Miliusa velutina as potential plant for acne treatment

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 243-254, Mar-Apr 2024. DOI: https://doi.org/10.56499/jppres23.1704_12.2.243 Original Article Antioxidant, anti-inflammatory, and antibacterial activities against acne-causing bacteria of Miliusa velutina (A.DC.) Hook.f. & Thomson extracts [Actividad antioxidante, antiinflamatoria y antibacteriana contra las bacterias causantes del acné de los extractos de Miliusa velutina (A.DC.) Hook.f. & Thomson] Phornphan Phrompanya1,2, … Continue reading Miliusa velutina as potential plant for acne treatment

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 243-254, Mar-Apr 2024.

DOI: https://doi.org/10.56499/jppres23.1704_12.2.243

Original Article

Antioxidant, anti-inflammatory, and antibacterial activities against acne-causing bacteria of Miliusa velutina (A.DC.) Hook.f. & Thomson extracts

[Actividad antioxidante, antiinflamatoria y antibacteriana contra las bacterias causantes del acné de los extractos de Miliusa velutina (A.DC.) Hook.f. & Thomson]

Phornphan Phrompanya1,2, Wararut Buncharoen1, Yingmanee Tragoolpua1, Kanokporn Saenphet1*

1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

2Ph.D.’s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.

*E-mail: kanokporn.saenphet@cmu.ac.th, stit.lilo123@gmail.com

Abstract

Context: Acne is often associated with bacterial infection, inflammation, and oxidative stress. In Thailand, Miliusa velutina has traditionally been used to relieve pain and to heal wounds. Given its biological properties, M. velutina extracts may represent an alternative approach to treat acne.

Aims: To characterise M. velutina extracts regarding their antioxidant and anti-inflammatory properties and antibacterial activity against acne-causing bacteria.

Methods: We prepared crude methanolic and aqueous extracts of M. velutina leaves and stem bark by maceration. We evaluated the antioxidant activity of the extracts by using four in vitro methods and determined the total phenolic and flavonoid contents. We tested the anti-inflammatory activity of the extracts by examining their ability to inhibit nitric oxide production in RAW 264.7 macrophages. We tested the antibacterial activity against acne-causing bacteria by using the agar diffusion method and by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC).

Results: The methanolic bark extract showed potent antioxidant properties, denoted by its ability to scavenge the ABTS and DPPH radicals and its iron-reducing power and total antioxidant activity. The methanolic leaf extract presented the best ability to inhibit nitric oxide production, with a half maximal inhibitory concentration (IC50) of 7.20 ± 1.92 µg/mL. Additionally, M. velutina extracts exhibited antibacterial activity against Cutibacterium acnes, Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant S. aureus and Pseudomonas aeruginosa, with the MIC and MBC ranging from 0.49 to 62.50 mg/mL.

Conclusions: These findings indicate that M. velutina extract can be used as a novel therapeutic agent for acne treatment owing to its antioxidant, anti-inflammatory and antibacterial properties.

Keywords: antioxidant; Cutibacterium acnes; nitric oxide; plant extract; RAW 264.7 cell.

jppres_pdf_free

Resumen

Contexto: El acné se asocia a menudo con infección bacteriana, inflamación y estrés oxidativo. En Tailandia, la Miliusa velutina se ha utilizado tradicionalmente para aliviar el dolor y curar heridas. Dadas sus propiedades biológicas, los extractos de M. velutina pueden representar un enfoque alternativo para tratar el acné.

Objetivos: Caracterizar los extractos de M. velutina en cuanto a sus propiedades antioxidantes y antiinflamatorias y su actividad antibacteriana contra las bacterias causantes del acné.

Métodos: Se prepararon extractos acuosos y metanólicos crudos de hojas y corteza del tallo de M. velutina por maceración. Evaluamos la actividad antioxidante de los extractos mediante cuatro métodos in vitro y determinamos el contenido total de fenoles y flavonoides. Probamos la actividad antiinflamatoria de los extractos examinando su capacidad para inhibir la producción de óxido nítrico en macrófagos RAW 264.7. Probamos la actividad antibacteriana contra las bacterias causantes del acné utilizando el método de difusión en agar y determinando la concentración inhibitoria mínima (CIM) y la concentración bactericida mínima (CBM).

Resultados: El extracto metanólico de corteza mostró potentes propiedades antioxidantes, denotadas por su capacidad para eliminar los radicales ABTS y DPPH y su poder reductor del hierro y actividad antioxidante total. El extracto metanólico de hoja presentó la mejor capacidad para inhibir la producción de óxido nítrico, con una concentración inhibitoria media máxima (IC50) de 7,20 ± 1,92 µg/mL. Además, los extractos de M. velutina mostraron actividad antibacteriana contra Cutibacterium acnes, Staphylococcus epidermidis, Staphylococcus aureus, S. aureus resistente a la meticilina y Pseudomonas aeruginosa, con una CMI y una CBM que oscilaron entre 0,49 y 62,50 mg/mL.

Conclusiones: Estos resultados indican que el extracto de M. velutina puede utilizarse como un nuevo agente terapéutico para el tratamiento del acné debido a sus propiedades antioxidantes, anti-inflamatorias y antibacterianas.

Palabras Clave: antioxidante; célula RAW 264.7; Cutibacterium acnes; extracto vegetal; óxido nítrico.

jppres_pdf_free
 
Citation Format: Phrompanya P, Buncharoen W, Tragoolpua Y, Saenphet K (2024) Antioxidant, anti-inflammatory, and antibacterial activities against acne-causing bacteria of Miliusa velutina (A.DC.) Hook.f. & Thomson extracts. J Pharm Pharmacogn Res 12(2): 243–254. https://doi.org/10.56499/jppres23.1704_12.2.243
References

Abaffy P, Tomankova S, Naraine R, Kubista M, Sindelka R (2019) The role of nitric oxide during embryonic wound healing. BMC Genom 20(1): 815. https://doi.org/10.1186/s12864-019-6147-6

Aburjai T, Natsheh FM (2003) Plants used in cosmetics. Phytother Res 17(9): 987–1000. https://doi.org/10.1002/ptr.1363

Aliyu AB, Ibrahim MA, Musa AM, Musa AO, Kiplimo JJ, Oyewale AO (2013) Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae). Acta Pol Pharm 70(1): 115–121.

Amenu D, Andualem B (2014) Synergistic antibacterial effect of Sida rhombifolia leaf extracts and Apis mellifera honey against standard and drug resistant clinical isolated pathogenic bacteria. World Appl Sci J 32: 1600–1610. https://doi.org/10.5829/idosi.wasj.2014.32.08.146

Anh VTT, Trang DTX, Kamei K, Linh TC, Pham-Khanh NH, Tuan NT, Danh LT (2021) Phytochemicals, antioxidant and antidiabetic activities of extracts from Miliusa velutina flowers. Horticulturae 7(12): 555. https://doi.org/10.3390/horticulturae7120555

Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019) Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants (Basel) 8(4): 96. https://doi.org/10.3390/plants8040096

Bhambri S, Del Rosso JQ, Bhambri A (2009) Pathogenesis of acne vulgaris: Recent advances. J Drugs Dermatol 8(7): 615–618. https://pubmed.ncbi.nlm.nih.gov/19588637/

Briganti S, Picardo M (2003) Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol 17(6): 663–669. https://doi.org/10.1046/j.1468-3083.2003.00751.x

Choi SY, Ko HC, Ko SY, Hwang JH, Park JG, Kang SH, Han SH, Yun SH, Kim SJ (2007) Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biol Pharm Bull 30(4): 772–778. https://doi.org/10.1248/bpb.30.772

Collins CH, Lyne PM, Grange JM (1995) Collins and Lyne’s Microbiological methods, 7th edn. Butterworth-Heinemann Ltd., UK, pp. 178–205.

Debalke D, Birhan M, Kinubeh A, Yayeh M (2018) Assessments of antibacterial effects of aqueous-ethanolic extracts of Sida rhombifolia's aerial part. ScientificWorldJournal 2018: 8429809. https://doi.org/10.1155/2018/8429809

Dessalegn E, Bultosa G, Desse Haki G, Rupasinghe HPV (2020) Effect of extraction solvents on total phenolic contents and in vitro antioxidant activity of the leaves of Lippia adoensis var. Koseret Sebsebe. Food Sci Qual Manage 94: 29–37. https://doi.org/10.7176/FSQM/94-04

Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016: 1245049. https://doi.org/10.1155/2016/1245049

Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, Devkota HP (2019) Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S Afr J Bot 120: 261–267. https://doi.org/https://doi.org/10.1016/j.sajb.2018.07.003

Fabbrocini G, Annunziata MC, D'Arco V, De Vita V, Lodi G, Mauriello MC, Pastore F, Monfrecola G (2010) Acne scars: pathogenesis, classification and treatment. Dermatol Res Pract 2010: 893080. https://doi.org/10.1155/2010/893080

Fahad TA, Kuddus MR, Hasan CM (2020) Phytochemical and biological studies of bark extract of Miliusa velutina (Dunal) Hook. f. & Thomson. Dhaka Univ J Pharm Sci 19(2): 125–131. https://doi.org/10.3329/dujps.v19i2.50627

García Díaz J, González Fernández R, Escalona Arranz JC, Llauradó Maury G, Méndez Rodríguez D, De Vooght L, Molina E, Tuenter E, Pieters L, Cos P (2022) Inhibitory effect on nitric oxide release in LPS-stimulated macrophages and free radical scavenging activity of Croton linearis Jacq. leaves. Antioxidants (Basel) 11(10): 1915. https://doi.org/10.3390/antiox11101915

Ghasemzadeh A, Jaafar H (2011) Anticancer and antioxidant activities of Malaysian young ginger (Zingiber officinale Roscoe) varieties grown under different CO2 concentration. J Med Plant Res 5: 3247–3255.

Harper JC (2004) An update on the pathogenesis and management of acne vulgaris. J Am Acad Dermatol 51(Suppl. 1): S36–S38. https://doi.org/10.1016/j.jaad.2004.01.023

Hermhuk S, Sungpalee W, Atnaseo C, Pothawong N, Sri-Ngernyuang K (2018) Plants utilization of Tai Lue at Bann Tapapao community forest Mae Tha district, Lamphun province. Thai J For 37(1): 111–120.

Hussein R, El-Anssary A (2018) Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. IntechOpen. http://dx.doi.org/10.5772/intechopen.76139

Ismael J, Dessalegn E, Fereja WM (2021) In vitro antioxidant and antibacterial activity of leaf extracts of Measa lanceolata. Int J Food Prop 24(1): 702–712. https://doi.org/10.1080/10942912.2021.1917608

Jalian HR, Takahashi S, Kim J (2007) 7.32 - Overview of Dermatological Diseases. In: Taylor JB, Triggle DJ (eds) Comprehensive Medicinal Chemistry II. Amsterdam: Elsevier, pp. 935–955. https://doi.org/10.1016/B0-08-045044-X/00235-2

Lee SJ, Son KH, Chang HW, Do JC, Jung KY, Kang SS, Kim HP (1993) Anti-inflammatory activity of naturally occurring flavone and flavonol glycosides. Arch Pharm Res 16(1): 25–28. https://doi.org/10.1007/BF02974123

Loganayaki N, Siddhuraju P, Manian S (2013) Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J Food Sci Technol 50(4): 687–695. https://doi.org/10.1007/s13197-011-0389-x

Mfotie Njoya E, Munvera AM, Mkounga P, Nkengfack AE, McGaw LJ (2017) Phytochemical analysis with free radical scavenging, nitric oxide inhibition and antiproliferative activity of Sarcocephalus pobeguinii extracts. BMC Complement Altern Med 17(1): 199. https://doi.org/10.1186/s12906-017-1712-5

Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2): 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

Nasri H, Bahmani M, Shahinfard N, Moradi Nafchi A, Saberianpour S, Rafieian Kopaei M (2015) Medicinal plants for the treatment of acne vulgaris: A review of recent evidences. Jundishapur J Microbiol 8(11): e25580. https://doi.org/10.5812/jjm.25580

Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V (2022) From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 36(1): 33–52. https://doi.org/10.1002/ptr.7275

Nur S, Mubarak F, Jannah C, Winarni DA, Rahman DA, Hamdayani LA, Sami F (2019) Total phenolic and flavonoid compounds, antioxidant and toxicity profile of extract and fractions of paku atai tuber (Angiopteris ferox Copel). Food Res 3(6): 734–740. https://doi.org/10.26656/fr.2017.3(6).135

Ordoñez AAL, Gomez JD, Vattuone MA, lsla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97(3): 452–458. https://doi.org/10.1016/j.foodchem.2005.05.024

Oyanaizu M (1986) Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44(6): 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

Paliwal S, Sundaram J, Mitragotri S (2005) Induction of cancer-specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound. Br J Cancer 92(3): 499-502. https://doi.org/10.1038/sj.bjc.6602364

Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: An overview. J Nutr Sci 5: e47. https://doi.org/10.1017/jns.2016.41

Pizzorno JE, Murray MT (2020) Textbook of Natural Medicine-E-Book, 15th edn. Elsevier Health Sciences, Churchill Livingstone publisher, London, UK, pp. 1–51.

Promchai T, Saesong T, Ingkaninan K, Laphookhieo S, Pyne SG, Limtharakul T (2018) Acetylcholinesterase inhibitory activity of chemical constituents isolated from Miliusa thorelii. Phytochem Lett 23: 33–37. https://doi.org/10.1016/j.phytol.2017.11.010

Promgool T, Kanokmedhakul K, Tontapha S, Amornkitbamrung V, Tongpim S, Jamjan W, Kanokmedhakul S (2019) Bioactive homogentisic acid derivatives from fruits and flowers of Miliusa velutina. Fitoterapia 134: 65–72 https://doi.org/10.1016/j.fitote.2019.02.007

Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, Smith PT, Shanmugam K, Münch G, Wu MJ, Satyanarayanan M, Vysetti B (2012) Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern Med 12: 173. https://doi.org/10.1186/1472-6882-12-173

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3

Sawasdee K, Chaowasku T, Likhitwitayawuid K (2010) New neolignans and a phenylpropanoid glycoside from twigs of Miliusa mollis. Molecules 15(2): 639–648. https://doi.org/10.3390/molecules15020639

Shabir G, Anwar F, Sultana B, Khalid ZM, Afzal M, Khan QM, Ashrafuzzaman M (2011) Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules 16(9): 7302–7319. https://doi.org/10.3390/molecules16097302

Shahinuzzaman M, Yaakob Z, Anuar FH, Akhtar P, Kadir NHA, Hasan AKM, Sobayel K, Nour M, Sindi H, Amin N, Sopian K, Akhtaruzzaman Md (2020) In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci Rep 10(1): 10852. https://doi.org/10.1038/s41598-020-67765-1

Shan B, Cai YZ, Brooks JD, Corke H (2007) The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 117(1): 112–119. https://doi.org/10.1016/j.ijfoodmicro.2007.03.003

Sivapriya M, Dinesha R, Harsha R, Gowda SST, Srinivas L (2011) Antibacterial activity of different extracts of sundakai (Solanum torvum) fruit coat. Int J Biol Chem 5: 61–67. https://doi.org/10.3923/ijbc.2011.61.67

Smit N, Vicanova J, Pavel S (2009) The hunt for natural skin whitening agents. Int J Mol Sci 10(12): 5326–5349. https://doi.org/10.3390/ijms10125326

Son NT (2019) Genus Miliusa: A review of phytochemistry and pharmacology. Evid Based Complementary Altern Med 2019: 8314693. https://doi.org/10.1155/2019/8314693

Susanti D, Sirat HM, Ahmad F, Ali RM, Aimi N, Kitajima M (2007) Antioxidant and cytotoxic flavonoids from the flowers of Melastoma malabathricum L. Food Chem 103(3): 710–716. https://doi.org/10.1016/j.foodchem.2006.09.011

Thao NP, Luyen BT, Tai BH, Cuong NM, Kim YC, Minh CV, Kim YH (2015) Chemical constituents of Miliusa balansae leaves and inhibition of nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Bioorg Med Chem Lett 25(18): 3859–3863. https://doi.org/10.1016/j.bmcl.2015.07.056

Thiboutot D, Gollnick H, Bettoli V, Dréno B, Kang S, Leyden JJ, Shalita AR, Lozada VT, Berson D, Finlay A, Goh CL, Herane MI, Kaminsky A, Kubba R, Layton A, Miyachi Y, Perez M, Martin JP, Ramos-E-Silva M, See JA, Shear N, Wolf JJr (2009) New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. J Am Acad Dermatol 60(Suppl. 5): S1–S50. https://doi.org/10.1016/j.jaad.2009.01.019

Trang Đ, Bui H, Tran L, Luu D, Nguyen T (2020a) Antioxidant and hepatoprotective potentials of Miliusa velutina stem bark extract. VNUHCM J Nat Sci 4(3): 633–642. https://doi.org/https://doi.org/10.32508/stdjns.v4i3.880

Trang Đ, Linh T, Tuân N (2020b) Anti-inflammatory and antioxidant activities of Miliusa velutina leaves extracts. J Anal Sci Phys Biol 25: 40–45.

Umamaheswari M, Chatterjee TK (2007) In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr J Tradit Complement Altern Med 5(1): 61–73.

Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6): 300–312. https://doi.org/10.1016/j.tifs.2005.12.004

Williams RO, Paleolog E, Feldmann M (2007) Cytokine inhibitors in rheumatoid arthritis and other autoimmune diseases. Curr Opin Pharmacol 7(4): 412–417. https://doi.org/10.1016/j.coph.2007.06.001

Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agr Food Chem 51(3): 609–614. https://doi.org/10.1021/jf020782a

Wongsa N, Kanokmedhakul K, Boonmak J, Youngme S, Kanokmedhakul S (2017) Bicyclic lactones and racemic mixtures of dimeric styrylpyrones from the leaves of Miliusa velutina. RSC Adv 7(41): 25285–25297. https://doi.org/10.1039/C7RA01609C

Xu X-Y, Tsang SW, Guan Y-F, Liu KL, Pan WH, Lam CS, Lee KM, Xia YX, Xie WJ, Wong WY, Lee MML, Tai WCS, Zhang HJ (2019) In vitro and in vivo antitumor effects of plant-derived Miliusanes and their induction of cellular senescence. J Med Chem 62(3): 1541–1561. https://doi.org/10.1021/acs.jmedchem.8b01742

Zagórska-Dziok M, Ziemlewska A, Bujak T, Nizioł-Łukaszewska Z, Hordyjewicz-Baran Z (2021) Cosmetic and dermatological properties of selected Ayurvedic plant extracts. Molecules 26(3): 614. https://doi.org/10.3390/molecules26030614

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio