In silico anti-HIV of phenolics from Pluchea indica

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 701-721, Jul-Aug 2024. DOI: https://doi.org/10.56499/jppres23.1896_12.4.701 Original Article A computational approach to evaluate caffeoylquinic acids and flavonoids in Pluchea indica Less. leaves as potential anti-HIV agents [Un enfoque computacional para evaluar los ácidos cafeoilquínicos y los flavonoides de las hojas de Pluchea indica Less. como posibles agentes … Continue reading In silico anti-HIV of phenolics from Pluchea indica

J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 701-721, Jul-Aug 2024.

DOI: https://doi.org/10.56499/jppres23.1896_12.4.701

Original Article

A computational approach to evaluate caffeoylquinic acids and flavonoids in Pluchea indica Less. leaves as potential anti-HIV agents

[Un enfoque computacional para evaluar los ácidos cafeoilquínicos y los flavonoides de las hojas de Pluchea indica Less. como posibles agentes contra el VIH]

Ni Putu Ermi Hikmawanti1,2,8, Fadlina Chany Saputri3,8, Arry Yanuar4,8, Ibrahim Jantan5, Yeni Yeni6, Abdul Mun’im7,8*

1Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok, 16424, West Java, Indonesia.

2Department of Pharmaceutical Biology, Faculty of Pharmacy and Sciences, Universitas Muhammadiyah Prof. DR. HAMKA, East Jakarta, 13460, DKI Jakarta, Indonesia.

3Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia.

4Department of Biomedical Computation-Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia.

5Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia.

6Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Sciences, Universitas Muhammadiyah Prof. DR. HAMKA, East Jakarta, 13460, DKI Jakarta, Indonesia.

7Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok, 16424, West Java, Indonesia.

8National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia.

*E-mail: munim@farmasi.ui.ac.id

Abstract

Context: The attachment of human immunodeficiency virus type 1 glycoprotein 120 (HIV-1 gp120) to the CD4 receptor of human immune cells is the beginning of HIV-1 infection. Stimulation of reactive oxygen species (ROS) production through upregulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX-2) and -4 (NOX-4), and cytochrome P450 2E1 (CYP2E1) of the virus can be a potential target for anti-HIV agents.

Aims: To evaluate the inhibitory effects of caffeoylquinic acids (CQAs) and flavonoids of Pluchea indica leaves against the binding of HIV-1 gp120 with CD4 receptor and their antioxidant activities via interactions with NOX-2, NOX-4, and CYP2E1 through in silico study.

Methods: Ten CQAs and nine flavonoids of P. indica were docked to the 3TGS (gp120 HIV-1), 2CDU (NOX-2), 3A1F (NOX-4), and 3T3Z (CYP2E1) receptors using the AutoDockTools 1.5.7. Physicochemical and pharmacokinetics properties were predicted using the pkCSM online tool, while toxicity was predicted using the ProTox-II webserver.

Results: Mostly, all of the CQAs and flavonoids were able to bind to all receptors. 3,4-Di-O-caffeoylquinic acid has the lowest binding energy (-8.79 kcal/mol) against 3TGS (gp120). 5-O-Caffeoylquinic acid and apigenin have great potential as antioxidants due to their good binding with NOX-2 and CYP2E1. However, CQAs might have ADME problems. Most test compounds did not cause hepatotoxicity, carcinogenicity, or mutagenicity. All test compounds have no cytotoxic potential. However, all CQAs have the potential to be immunotoxins.

Conclusions: The findings indicated that 3,4-di-O-caffeylquinic acid could be a potential inhibitor of HIV-1 gp120-CD4 binding, while 5-O-caffeoylquinic acid and apigenin demonstrated strong antioxidant activities via NOX-2 and CYP2E1 inhibition. However, in-depth studies, including experimental in vitro and in vivo studies, are required to validate the anti-HIV activity of the compounds further.

Keywords: antiviral; in silico; molecular docking; phenolics; Pluchea indica.

PDF Download

Resumen

Contexto: La unión de la glicoproteína 120 del virus de la inmunodeficiencia humana tipo 1 (VIH-1 gp120) al receptor CD4 de las células inmunitarias humanas es el inicio de la infección por VIH-1. La estimulación de la producción de especies reactivas de oxígeno (ROS) a través de la regulación al alza de la nicotinamida adenina dinucleótido fosfato (NADPH) oxidasa-2 (NOX-2) y -4 (NOX-4), y el citocromo P450 2E1 (CYP2E1) del virus puede ser un objetivo potencial para los agentes contra el VIH.

Objetivos: Evaluar los efectos inhibidores de los ácidos cafeoilquínicos (CQAs) y flavonoides de las hojas de Pluchea indica contra la unión de la gp120 del VIH-1 con el receptor CD4 y sus actividades antioxidantes vía interacciones con NOX-2, NOX-4, y CYP2E1 a través de un estudio in silico.

Métodos: Diez CQA y nueve flavonoides de P. indica se acoplaron a los receptores 3TGS (gp120 VIH-1), 2CDU (NOX-2), 3A1F (NOX-4) y 3T3Z (CYP2E1) utilizando AutoDockTools 1.5.7. Las propiedades fisicoquímicas y farmacocinéticas se predijeron con la herramienta en línea pkCSM. Las propiedades fisicoquímicas y farmacocinéticas se predijeron con la herramienta en línea pkCSM, mientras que la toxicidad se predijo con el servidor web ProTox-II.

Resultados: En general, todos los CQAs y flavonoides fueron capaces de unirse a todos los receptores. El ácido 3,4-Di-O-cafeilquínico tiene la energía de unión más baja (-8,79 kcal/mol) frente a 3TGS (gp120). El ácido 5-O-cafeilquínico y la apigenina tienen un gran potencial como antioxidantes debido a su buena unión con NOX-2 y CYP2E1. Sin embargo, los ACQ podrían tener problemas de ADME. La mayoría de los compuestos de prueba no causaron hepatotoxicidad, carcinogenicidad ni mutagenicidad. Todos los compuestos de ensayo no tienen potencial citotóxico. Sin embargo, todos los CQAs tienen el potencial de ser inmunotoxinas.

Conclusiones: Los resultados indicaron que el ácido 3,4-di-O-cafeilquínico podría ser un inhibidor potencial de la unión gp120-CD4 del VIH-1, mientras que el ácido 5-O-cafeilquínico y la apigenina demostraron fuertes actividades antioxidantes a través de la inhibición de NOX-2 y CYP2E1. Sin embargo, se requieren estudios en profundidad, incluyendo estudios experimentales in vitro e in vivo, para validar aún más la actividad anti-VIH de los compuestos.

Palabras Clave: acoplamiento molecular; antiviral; fenoles; in silico; Pluchea indica.

PDF Download
 
Citation Format: Hikmawanti NPE, Saputri FC, Yanuar A, Jantan I, Yeni Y, Mun’im A (2024) A computational approach to evaluate caffeoylquinic acids and flavonoids in Pluchea indica Less. leaves as potential anti-HIV agents. J Pharm Pharmacogn Res 12(4): 701–721. https://doi.org/10.56499/jppres23.1896_12.4.701
References

Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495. http://dx.doi.org/10.1016/j.micres.2013.12.009

Andarwulan N, Batari R, Sandrasari DA, Bolling B, Wijaya H (2010) Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chem 121: 1231–1235. https://doi.org/10.1016/j.foodchem.2010.01.033

Aqeel MT, Nisar-Ur-Rahman, Khan AU, Ahmad A, Ashraf Z, Rasheed U, Mansoor S (2020) Phenolic derivatives with antioxidant and anti-inflammatory activities: An in silico, in vitro and in vivo study. Pak Vet J 39: 598–602. https://doi.org/10.29261/pakvetj/2019.052

Aquaro S, Scopelliti F, Pollicita M, Perno CF (2008) Oxidative stress and HIV infection: Target pathways for novel therapies? Futur HIV Ther 2: 327–338. https://doi.org/10.2217/17469600.2.4.327

Arsiningtyas IS, Gunawan-Puteri MDPT, Kato E, Kawabata J (2014) Identification of α-glucosidase inhibitors from the leaves of Pluchea indica (L.) Less., a traditional Indonesian herb: promotion of natural product use. Nat Prod Res 28: 1350–1353. https://doi.org/10.1080/14786419.2014.904306

Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46: W257–W263. https://doi.org/10.1093/nar/gky318

Behne S, Franke H, Schwarz S, Lachenmeier DW (2023) Risk assessment of chlorogenic and isochlorogenic acids in coffee by-products. Molecules 28: 5540. https://doi.org/10.3390/molecules28145540

Bruxelle JF, Trattnig N, Mureithi MW, Landais E, Pantophlet R (2021) HIV-1 entry and prospects for protecting against infection. Microorganisms 9: 228. https://doi.org/10.3390/microorganisms9020228

Caffrey M (2011) HIV envelope: Challenges and opportunities for development of entry inhibitors. Trends Microbiol 19: 191–197. https://doi.org/10.1016/j.tim.2011.02.001

Chewchida S, Vongsak B (2019) Simultaneous HPTLC quantification of three caffeoylquinic acids in Pluchea indica leaves and their commercial products in Thailand. Rev Bras Farmacogn 29: 177–181. https://doi.org/10.1016/j.bjp.2018.12.007

Couret J, Chang TL (2016) Reactive oxygen species in HIV infection. EC Microbiol 3: 597–604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450819/

Da Silva Costa J, Da Silva Ramos R, Da Silva Lopes Costa K, Do Socorro Barros Brasil D, De Paula Da Silva CHT, Ferreira EFB, Dos Santos Borges R, Campos JM, Da Cruz Macêdo WJ, Dos Santos CBR (2018) An in silico study of the antioxidant ability for two caffeine analogs using molecular docking and quantum chemical methods. Molecules 23: 2801. https://doi.org/10.3390/molecules23112801

Dulsat J, López-Nieto B, Estrada-Tejedor R, Borrell JI (2023) Evaluation of Free online ADMET tools for academic or small biotech environments. Molecules 28: 776. https://doi.org/10.3390/molecules28020776

Ezzat S, Jeevanandam J, Egbuna C, Kumar S, Ifemeje J (2019) Phytochemicals as Sources of Drugs. In: Kumar S, Egbuna C (eds) Phytochemistry: An in-silico and in-vitro Update. Singapore: Springer Nature Singapore Pte Ltd, Gateway East, pp. 3–22. https://doi.org/10.1007/978-981-13-6920-9_1

Fan JR, Li H, Zhang HX, Zheng QC (2018) Exploring the structure characteristics and major channels of cytochrome P450 2A6, 2A13, and 2E1 with pilocarpine. Biopolymers 109: e23108. https://doi.org/10.1002/bip.23108

Forsythe SS, McGreevey W, Whiteside A, Shah M, Cohen J, Hecht R, Bollinger LA, Kinghorn A (2019) Twenty years of antiretroviral therapy for people living with HIV: Global costs, health achievements, economic benefits. Health Aff 38: 1163–1172. https://doi.org/10.1377/hlthaff.2018.05391

Gadaleta D, Vuković K, Toma C, Lavado GJ, Karmaus AL, Mansouri K, Kleinstreuer NC, Benfenati E, Roncaglioni A (2019) SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J Cheminform 11: 58. https://doi.org/10.1186/s13321-019-0383-2

Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13: 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5

Hikmawanti NPE, Saputri FC, Yanuar A, Jantan I, Ningrum RA, Mun’im A (2024) Insights into the anti-infective effects of Pluchea indica (L.) Less and its bioactive metabolites against various bacteria, fungi, viruses, and parasites. J Ethnopharmacol 320: 117387. https://doi.org/10.1016/j.jep.2023.117387

Hiryak K, Koren DE (2021) Fostemsavir: A novel attachment inhibitor for patients with multidrug-resistant HIV-1 infection. Ann Pharmacother 55: 792–797. https://doi.org/10.1177/1060028020962424

Hu Z, Chen D, Dong L, Southerland WM (2010) Prediction of the interaction of HIV-1 integrase and its dicaffeoylquinic acid inhibitor through molecular modeling approach. Ethn Dis 20: S1-45-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089943/

Hussin M, Hamid AA, Abas F, Ramli NS, Jaafar AH, Roowi S, Majid NA, Dek MSP (2019) NMR-based metabolomics profiling for radical scavenging and anti-aging properties of selected herbs. Molecules 24: 3208. https://doi.org/10.3390/molecules24173208

Indrasetiawan P, Aoki-Utsubo C, Hanafi M, Hartati SRI, Wahyuni TS, Kameoka M, Yano Y, Hotta HAK, Hayashi Y (2019) Antiviral activity of Cananga odorata against hepatitis B virus. Kobe J Med Sci 65: E71–E79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012192

Ivanov A V., Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, Isaguliants MG (2016) Oxidative stress during HIV infection: Mechanisms and consequences. Oxid Med Cell Longev 2016: 8910396. https://doi.org/10.1155/2016/8910396

Jiang J, Kang H, Song X, Huang S, Li S, Xu J (2013) A model of interaction between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and apocynin analogues by docking method. Int J Mol Sci 14: 807–817. https://doi.org/10.3390/ijms14010807

Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D (2020) Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules 25: 2070. https://doi.org/10.3390/molecules25092070

Kongkiatpaiboon S, Chewchinda S, Vongsak B (2018) Optimization of extraction method and HPLC analysis of six caffeoylquinic acids in Pluchea indica leaves from different provenances in Thailand. Rev Bras Farmacogn 28: 145–150. https://doi.org/10.1016/j.bjp.2018.03.002

Kwon Y Do, Finzi A, Wu X, Dogo-Isonagie C, Lee LK, Moore LR, Schmidt SD, Stuckey J, Yang Y, Zhou T, Zhu J, Vicic DA, Debnath AK, Shapiro L, Bewley CA, Mascola JR, Sodroski JG, Kwong PD (2012) Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc Natl Acad Sci U S A 109: 5663–5668. https://doi.org/10.1073/pnas.1112391109

Lai Y-T (2021) Small molecule HIV-1 attachment inhibitors: Discovery, mode of action and structural basis of inhibition. Viruses 13: 843. https://doi.org/10.3390/v13050843

Leung T, Rajendran R, Singh S, Garva R, Krstic-Demonacos M, Demonacos C (2013) Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res 15: R107. https://doi.org/10.1186/bcr3574

Lewis DFV, Bird MG, Dickins M, Lake BG, Eddershaw PJ, Tarbit MH, Goldfarb PS (2000) Molecular modelling of human CYP2E1 by homology with the CYP102 haemoprotein domain: Investigation of the interactions of substrates and inhibitors within the putative active site of the human CYP2E1 isoform. Xenobiotica 30: 1–25. https://doi.org/10.1080/004982500237794

Locher CP, Witvrouw M, De Bethune MP, Burch MT, Mower HF, Davis H, Lasure A, Pauwels R, De Clercq E, Vlietinck AJ (1996) Antiviral activity of Hawaiian medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine 2: 259–264. https://doi.org/10.1016/S0944-7113(96)80052-3

Lu H, Tian Z, Cui Y, Liu Z, Ma X (2020) Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr Rev Food Sci Food Saf 19: 3130-3158. https://doi.org/10.1111/1541-4337.12620

Magaña AA, Kamimura N, Soumyanath A, Stevens JF, Maier CS (2021) Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J 107: 1299–1319. https://doi.org/10.1111/tpj.15390

Mahmood N, Moore PS, De Tommasi N, De Simone F, Colman S, Hay AJ, Pizza C (1993) Inhibition of HIV infection by caffeoylquinic acid derivates. Antivir Chem Chemother 4: 235–240. https://doi.org/10.1177/095632029300400406

Malik T, Chauhan G, Rath G, Murthy RSR, Goyal AK (2017) “Fusion and binding inhibition” key target for HIV-1 treatment and pre-exposure prophylaxis: Targets, drug delivery and nanotechnology approaches. Drug Deliv 24: 608–621. https://doi.org/10.1080/10717544.2016.1228717

Marković S, Tošović J (2016) Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids. Food Chem 210: 585–592. https://doi.org/10.1016/j.foodchem.2016.05.019

McDougall B, King PJ, Wu BW, Hostomsky Z, Reinecke MG, Robinson WE (1998) Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of Human Immunodeficiency Virus type 1 integrase. Antimicrob Agents Chemother 42: 140–146. https://doi.org/10.1128/aac.42.1.140

Mhya DH, Jakwa AG, Agbo J (2023) In silico analysis of antioxidant phytochemicals with potential NADPH oxidase inhibitory effect. J Heal Sci Med Res 41: e2022912. https://doi.org/10.31584/jhsmr.2022912

Mirani A, Kundaikar H, Velhal S, Patel V, Bandivdekar A, Degani M, Patravale V (2019) Tetrahydrocurcumin-loaded vaginal nanomicrobicide for prophylaxis of HIV/AIDS: in silico study, formulation development, and in vitro evaluation. Drug Deliv Transl Res 9: 828–847. https://doi.org/10.1007/s13346-019-00633-2

Najmi A, Javed SA, Al Bratty M, Alhazmi HA (2022) Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 27: 349. https://doi.org/10.3390/molecules27020349

Phosrithong N, Samee W, Ungwitayatorn J (2012) 3D-QSAR studies of natural flavonoid compounds as reverse transcriptase inhibitors. Med Chem Res 21: 559–567. https://doi.org/10.1007/s00044-011-9570-z

Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, Sharifi-Rad J, Docea AO, Calina D (2022) Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur J Med Chem 233: 114217. https://doi.org/10.1016/j.ejmech.2022.114217

Quarta S, Scoditti E, Carluccio MA, Calabriso N, Santarpino G, Damiano F, Siculella L, Wabitsch M, Verri T, Favari C, Del Rio D, Mena P, De Caterina R, Massaro M (2021) Coffee bioactive n-methylpyridinium attenuates tumor necrosis factor (TNF)-α-mediated insulin resistance and inflammation in human adipocytes. Biomolecules 11: 1545. https://doi.org/10.3390/biom11101545

Reshi ML, Su YC, Hong JR (2014) RNA viruses: ROS-mediated cell death. Int J Cell Biol 2014: 467452. https://doi.org/10.1155/2014/467452

Rolnik A, Olas B (2021) The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int J Mol Sci 22: 3009. https://doi.org/10.3390/ijms22063009

Rudrapal M, Chetia D (2020) Virtual screening, molecular docking and QSAR studies in drug discovery and development programme. J Drug Deliv Ther 10: 225–233. http://dx.doi.org/10.22270/jddt.v10i4.4218

Salehi B, Anil Kumar NV., Şener B, Sharifi-Rad M, Kılıç M, Mahady GB, Vlaisavljevic S, Iriti M, Kobarfard F, Setzer WN, Ayatollahi SA, Ata A, Sharifi-Rad J (2018) Medicinal plants used in the treatment of human immunodeficiency virus. Int J Mol Sci 19: 1459. https://doi.org/10.3390/ijms19051459

Seitz R (2016) Human immunodeficiency virus (HIV). Transfus Med Hemotherapy 43: 203–222. https://doi.org/10.1159/000445852

Serina JC, Castilho PC, Fernandes MX (2016) Caffeoylquinic acids as inhibitors for HIV-I protease and HIV-I Integrase. A Molecular docking study. SDRP J Comput Chem Mol Model 1: 1–4.

Shaker B, Ahmad S, Lee J, Jung C, Na D (2021) In silico methods and tools for drug discovery. Comput Biol Med 137: 104851. https://doi.org/10.1016/j.compbiomed.2021.104851

Shin YH, Park CM, Yoon CH (2021) An overview of human immunodeficiency virus-1 antiretroviral drugs: General principles and current status. Infect Chemother 53: 29–45. https://doi.org/10.3947/IC.2020.0100

Sierra-Aragón S, Walter H (2012) Targets for inhibition of HIV replication: Entry, enzyme action, release and maturation. Intervirology 55: 84–97. https://doi.org/10.1159/000331995

Sreedevi A, Sangeetha S, Achari KMM, Sruthi KS, Vadlamudi Y (2022) Phytochemical, in vitro and in silico screening of roots of Jasminum auriculatum for antioxidant activity. Eurasian Chem Commun 4: 768–777. https://doi.org/10.22034/ecc.2022.330488.1331

Tamayose CI, dos Santos EA, Roque N, Costa-Lotufo L V, Pena Ferreira MJ (2019a) Caffeoylquinic acids: separation method, antiradical properties and cytotoxicity. Chem Biodivers 16: e1900093. https://doi.org/10.1002/cbdv.201900093

Tamayose CI, Torres PB, Roque N, Ferreira MJP (2019b) HIV-1 reverse transcriptase inhibitory activity of flavones and chlorogenic acid derivatives from Moquiniastrum floribundum (Asteraceae). South African J Bot 123: 142–146. https://doi.org/10.1016/j.sajb.2019.02.005

Tintori C, Selvaraj M, Badia R, Clotet B, Esté JA, Botta M (2013) Computational studies identifying entry inhibitor scaffolds targeting the Phe43 cavity of HIV-1 gp120. ChemMedChem 8: 475–483. https://doi.org/10.1002/cmdc.201200584

Turner JV, Agatonovic-Kustrin S (2007) In silico prediction of oral bioavailability. In: Taylor J, Triggle D (eds) Comprehensive Medicinal Chemistry II, 5: 699–724. https://doi.org/10.1016/B0-08-045044-X/00147-4

Van de Waterbeemd H, Testa B, Tillement J-P, Tremblay D, Laveé T, Funk C, Scherrmann J-M, Trager WF, Totah RA, Rettie AE, Oesch-Bartlomowicz B, Oesch F, Esser C, Parmentier Y, Bossant M-J, Bertrand M, Walther B, Artursson P, Neuhoff S, Matsson P, Tavelin S, Colombo P, Cagnani S, Sonvico F, Santi P, Russo P, Colombo G (2007) ADME-Tox Approaches. In: Taylor JB, Triggle DJ (eds) Comprehensive Medicinal Chemistry II, 5: 231–257. https://doi.org/10.1016/B0-08-045044-X/00125-5

Vermot A, Petit-Härtlein I, Smith SME, Fieschi F (2021) NAPDH oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants 10: 890. https://doi.org/10.3390/antiox10060890

Vinay S, Yalamanchili K, Vinay S (2020) Assessing the efficacy of NOX enzyme inhibitors as potential treatments for ischemic stroke in silico. J Emerg Investig 2: 1–7. https://doi.org/https://doi.org/10.59720/20-076

Vongsak B, Kongkiatpaiboon S, Jaisamut S, Konsap K (2018) Comparison of active constituents, antioxidant capacity, and α-glucosidase inhibition in Pluchea indica leaf extracts at different maturity stages. Food Biosci 25: 68–73. https://doi.org/10.1016/j.fbio.2018.08.006

Wardani AK, Mun’im A, Yanuar A (2018) Inhibition of HIV-1 reverse transcriptase of selected Indonesia medicinal plants and isolation of the inhibitor from Erythrina variegata L. Leaves. J Young Pharm 10: 169–172. https://doi.org/10.5530/jyp.2018.10.38

World Health Organisation (2023) HIV/AIDS-overview. https://www.who.int/health-topics/hiv-aids#tab=tab_1 [Consulted 16 Feb 2023].

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio