In silico IL-17 inhibition by Acorus calamus extract


J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 628-646, Jul-Aug 2024. DOI: Original Article Anti-rheumatoid arthritis potential of Acorus calamus L. extract by interleukin-17 inhibition: Molecular insights through an in silico study [Potencial anti-artritis reumatoide de extracto de Acorus calamus L. por inhibición de interleucina-17. Perspectivas moleculares mediante estudio in silico] Parawansah1,2, Rizki … Continue reading In silico IL-17 inhibition by Acorus calamus extract

J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 628-646, Jul-Aug 2024.


Original Article

Anti-rheumatoid arthritis potential of Acorus calamus L. extract by interleukin-17 inhibition: Molecular insights through an in silico study

[Potencial anti-artritis reumatoide de extracto de Acorus calamus L. por inhibición de interleucina-17. Perspectivas moleculares mediante estudio in silico]

Parawansah1,2, Rizki Rahmadi Pratama3, Nuralifah4, Arfan4, Ruslin4, Retno Widyowati5, Sukardiman5*

1Doctoral Program, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.

2Department of Farmacology, Faculty of Medicine, Halu Oleo University, Kendari, Indonesia.

3Magister Program, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.

4Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia.

5Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.



Context: Interleukin-17 (IL-17) is a pro-inflammatory cytokine that plays a crucial role in immunity and inflammation.

Aims: To evaluate the potential therapeutic effects of two compounds, magnosalicine and neotatarine, derived from the ethanolic extract of Acorus calamus L. rhizome, against IL-17.

Methods: Utilizing LC/MS analysis combining molecular docking simulations, drug likeness, ADME and toxicity analysis. This study explored the molecular interactions and binding affinities of identified compounds from A. calamus with crucial residues of IL-17, including Tyr62, Pro63, Ile66, Gln94, Ile96, Leu97, and Leu99.

Results: The results revealed that magnosalicine and neotatarine exhibited remarkable binding affinities of -10.16 kcal/mol and -9.53 kcal/mol, respectively, indicating their strong interactions with IL-17. Moreover, both compounds displayed superior binding energies compared to other extract constituents. Interestingly, this study highlighted that all terpenoid compounds from the A. calamus rhizome extract were capable of interacting with these key residues of IL-17, resembling the interactions observed with the natural ligand (RMK) and methotrexate. Meanwhile, the analysis results revealed a safer ADME and toxicity profile for neotatarine compared to magnolalicine.

Conclusions: This research unveils the promising potential of neotatarine as candidates for further exploration in therapeutic interventions targeting IL-17-related pathways. These findings shed light on the molecular insights of Acorus calamus L. compounds, providing valuable information for developing novel treatments for IL-17-associated disorders.

Keywords: Acorus calamus; cytokine; inflammation; molecular docking; rheumatoid arthritis; terpenoid.

PDF Download


Contexto: La interleucina-17 (IL-17) es una citocina proinflamatoria que desempeña un papel crucial en la inmunidad y la inflamación.

Objetivos: Evaluar los posibles efectos terapéuticos de dos compuestos, la magnosalicina y la neotatarina, derivados del extracto etanólico del rizoma de Acorus calamus L., contra la IL-17.

Métodos: Utilizando análisis LC/MS que combinan simulaciones de acoplamiento molecular, semejanza de fármacos, ADME y análisis de toxicidad. Este estudio exploró las interacciones moleculares y afinidades de unión de los compuestos identificados de A. calamus con residuos cruciales de IL-17, incluyendo Tyr62, Pro63, Ile66, Gln94, Ile96, Leu97, y Leu99.

Resultados: Los resultados revelaron que la magnosalicina y la neotatarina mostraron notables afinidades de unión de -10,16 kcal/mol y -9,53 kcal/mol, respectivamente, lo que indica sus fuertes interacciones con la IL-17. Además, ambos compuestos mostraron energías de unión superiores en comparación con otros constituyentes del extracto. Curiosamente, este estudio puso de relieve que todos los compuestos terpenoides del extracto de rizoma de A. calamus eran capaces de interactuar con estos residuos clave de la IL-17, asemejándose a las interacciones observadas con el ligando natural (RMK) y el metotrexato. Mientras tanto, los resultados del análisis revelaron un perfil ADME y de toxicidad más seguro para la neotatarina en comparación con la magnolalicina.

Conclusiones: Esta investigación desvela el prometedor potencial de la neotatarina como candidatos para futuras exploraciones en intervenciones terapéuticas dirigidas a las vías relacionadas con la IL-17. Estos hallazgos arrojan luz sobre los conocimientos moleculares de los compuestos de Acorus calamus L., proporcionando información valiosa para el desarrollo de nuevos tratamientos para los trastornos asociados a la IL-17.

Palabras Clave: Acorus calamus; citocina; inflamación; acoplamiento molecular; artritis reumatoide; terpenoide.

PDF Download


Citation Format: Parawansah, Rizki RP, Nuralifah, Arfan, Ruslin, Retno W, Sukardiman (2024) Anti-rheumatoid arthritis potential of Acorus calamus L. extract by interleukin-17 inhibition: Molecular insights through an in silico study. J Pharm Pharmacogn Res 12(4): 628–646.

Alamgeer, Ambreen Malik U, Haseeb A, Umme Habiba H, Mueen Ahmad C (2018) Traditional medicines of plant origin used for the treatment of inflammatory disorders in Pakistan: A review. J Tradit Chin Med 38(4): 636–656.

Al-Naimi MS, Rasheed HA, Hussien NR, Al-Kuraishy HM, Al-Gareeb AI (2019) Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res 10(3): 95–99.

Andrews MD, Dack KN, de Groot MJ, Lambert M, Sennbro CJ, Larsen M, Stahlhut M (2022) Discovery of an oral, rule of 5 compliant, interleukin 17A protein–protein interaction modulator for the potential treatment of psoriasis and other inflammatory diseases. J Med Chem 65(13): 8828–8842.

Arba M, Nur-Hidayat A, Surantaadmaja SI, Tjahjono DH (2018) Pharmacophore-based virtual screening for identifying β5 subunit inhibitor of 20S proteasome. Comput Biol Chem 77: 64–71.

Arfan A, Muliadi R, Malina R, Trinovitasari N, Asnawi A (2022) Docking and dynamics studies: identifying the binding ability of quercetin analogs to the ADP-ribose phosphatase of SARS CoV-2. J Kartika Kimia 5(2): 145–151.

Bai D (2022) Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 13: 1004529.

Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P (2019) Methotrexate an old drug with new tricks. Int J Mol Sci 20(20): 5023–5035.

Benet LZ, Hosey CM, Ursu O, Oprea TI (2016) BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 101: 89–98.

Beroza P, Crawford JJ, Ganichkin O, Gendelev L, Harris SF, Klein R, Miu A, Steinbacher S, Klingler FM, Lemmen C (2022) Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors. Nat Commun 13(1): 6447–6460.

Chan ES, Cronstein BN (2010) Methotrexate—how does it really work? Nat Rev Rheumatol 6(3): 175–178.

Chyuan IT, Chen JY (2018) Role of interleukin- (IL-) 17 in the pathogenesis and targeted therapies in spondyloarthropathies. Mediators Inflamm 2018: 2403935.

Citra SNAL, Arfan A, Alroem A, Bande LS, Irnawati I, Arba M (2023) Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. J Res Pharm 27(1): 221–231.

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7: 42717.

Doak BC, Over B, Giordanetto F, Kihlberg J (2014) Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chem Biol 21(9): 1115–1142.

Dong W, Ma X (2016) Regulation of interleukin-17 production. Adv Exp Med Biol 941: 139–166.

Dubey I, Khan S, Kushwaha S (2022) Developmental and reproductive toxic effects of exposure to microplastics: A review of associated signaling pathways. Front Toxicol 4: 901798.

Fitriani IN, Ansory HM (2021) Molecular docking study of nutmeg (Myristica fragrans) constituents as anti-skin cancer agents. J Kimia Pendidikan Kimia 6(1): 14–22.

Garofalo M, Grazioso G, Cavalli A, Sgrignani J (2020) How computational chemistry and drug delivery techniques can support the development of new anticancer drugs. Molecules 25(7): 1756–1767.

Ge Y, Huang M, Yao YM (2020) Biology of interleukin-17 and its pathophysiological significance in sepsis. Front Immunol 11: 1558.

Heldin CH, Lu B, Evans R, Gutkind JS (2016) Signals and receptors. Cold Spring Harb Perspect Biol 8(4): a005900.

Hollenberg PF (2002) Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab Rev 34(1–2): 17–35.

Huang DL, He YR, Liu YJ, He HY, Gu ZY, Liu YM, Liu WJ, Luo Z, Ju MJ (2023) The immunomodulation role of Th17 and Treg in renal transplantation. Front Immunol 14: 1113560.

Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6): 1239–1249.

Kim H, Han TH, Lee SG (2009) Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. J Ethnopharmacol 122(1): 149–156.

Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14(6): 387–404.

Klebe G (2013) Protein–Ligand Interactions as the Basis for Drug Action. In G. Klebe (Ed.), Drug Design. Springer Berlin Heidelberg, pp. 61–88.

Kondo N, Kuroda T, Kobayashi D (2021) Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci 22(20): 10922.

Kuhn B, Fuchs JE, Reutlinger M, Stahl M, Taylor NR (2011) Rationalizing tight ligand binding through cooperative interaction networks. J Chem Inf Model 51(12): 3180–3198.

Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T (2017) The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm 2017: 3908061.

Lee JY, Lee JY, Yun BS, Hwang BK (2004) Antifungal activity of beta-asarone from rhizomes of Acorus gramineus. J Agric Food Chem 52(4): 776–780.

Li J, Li ZX, Zhao JP, Wang W, Zhao XF, Xu B, Li L, Zhang L, Ren J, Khan IA, Li SX (2017) A Novel tropoloisoquinoline Alkaloid, neotatarine, from Acorus calamus L. Chem Biodivers 14(10): e1700201.

Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL (2019) IL-17 receptor–based signaling and implications for disease. Nat Immunol 20(12): 1594–1602.

Lin X, Li X, Lin X (2020) A review on applications of computational methods in drug screening and design. Molecules 25(6): 1375.

Liu S, Saunders M, Mak TW (2023) Chemical carcinogens: implications for cancer treatment. J Clin Invest 133(20): e174319.

Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Sig Transduct Target Ther 2: 17023.

Loying R, Gogoi R, Sarma N, Borah A, Munda S, Pandey SK, Lal M (2019) Chemical compositions, in-vitro antioxidant, anti-microbial, anti-inflammatory and cytotoxic activities of essential oil of Acorus calamus L. rhizome from North-East India. J Essent Oil-Bear Plants 22(5): 1299–1312.

Mathur S, Hoskins C (2017) Drug development: Lessons from nature. Biomed Rep 6(6): 612–614.

McGaw LJ, Jäger AK, Van Staden J (2002) Isolation of β-asarone, an antibacterial and anthelmintic compound, from Acorus calamus in South Africa. S Afr J Bot 68(1): 31–35.

McInnes IB, Buckley CD, Isaacs JD (2016) Cytokines in rheumatoid arthritis — shaping the immunological landscape. Nat Rev Rheumatol 12: 63–68.

McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23): 2205–2219.

Meehan EV, Wang K (2022) Interleukin-17 family cytokines in metabolic disorders and cancer. Genes 13(9): 1643.

Mermer A, Vakal S (2021) Pyrazine-chromene-3-carbohydrazide conjugates: Molecular docking and admet predictions on dual-acting compounds against SARS-CoV-2 mpro and rdrp. J Res Pharm 25(6): 953–966.

Mills KHG (2023) IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol 23(1): 38–54.

Mori K, Komatsu M, Kido M, Nakagawa K (1986) A simple biogenetic-type synthesis of magnosalicin, a new neolignan with antiallergy activity isolted from Mangolia salacifolia. Tetrahedron 42(2): 523–528.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16): 2785–2791.

Nedyalkova M, Vasighi M, Sappati S, Kumar A, Madurga S, Simeonov V (2021) Inhibition ability of natural compounds on receptor-binding domain of SARS-CoV2: An in silico approach. Pharmaceuticals 14(12): 1328.

Omer N, Choo Y-M, Ashokkumar M, Yusof NS (2022) Ultrasound-assisted extraction of β-asarone from sweet flag (Acorus calamus) rhizome. Appl Sci 12(21): 11007.

Ottaviani G, Gosling DJ, Patissier C, Rodde S, Zhou L, Faller B (2010) What is modulating solubility in simulated intestinal fluids? Eur J Pharm Sci 41(3): 452–457.

Parkinson C, Thomas KE, Lumley CE (1997) Reproductive toxicity testing of pharmaceutical compounds to support the inclusion of women in clinical trials. Hum Exp Toxicol 16(5): 239–246.

Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy: A guide for students of organic chemistry (3rd ed.). Brooks/Cole Thomson Learning.

Pinzi L, Rastelli G (2019) Molecular docking: Shifting paradigms in drug discovery. International Int J Mol Sci 20(18): 4331.

Pitaloka DA, Ramadhan DS, Arfan Chaidir L, Fakih TM (2021) Docking-based virtual screening and molecular dynamics simulations of quercetin analogs as enoyl-acyl carrier protein reductase (InhA) inhibitors of Mycobacterium tuberculosis. Sci Pharm 89(2): 20.

Qayed WS, Ferreira RS, Silva JRA (2022) In silico study towards repositioning of FDA-approved drug candidates for anticoronaviral therapy: Molecular docking, molecular dynamics and binding free energy calculations. Molecules 27(18): 5988.

Rafael-Vidal C, Pérez N, Altabás I, Garcia S, Pego-Reigosa JM (2020) Blocking IL-17: A promising strategy in the treatment of systemic rheumatic diseases. Int J Mol Sci 21(19): 7100.

Rajput SB, Tonge MB, Karuppayil SM (2014) An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (sweet flag) and other Acorus species. Phytomedicine 21(3): 268–277.

Ritchie TJ, Macdonald SJF, Peace S, Pickett SD, Luscombe CN (2013) Increasing small molecule drug developability in sub-optimal chemical space. Med Chem Comm 4(4): 673–680.

Robert M, Miossec P (2019) IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med 5: 364.

Rosendahl Huber A, Van Hoeck A, Van Boxtel R (2021) The mutagenic impact of environmental exposures in human cells and cancer: Imprints through time. Front Genet 12: 760039.

Rusyn I, Arzuaga X, Cattley RC, Corton JC, Ferguson SS, Godoy P, Guyton KZ, Kaplowitz N, Khetani SR, Roberts RA, Roth RA, Smith MT (2021) Key characteristics of human hepatotoxicants as a basis for identification and characterization of the causes of liver toxicity. Hepatology 74(6): 3486–3496.

Serafini RM, Vergne MC D, Menezes PP, Santos PAJ, Rabelo KT, Saravanan S, Alves BP, Costa VE, Jesus Cesar RH, Salvador JM, Gelain PD, Moreira CFJ, Rocha FR, Araujo ASA, Quintans-Junior JL (2018) Characterization and evaluation of the antioxidant activity of calamusenone, a major component of Hyptis pectinata (L.) Poit essential oil. Lett Drug Des Discov 15(3): 231–239.

Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388(10055): 2023–2038.

Sønder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U (2011) IL-17-induced NF-kappaB activation via CIKS/Act1: Physiologic significance and signaling mechanisms. J Biol Chem 286(15): 12881–12890.

Song Y, Yang JM (2017) Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. Biochem Biophys Res Commun 493(1): 1–8.

Srirangan S, Choy EH (2010) The role of Interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis 2(5): 247–256.

Sya’diyah S, Waris R, Najib A (2014) Efforts to isolate β-asarone in n-hexane extract of dringo rhizome (Acorus calamus L.) from Pinrang district [Indonesian]. J Fitofarm Indones 1(1): 6–13.

Tribudi YA, Agustin AT, Setyaningtyas DE, Gusmalawati D (2022) Bioactive compound profile and biological modeling reveals the potential role of purified methanolic extract of sweet flag (Acorus calamus L.) in inhibiting the dengue virus (DENV) NS3 protease-helicase. Indones J Chem 22(2): 331–341.

Tsuruga T, Ebizuka Y, Nakajima J, Chun YT, Noguchi H, Iitaka Y, Sankawa U (1991) Biologically active constituents of Magnolia salicifolia: inhibitors of induced histamine release from rat mast cells. Chem Pharm Bull (Tokyo) 39(12): 3265–3271.

van Alphen J (1927) Asarylaldehyde. Recl Trav Chim Pays-Bas 46(3): 195–199.

Vinarov Z, Abdallah M, Agundez JAG, Allegaert K, Basit AW, Braeckmans M, Ceulemans J, Corsetti M, Griffin BT, Grimm M, Keszthelyi D, Koziolek M, Madla CM, Matthys C, McCoubrey LE, Mitra A, Reppas C, Stappaerts J, Steenackers N, Trevaskis NL, Vanuytsel T, Vertzoni M, Weitschies W, Wilson C, Augustijns P (2021) Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur J Pharm Sci 162: 105812.

Ware I, Franke K, Dube M, Ali El Enshasy H, Wessjohann LA (2023) Characterization and bioactive potential of secondary metabolites isolated from Piper sarmentosum Roxb. Int J Mol Sci 24(2): 1328.

Wen Q, Hang G, Wang Y, Yu Z, Wang H, Chen B (2023) Changes and significance of interleukin 17 expression in patients after renal transplantation. Transplant Proc 55(3): 562–568.

Wu CY, Yang HY, Lai JH (2020) Anti-citrullinated protein antibodies in patients with rheumatoid arthritis: Biological effects and mechanisms of immunopathogenesis. Int J Mol Sci 21(11): 4015.

Wu CY, Yang HY, Luo SF, Lai JH (2021) From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis. Int J Mol Sci 22(2): 686.

Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y (2019) admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35(6): 1067–1069.

Yang N, Sun RB, Chen XL, Zhen L, Ge C, Zhao YQ, He J, Geng JL, Guo JH, Yu XY, Fei F, Feng SQ, Zhu XX, Wang HB, Fu FH, Aa JY, Wang GJ (2017) In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine. Acta Pharmacol Sin 38(3): 351–361.

Zhang X, Yang W, Wang L (2013) Silver-catalyzed amidation of benzoylformic acids with tertiary amines via selective carbon-nitrogen bond cleavage. Org Biomol Chem 11(22): 3649–3654.

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio