Kaempferia parviflora inhibits SARS-CoV-2 spike protein

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 371-381, Mar-Apr 2024. DOI: https://doi.org/10.56499/jppres23.1806_12.2.371 Original Article Kaempferia parviflora Wall. ex Baker against SARS-CoV-2 spike protein: In silico and in vitro studies [Kaempferia parviflora Wall. ex Baker contra la proteína de la espiga del SARS-CoV-2: Estudios in silico e in vitro] Suhaina Supian*, Muhamad Aizuddin Ahmad, … Continue reading Kaempferia parviflora inhibits SARS-CoV-2 spike protein

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 371-381, Mar-Apr 2024.

DOI: https://doi.org/10.56499/jppres23.1806_12.2.371

Original Article

Kaempferia parviflora Wall. ex Baker against SARS-CoV-2 spike protein: In silico and in vitro studies

[Kaempferia parviflora Wall. ex Baker contra la proteína de la espiga del SARS-CoV-2: Estudios in silico e in vitro]

Suhaina Supian*, Muhamad Aizuddin Ahmad, Lina Rozano, Zuraida Ab Rahman

Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia.

*E-mail: suhaina@mardi.gov.my

Abstract

Context: SARS-CoV-2 spike (S) protein, governed by its receptor binding domain (RBD), is a key player in mediating viral attachment and fusion into host cells, which leads to infection and transmission of COVID-19. Searching for effective inhibitors against S RBD protein is essential to stop the virus infection.

Aims: To evaluate Kaempferia parviflora’s bioactive compounds as inhibitors against SARS-CoV-2 S RBD protein and its complex with human angiotensin-converting enzyme 2 (ACE2) receptor through in silico, and to determine the ability of K. parviflora’s extract to inhibit the binding of S RBD and ACE2.

Methods: Molecular docking was performed to evaluate the inhibition potentials of K. parviflora’s bioactive compounds against S RBD protein and its complex with ACE2. The inhibitory activity of K. parviflora’s extract against the binding of S RBD and ACE2 was determined using an in vitro inhibition assay.

Results: K. parviflora’s compounds had inhibition potentials against S RBD protein in both closed and open states. In the open RBD, these compounds were bound to the key amino acids that were involved in the binding of RBD with ACE2, suggesting their possible roles in preventing the RBD-ACE2 association. K. parviflora’s compounds also had strong affinities towards the S RBD-ACE2 complex by interacting with the paired RBD-ACE2 amino acids, which were crucial for the S RBD-ACE2 complex’s stability. In addition, K. parviflora extract also demonstrated inhibitory activity against the binding of S RBD and ACE2.

Conclusions: This study proposes K. parviflora as a promising inhibitor against SARS-CoV-2 S protein for the treatment of COVID-19.

Keywords: angiotensin-converting enzyme 2; bioactive compounds; COVID-19; molecular docking; plant extracts.

jppres_pdf_free

Resumen

Contexto: La proteína spike (S) del SARS-CoV-2, gobernada por su dominio de unión al receptor (RBD), es un actor clave en la mediación de la unión y fusión viral en las células huésped, lo que conduce a la infección y transmisión del COVID-19. La búsqueda de inhibidores eficaces contra la proteína S RBD es esencial para detener la infección del virus.

Objetivos: Evaluar in silico los compuestos bioactivos de Kaempferia parviflora como inhibidores de la proteína S RBD del SARS-CoV-2 y su complejo con el receptor humano de la enzima convertidora de angiotensina 2 (ACE2), y determinar la capacidad del extracto de K. parviflora para inhibir la unión de S RBD y ACE2.

Métodos: Se realizó un acoplamiento molecular para evaluar los potenciales de inhibición de los compuestos bioactivos de K. parviflora frente a la proteína S RBD y su complejo con ACE2. La actividad inhibitoria del extracto de K. parviflora frente a la unión de S RBD y ACE2 se determinó mediante un ensayo de inhibición in vitro.

Resultados: Los compuestos de K. parviflora presentaron potenciales de inhibición frente a la proteína S RBD tanto en estado cerrado como abierto. En la RBD abierta, estos compuestos se unieron a los aminoácidos clave implicados en la unión de la RBD con ACE2, lo que sugiere su posible papel en la prevención de la asociación RBD-ACE2. Los compuestos de K. parviflora también mostraron una gran afinidad hacia el complejo S RBD-ACE2 al interaccionar con los aminoácidos emparejados RBD-ACE2, cruciales para la estabilidad del complejo S RBD-ACE2. Además, el extracto de K. parviflora también demostró actividad inhibidora contra la unión de S RBD y ACE2.

Conclusiones: Este estudio propone a K. parviflora como un prometedor inhibidor de la proteína S del SARS-CoV-2 para el tratamiento de la COVID-19.

Palabras Clave: acoplamiento molecular; compuestos bioactivos; COVID-19; enzima convertidora de angiotensina 2; extractos vegetales.

jppres_pdf_free
 
Citation Format: Supian S, Ahmad MA, Rozano L, Ab Rahman Z (2024) Kaempferia parviflora Wall. ex Baker against SARS-CoV-2 spike protein: In silico and in vitro studies. J Pharm Pharmacogn Res 12(2): 371–381. https://doi.org/10.56499/jppres23.1806_12.2.371
References

Basu A, Sarkar A, Maulik U (2020) Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep 10: 17699. https://doi.org/10.1038/s41598-020-74715-4

Blaising J, Polyak SJ, Pecheur EI (2014) Arbidol as a broad-spectrum antiviral: an update. Antivir Res 107: 84–94. https://doi.org/10.1016/j.antiviral.2014.04.006

Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ (2008) Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem 15: 997–1005. https://doi.org/10.2174/092986708784049658

Cao YC, Deng QX, Dai SX (2020) Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Trav Med Infect Dis 35: 101647. https://doi.org/10.1016/j.tmaid.2020.101647

Chen D, Li H, Li W, Feng S, Deng D (2018) Kaempferia parviflora and its methoxyflavones: Chemistry and biological activities. Evid Based Complement Alternat Med 2018: 4057456. https://doi.org/10.1155/2018/4057456

Elshamy AI, Mohamed TA, Essa AF, Abd-El Gawad AM, Alqahtani AS, Shahat AA, Yoneyama T, Farrag ARH, Noji M, El-Seedi HR, Umeyama A, Paré PW, Hegazy MEF (2019) Recent advances in Kaempferia phytochemistry and biological activity: A comprehensive review. Nutrients 11(10): 2396. https://doi.org/10.3390/nu11102396

Eweas AF, Alhossary AA, Abdel-Moneim AS (2021) Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Front Microbiol 11: 592908. https://doi.org/10.3389/fmicb.2020.592908

Hashiguchi A, Thawtar MS, Duangsodsri T, Kusano M, Watanabe KN (2022) Biofunctional properties and plant physiology of Kaempferia spp.: Status and trends. J Funct Foods 92: 105029. https://doi.org/10.1016/j.jff.2022.105029

Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil S, Kopp M, Hsu A, Borgnia M, Parks R, Haynes BF, Acharya P (2020) Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat Struct Mol Biol 27: 925–933. https://doi.org/10.1101/2020.05.18.102087

Huang Y, Yang C, Xu XF, Xu W, Liu SW (2020) Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41: 1141–1149. https://doi.org/10.1038/s41401-020-0485-4

Huo C, Lee S, Yoo MJ, Lee BS, Jang YS, Kim HK, Lee S, Bae HY, Kim KH (2023) Methoxyflavones from black ginger (Kaempferia parviflora Wall. ex Baker) and their inhibitory effect on melanogenesis in B16F10 mouse melanoma cells. Plants (Basel) 12(5): 1183. https://doi.org/10.3390/plants12051183

Jackson CB, Farzan M, Chen B, Choe H (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23: 3–20. https://doi.org/10.1038/s41580-021-00418-x

Jawad B, Adhikari P, Podgornik R, Ching WY (2021) Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: Combination of molecular dynamics simulation and density functional calculation. J Chem Inf Model 61(9): 4425-4441. https://doi.org/10.1021/acs.jcim.1c00560

Lapaillerie D, Charlier C, Guyonnet-Dupérat V, Murigneux E, Fernandes HS, Martins FG, Magalhães RP, Vieira TF, Richetta C, Subra F, Lebourgeois S, Charpentier C, Descamps D, Visseaux B, Weigel P, Favereaux A, Beauvineau C, Buron F, Teulade-Fichou MP, Routier S, Gallois-Montbrun S, Meertens L, Delelis O, Sousa SF, Parissi V (2022) Selection of bis-indolyl pyridines and triphenylamines as new inhibitors of SARS-CoV-2 cellular entry by modulating the spike protein/ACE2 interfaces. Antimicrob Agents Chemother 66(8): e0008322. https://doi.org/10.1128/aac.00083-22

Padhi AK, Seal A, Khan JM, Ahamed M, Tripathi T (2021) Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: Insights from atomistic simulations. Eur J Pharmacol 894: 173836. https://doi:10.1016/j.ejphar.2020.173836

Punekar M, Kshirsagar M, Tellapragada C, Patil K (2022) Repurposing of antiviral drugs for COVID-19 and impact of repurposed drugs on the nervous system. Microb Pathog 168: 105608. https://doi:10.1016/j.micpath.2022.105608

Ray D, Le L, Andricioaei I (2021) Distant residues modulate conformational opening in SARS-CoV-2 spike protein. Proc Natl Acad Sci USA 118(43): e2100943118. https://doi:10.1073/pnas.2100943118

Saokaew S, Wilairat P, Raktanyakan P, Dilokthornsakul P, Dhippayom T, Kongkaew C, Sruamsiri R, Chuthaputti A, Chaiyakunapruk N (2017) Clinical effects of krachaidum (Kaempferia parviflora): A systematic review. J Evid Based Complement Alternat Med 22(3): 413-428. https://doi.org/10.1177/2156587216669628

Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 117(21): 11727–11734. https://doi.org/10.1073/pnas.2003138117

Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A, Danielson UH (2006) Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 61(8): 717-721.

Sornpet B, Potha T, Tragoolpua Y, Pringproa K (2017) Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med 9: 871-876. https://doi:10.1016/j.apjtm.2017.08.010

Supian S, Ahmad MA, Rozano L, Chandradevan M, Rahman ZA (2022) Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study. J Pharm Pharmacogn Res 10(6): 1103-1116. https://doi.org/10.56499/jppres22.1485_10.6.1103

Tsegay KB, Adeyemi CM, Gniffke EP, Sather DN, Walker JK, Smith SEP (2021) A repurposed drug screen identifies compounds that inhibit the binding of the COVID-19 spike protein to ACE2. Front Pharmacol 12: 685308. https://doi:10.3389/fphar.2021.685308

Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X, Yang X, Shi Z, Deng F, Hu ZA-O, Zhong W, Wang MA-O (2020) The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 6: 28. https://doi.org/10.1038/s41421-020-0169-8

WHO Solidarity Trial Consortium (2021) Repurposed antiviral drugs for Covid-19 — Interim WHO solidarity trial results. N Engl J Med 384: 497–511. https://doi:10.1056/NEJMoa2023184

Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75(1): 89-92. https://doi.org/10.1016/j.fitote.2003.08.017

Yoshino S, Awa R, Miyake Y, Fukuhara I, Sato H, Endo Y, Tomita S, Kuwahara H (2019) Evaluation of the safety of daily consumption of Kaempferia parviflora extract (KPFORCE): A randomized double-blind placebo-controlled trial. J Med Food 22(11): 1168-1174. https://doi.org/10.1089/jmf.2018.4372

Yoshino S, Tagawa T, Awa R, Ogasawara J, Kuwahara H, Fukuhara I (2021) Polymethoxyflavone purified from Kaempferia parviflora reduces visceral fat in Japanese overweight individuals: A randomised, double-blind, placebo-controlled study. Food Function 12: 1603-1613. https://doi.org/10.1039/D0FO01217C

Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F (2021) Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Sig Transduct Target Ther 6: 233. https://doi.org/10.1038/s41392-021-00653-w

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio