MDM2 protein inhibition of Aucklandia costus compounds


J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 748-758, Jul-Aug 2024. DOI: Original Article Anticancer activity of Aucklandia costus Falc. terpenes: Targeting MDM2 protein inhibition for therapeutic advancements [Actividad anticancerígena de los terpenos de Aucklandia costus Falc.: Inhibición de la proteína MDM2 para avances terapéuticos] Theresia Indah Budhy1, Ira Arundina2*, Anis Irmawati2, Sidarningsih2, … Continue reading MDM2 protein inhibition of Aucklandia costus compounds

J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 748-758, Jul-Aug 2024.


Original Article

Anticancer activity of Aucklandia costus Falc. terpenes: Targeting MDM2 protein inhibition for therapeutic advancements

[Actividad anticancerígena de los terpenos de Aucklandia costus Falc.: Inhibición de la proteína MDM2 para avances terapéuticos]

Theresia Indah Budhy1, Ira Arundina2*, Anis Irmawati2, Sidarningsih2, Meircurius Dwi Condro Surboyo3, Cecillia Octavianni Raharjo4, Ciptantyo Septyan Akbar4, Malika Qadira Rahmalia4

1Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.

2Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.

3Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.

4Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.



Context: Protein 53 (p53) is a well-known tumor suppressor protein, while murine double minute 2 (MDM2) acts as a negative regulator of p53, leading to p53 inactivation and cancer development. Aucklandia costus Falc. or Saussurea lappa contains bioactive compounds, particularly terpenoids, known for their anticancer activity against various cancer cells. Targeting the p53-MDM2 protein interaction and inhibiting MDM2 are crucial strategies in cancer therapy.

Aims: To analyze the anticancer properties of A. costus terpenes against MDM2 protein.

Methods: The compounds costunolide, dehydrocostus lactone, lappadilactone, and cynaropicrin were docked with MDM2 (PDB ID: 4HG7) using AutoDockTools 1.5.6. Additionally, the physicochemical, pharmacokinetic, and toxicity properties were predicted using pkCSM.

Results: Lappadilactone exhibited the highest binding energy value, surpassing both the control and the native ligand. Following lappadilactone, cynaropicrin, costunolide, and dehydrocostus lactone displayed decreasing binding energies. When assessing ADMET properties with pkCSM, all compounds exhibited good permeability, suggesting their ability to penetrate intestinal cell membranes, and showed no signs of hepatotoxicity.

Conclusions: Lappadilactone emerges as a promising candidate with high intestinal absorption, distinctive distribution characteristics, and a lack of mutagenic or hepatotoxic effects.

Keywords: ADMET; Aucklandia costus; cancer; docking; MDM2; Saussurea lappa.

PDF Download


Contexto: La proteína 53 (p53) es una conocida proteína supresora de tumores, mientras que la doble minúscula murina 2 (MDM2) actúa como regulador negativo de p53, lo que conduce a su inactivación y al desarrollo del cáncer. Aucklandia costus Falc. o Saussurea lappa contiene compuestos bioactivos, en particular terpenoides, conocidos por su actividad anticancerígena contra diversas células cancerosas. Dirigirse a la interacción proteína p53-MDM2 e inhibir MDM2 son estrategias cruciales en la terapia del cáncer.

Objetivos: Analizar las propiedades anticancerígenas de los terpenos de A. costus frente a la proteína MDM2.

Métodos: Los compuestos costunolide, dehydrocostus lactone, lappadilactone, y cynaropicrin fueron acoplados a MDM2 (PDB ID: 4HG7) usando AutoDockTools 1.5.6. Además, se analizaron las propiedades fisicoquímicas y moleculares de los terpenos. Además, se predijeron las propiedades fisicoquímicas, farmacocinéticas y de toxicidad utilizando pkCSM.

Resultados: Lappadilactona mostró el mayor valor de energía de unión, superando tanto al control como al ligando nativo. Tras la lappadilactona, la cinaropicrina, la costunolida y la lactona dehidrocostus mostraron energías de unión decrecientes. Al evaluar las propiedades ADMET con pkCSM, todos los compuestos mostraron una buena permeabilidad, lo que sugiere su capacidad para penetrar en las membranas celulares intestinales, y no mostraron signos de hepatotoxicidad.

Conclusiones: La lapadilactona emerge como un candidato prometedor con alta absorción intestinal, características de distribución distintivas y ausencia de efectos mutagénicos o hepatotóxicos.

Palabras Clave: ADMET; Aucklandia costus; cáncer; docking; MDM2; Saussurea lappa.

PDF Download


Citation Format: Budhy TI, Arundina I, Irmawati A, Sidarningsih, Surboyo MDC, Raharjo CO, Akbar CS, Rahmalia MQ (2024) Anticancer activity of Aucklandia costus Falc. terpenes: Targeting MDM2 protein inhibition for therapeutic advancements. J Pharm Pharmacogn Res 12(4): 748–758.

Aja PM, Agu PC, Ezeh EM, Awoke JN, Ogwoni HA, Deusdedit T, Ekpono EU, Igwenyi IO, Alum EU, Ugwuja EI, Ibiam AU, Afiukwa CA, Adegboyega AE (2021) Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: De novo synthesis of test compounds, molecular docking, and ADMET studies. Bull Natl Res Cent 45: 99.

Alotaibi AA, Bepari A, Assiri RA, Niazi SK, Nayaka S, Rudrappa M, Nagaraja SK, Bhat MP (2021) Saussurea lappa exhibits anti-oncogenic effect in hepatocellular carcinoma, HepG2 cancer cell line by Bcl-2 mediated apoptotic pathway and mitochondrial cytochrome C release. Curr Issues Mol Biol 43(2): 1114-1132.

Amara U, Mashwani ZR, Khan A, Laraib S, Wali R, Sarwar U, Ain QT, Shakeel S, Rahimullah, Sohail (2017) Conservation status and therapeutic potential of Saussurea lappa: An overview. Am J Plant Sci 8(3): 602–614.

Anil B, Riedinger C, Endicott JA, Noble MEM (2013) The structure of an MDM2-Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy reduction mutant. Acta Cryst D69: 1358-1366.

Ansari S, Hasan K, Bhat S (2021) Anticancer, antioxidant, and hepatoprotective activity of Saussurea lappa, C.B. Clarke (Qust) on human hepatoma cell line. J Cancer Res Ther 17(2): 499-503.

Arundina I, Frimayanti N, Surboyo MDC, Budhy TI, Iskandar B, Pradana A, Rahmaputry T (2023) In silico study of liquid smoke rice husk against COVID-19. Eur J Dent 17(2): 492-496.

BinShabaib MS, ALHarthi SS, Helaby BS, AlHefdhi MH, Mohammed AE, Aabed K (2022) Comparison of the anti-bacterial efficacy of Saussurea costus and Melaleuca alternifolia against Porphyromonas gingivalis, Streptococcus mutans, and Enterococcus faecalis: An in-vitro study. Front Oral Health 3: 950840.

Biswas P, Bibi S, Yousafi Q, Mehmood A, Saleem S, Ihsan A, Dey D, Hasan Zilani MN, Hasan MN, Saleem R, Awaji AA, Fahmy UA, Abdel-Daim MM (2023) Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach. Molecules 28: 2977.

Dhyani P, Sati P, Sharma E, Attri DC, Bahukhandi A, Tynybekov B, Szopa A, Sharifi-Rad J, Calina D, Suleria HAR, Cho WC (2022) Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies. Cancer Cell Int 22: 305.

El Aissouq A, Chedadi O, Bouachrine M, Ouammou A (2021) Identification of novel SARS- CoV-2 inhibitors: A structure-based virtual screening approach. J Chem 2021: 1901484.

Flores-Holguín N, Frau J, Glossman-Mitnik D (2021) Computational pharmacokinetics report, ADMET study and conceptual DFT-based estimation of the chemical reactivity properties of marine cyclopeptides. ChemistryOpen 10(11): 1142-1149.

Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P (2019) In silico ADME and toxicity prediction of ceftazidime and its impurities. Front Pharmacol 10: 434.

Hassan R, Masoodi MH (2020) Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr Tradit Med 6(1): 13–23.

Honma M (2020) An assessment of mutagenicity of chemical substances by (quantitative) structure-activity relationship. Genes Environ 4: 23.

Huang H, Park S, Zhang H, Park S, Kwon W, Kim E, Zhang X, Jang S, Yoon D, Choi S-K, Yi J-K, Kim S-H, Dong Z, Lee M-H, Ryoo Z, Kim MO (2021) Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. J Exp Clin Cancer Res 40: 114.

IARC (2020) Estimated Number of New Cases from 2020 to 2040 Bs, age [0–85+]. [Accessed on March 11, 2024].

Ivanović V, Rančić M, Arsić B, Pavlović A (2020) Lipinski’s rule of five, famous extensions and famous exceptions. Pop Sci Artic 3(1): 171-177.

Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA (2022) Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers 14(5): 1100.

Khoswanto C, Siswandono (2022) Molecular docking analysis of quercetin and diclofenac as Cox-2 potential inhibitors. J Int Dent Med Res 15(2): 552-555.

Latha G, Suchetha A, Darshan BM, Apoorva SM, Divya B, Vinaya Shree MP (2016) Host modulation therapy- An innovative paradigm in dentistry. J Res Med Dent Sci 4(1): 10-17.

Li Q, Wang Z, Xie Y, Hu H (2020) Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed Pharmacother 125: 109955.

López-Camacho E, García-Godoy MJ, García-Nieto J, Nebro AJ, Aldana-Montes JF (2016) A New Multi-objective Approach for Molecular Docking Based on RMSD and Binding Energy. In: Botón-Fernández M, Martín-Vide C, Santander-Jiménez S, Vega-Rodríguez MA (eds). Algorithms for Computational Biology. AlCoB 2016. Lecture Notes in Computer Science, vol 9702. Springer, Cham.

Mangande MM, Awaluddin A, Nur S (2020) In silico study of aglycon curculigoside A and its derivatives as α-amylase inhibitors. Indones J Pharm Sci Technol 7(1): 29-37.

Muhseen ZT, Li G (2020) Promising terpenes as natural antagonists of cancer: An in-silico approach. Molecules 25(1): 155.

Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R (2013) The MDM2-p53 pathway revisited. J Biomed Res 27(4): 254-271.

Nugraha AP, Sibero MT, Nugraha AP, Puspitaningrum MS, Rizqianti Y, Rahmadhani D, Kharisma VD, Ramadhani NF, Ridwan RD, Binti Tengku Ahmad Noor TNE, Ernawati DS (2023) Anti-periodontopathogenic ability of mangrove leaves (Aegiceras corniculatum) ethanol extract: In silico and in vitro study. Eur J Dent 17(1): 46–56.

Patel AA, Amanullah M, Elsaid FG, Soliman T, Eissa M, Alothaid H (2020) In-Vitro evaluation of anti-cancer and genotoxic potential of medicinal herb Saussurea lappa extract in human cancer cell lines. Eur J Mol Clin Med 7(9): 736–747.

Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9): 4066–4072.

Pratama MRF, Poerwono H, Siswodihardjo S (2021) Introducing a two‐dimensional graph of docking score difference vs. similarity of ligand‐receptor interactions. Indones J Biotechnol 26(1): 54–60.

Priatna PA, Pratama RR, Widyowati R, Sukardiman (2022) Molecular docking estrogen receptor alpha antagonist and P53-MDM2 inhibitor, ADMET prediction of alkaloid compound from Mitragyna speciosa for breast cancer therapy. Pharmacogn J 14(6s): 912–916.

Purwanto BT, Hardjono S, Widiandani T, Nasyanka AL, Siswanto I (2021) In silico study and ADMET prediction of N-(4-fluorophenylcarbamothioyl) benzamide derivatives as cytotoxic agents. J Hunan Univ Sci 48(2): 79-83.

Rizvi SM, Shazi S, Mohd H (2013) A simple click by click protocol to perform docking. EXCLI Journal 12: 831–857.

Terefe EM, Ghosh A (2022) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of phytochemicals isolated from Croton dichogamus against the HIV-1 reverse transcriptase. Bioinform Biol Insights 16: 1-20.

WHO (2022) World Health Organization. Cancer

Zahara K, Tabassum S, Sabir S, Arshad M, Qureshi R, Amjad MS, Chaudhari SK (2014) A review of therapeutic potential of Saussurea lappa-An endangered plant from Himalaya. Asian Pac J Trop Med 7(Suppl. 1): S60–S69.

Zhao Y, Aguilar A, Bernard D, Wang S (2015) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment. J Med Chem 58(3): 1038-1052.

Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z (2022) Targeting p53– MDM2 interaction by small-molecule inhibitors: Learning from MDM2 inhibitors in clinical trials. J Hematol Oncol 15: 91.

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio