (2019a) The “rights” of precision drug development for Alzheimer's disease. Alz Res Therapy 11: 76.

Cummings JL, Tong G, Ballard C (2019b) Treatment combinations for Alzheimer's disease: Current and future pharmacotherapy options. J Alzheimer Dis 67(3): 779–794.

Das A, Banik NL, Ray SK (2006) Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer 119(11): 2575–2585.

Dhapola R, Sarma P, Medhi B, Prakash A, Reddy DH (2022) Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer's disease. Mol Neurobiol 59(1): 535–555.

Dourado NS, Souza CDS, de Almeida MMA, Bispo da Silva A, Dos Santos BL, Silva VDA, De Assis AM, da Silva JS, Souza DO, Costa MFD, Butt AM, Costa SL (2020) Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer's disease. Front Aging Neurosci 12: 119.

Erlina L, Paramita RI, Kusuma WA, Fadilah F, Tedjo A, Pratomo IP, Ramadhanti NS, Nasution AK, Surado FK, Fitriawan A, Istiadi KA, Yanuar A (2022). Virtual screening on Indonesian herbal compounds as COVID-19 supportive therapy: Machine learning and pharmacophore modeling approaches. BMC Complement Med Ther 22(1): 207.

Gregory J, Vengalasetti YV, Bredesen DE, Rao RV (2021) Neuroprotective herbs for the management of Alzheimer's disease. Biomolecules 11(4): 543.

Jabir NR, Rehman MT, Alsolami K, Shakil S, Zughaibi TA, Alserihi RF, Khan MS, AlAjmi MF, Tabrez S (2021) Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: In pursuit of Alzheimer's treatment. Annals of Medicine 53(1): 2332–2344.

Jiang Y, Li S, Xie X, Li H, Huang P, Li B, Huo L, Zhong J, Li Y, Xia X (2021) Exploring the mechanism of Panax notoginseng saponins against Alzheimer's disease by network pharmacology and experimental validation. Evid Based Complement Alternat Med 2021: 5730812.

Jones QRD, Warford J, Rupasinghe HPV, Robertson GS (2012) Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci 33(11): P602–610.

Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, Masutani H, Yodoi J, Urano Y, Nagano T, Ichijo H (2005) Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death and Differ 12(1): 19–24.

Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK (2020) Neuroprotective effects of quercetin in Alzheimer's disease. Biomolecules 10(1): 59.

Kim A, Lee CS (2018) Apigenin reduces the Toll-like receptor-4-dependent activation of NF-κB by suppressing the Akt, mTOR, JNK, and p38-MAPK. Naunyn-Schmiedeberg's Arch Pharmacol 391(3): 271–283.

Kozlov S, Afonin A, Evsyukov I, Bondarenko A (2017) Alzheimer's disease: As it was in the beginning. Rev Neurosci 28(8): 825–843.

Lemkul J (2019) From proteins to perturbed hamiltonians: A Suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living J Comp Mol Sci 1(1): 5068.

Li H, Sun X, Yu F, Xu L, Miu J, Xiao P (2018) In silico investigation of the pharmacological mechanisms of beneficial effects of Ginkgo biloba L. on Alzheimer's disease. Nutrients 10(5): 589.

Li J, Sun M, Cui X, Li C (2022) Protective effects of flavonoids against Alzheimer's disease: Pathological hypothesis, potential targets, and structure–activity relationship. Int J Mol Sci 23(17): 10020.

Liu J, Chang L, Song Y, Li H, Wu Y (2019) The role of NMDA receptors in Alzheimer's disease. Front Neurosci 13: 43.

Malhotra RK (2018) Neurodegenerative disorders and sleep. Sleep Med Clin 13(1): P63–70.

Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H (2018) In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int J Biol Macromol 118: 1211–1219.

Prasasty VD, Istyastono EP (2020) Structure-based design and molecular dynamics simulations of pentapeptide aeytr as a potential acetylcholinesterase inhibitor. Indonesian J Chem 20(4): 953–959.

Rehfeldt SCH, Silva J, Alves C, Pinteus S, Pedrosa R, Laufer S, Goettert MI (2022) Neuroprotective effect of luteolin-7-O-glucoside against 6-OHDA-induced damage in undifferentiated and RA-differentiated SH-SY5Y cells. Int J Mol Sci 23(6): 2914.

Rifaai RA, Mokhemer SA, Saber EA, El-Aleem SAA, El-Tahawy NFG (2020) Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in Alzheimer's disease. J Chem Neuroanat 107: 101795.

Ruangritchankul S, Peel NM, Hanjani LS, Gray LC (2020) Drug related problems in older adults living with dementia. PloS One 15(7): e0236830.

Sehar U, Rawat P, Reddy AP, Kopel J, Reddy PH (2022) Amyloid beta in aging and Alzheimer's disease. Int J Mol Sci 23(21): 12924.

Sharma VK, Singh TG, Singh S, Garg N, Dhiman S (2021) Apoptotic pathways and Alzheimer's disease: Probing therapeutic potential. Neurochem Res 46(12): 3103–3122.

Shen L, Liu L, Ji HF (2017) Alzheimer's disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimer Dis 56(1): 385–390.

Sinsky J, Pichlerova K, Hanes J (2021) Tau protein interaction partners and their roles in Alzheimer's disease and other Tauopathies. Int J Mol Sci 22(17): 9207.

Song Z, He C, Yu W, Yang M, Li Z, Li P, Zhu X, Xiao C, Cheng S (2022) Baicalin attenuated a β 1-42-induced apoptosis in SH-SY5Y cells by inhibiting the Ras-ERK signaling pathway. BioMed Res Int 2022: 9491755.

Strother L, Miles GB, Holiday AR, Cheng Y, Doherty GH (2021) Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing. J Neurosci Methods 362: 109301.

Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer's disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 14: 5541–5554.

Wang G, Zhu W (2016) Molecular docking for drug discovery and development: A widely used approach but far from perfect. Future Med Chem 8(14): 1707–1710.

Weller J, Budson A (2018) Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res 7: 1161.

Widyowati R, Agil M (2018) Chemical constituents and bioactivities of several Indonesian plants typically used in jamu. Chem Pharm Bull 66(5): 506–518.

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10(5): 766–788.

Xie X, Shu R, Yu C, Fu Z, Li Z (2022) Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis 13(1): 157–174.

Yang JF, Wang F, Chen YZ, Hao GF, Yang GF (2020) LARMD: Integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Brief Bioinform 21(6): 2206–2218.

You JS, Li CY, Chen W, Wu XL, Huang LJ, Li RK, Gao F, Zhang MY, Liu HL, Qu WL (2020) A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao. BioData Min 13: 2.

Yue J, López JM (2020) Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 21(7): 2346.

Zhang Y (2013) Caspases in Alzheimer's Disease. In: Neurodegenerative Diseases. Kishore U ed. IntechOpen.

Zu G, Sun K, Li L, Zu X, Han T, Huang H (2021) Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Sci Rep 11: 22959.

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio