Modified pectins with activity against colon cancer

J. Pharm. Pharmacogn. Res., vol. 10, no. 4, pp. 616-651, July-August 2022.

Review

Pectinas modificadas con actividad contra el cáncer de colon: Una revisión sistemática de 2010-2021

[Modified pectins with activity against colon cancer: A systematic review from 2010-2021]

Matías Pérez-Loyola, Marisela Valdés-González, Gabino Garrido*

Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile.

*E-mail: gabino.garrido@ucn.cl

Abstract

Context: Colon cancer is a serious disease that can be hereditary or arise from exposure to carcinogens in unhealthy food. Current chemotherapy treatment has serious cardiovascular adverse effects, is not always effective, and there may be resistance to treatment. Recently, studies have found an optimal anticancer activity of modified pectins on colon cancer.

Aims: To systematically review the scientific literature, with PRISMA guidelines, of the articles found in the last 11 years, on the potential anticancer effects of pectins on colon cancer.

Methods: PRISMA and Rayyan were used for the selection of studies and a standardized search was followed in four databases with the terms: modified pectins, cancer, therapy. Data extraction was performed using Excel and relevant information on anticancer activity was collected.

Results: In total, 16 articles were included, finding seven in vitro, three mixed and six in vivo studies. The anticancer activity and optimization of the formulation, encapsulation, release of pectin-based drugs were evaluated by different methods in 12 and six articles, respectively. Most of the studies were classified as high quality with the AXIS tool. Furthermore, 11 out of 12 articles showed positive effects of modified pectins on colon cancer both in vivo and in vitro and six out of six articles found positive effects on pectin-based formulations.

Conclusions: The evidence found suggests a beneficial effect of modified pectins on colon cancer, however, more in vivo studies are required.

Keywords: colon cancer; modified pectin; systematic review; therapy.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Resumen

Contexto: El cáncer de colon es una patología grave que puede ser hereditaria o surgir por exposición a carcinógenos en la alimentación no saludable. El tratamiento mediante quimioterapia actual posee efectos adversos cardiovasculares graves, no siempre es efectivo y puede existir resistencia al tratamiento. Recientemente, estudios han encontrado una óptima actividad anticancerígena de las pectinas modificadas sobre cáncer de colon.

Objetivos: Revisar sistemáticamente la literatura científica, con directrices PRISMA, de los artículos encontrados en los últimos 11 años, sobre los potenciales efectos anticancerígenos de las pectinas sobre el cáncer de colon.

Métodos: Se utilizó PRISMA y Rayyan para la selección de estudios y se siguió una búsqueda estandarizada en cuatro bases de datos con los términos: modified pectins, cancer, therapy. La extracción de datos se realizó mediante Excel y se recopilo información relevante sobre la actividad anticancerígena.

Resultados: En total, se incluyeron 16 artículos, encontrándose siete estudios in vitro, tres mixtos y seis in vivo. Se evaluó por diferentes métodos la actividad anticancerígena y la optimización de la formulación, encapsulación, liberación de fármacos a base de pectina, en 12 y seis artículos, respectivamente. Mayoritariamente, los estudios fueron clasificados de alta calidad con la herramienta AXIS. Además, 11 de 12 artículos mostraron efectos positivos de las pectinas modificadas sobre el cáncer de colon tanto in vivo como in vitro y seis de seis artículos obtuvieron efectos positivos en las formulaciones a base de pectina.

Conclusiones: La evidencia encontrada sugiere un efecto beneficioso de las pectinas modificadas sobre el cáncer de colon, sin embargo, se requieren más estudios in vivo.

Palabras Clave: cáncer de colon; pectina modificada; revisión sistemática; terapia.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Citation Format: Pérez-Loyola M, Valdés-González M, Garrido G (2022) Pectinas modificadas con actividad contra el cáncer de colon: Una revisión sistemática de 2010-2021. [Modified pectins with activity against colon cancer: A systematic review from 2010-2021]. J Pharm Pharmacogn Res 10(4): 616–651.
References

Aldulaymi R, Al Meslamani AZ (2022) Systematic review of the safety and efficacy of antazoline in the treatment of atrial fibrillation. J Pharm Pharmacogn Res 10(1): 147–157.

Almeida EAMS, Facchi SP, Martins AF, Nocchi S, Schuquel ITA, Nakamura CV, Rubira AF, Muniz EC (2015) Synthesis and characterization of pectin derivative with antitumor property against Caco-2 colon cancer cells. Carbohydr Polym 115: 139–145.

American Cancer Society [Internet]. Tratamiento. 2018. Disponible en: https://www.cancer.org/es/cancer/cancer-de-colon-o-recto/tratamiento.html [Consultado 7 noviembre 2021].

Arya M, Singh P, Tripathi CB, Parashar P, Singh M, Kanoujia J, Guleria A, Kaithwas G, Gupta KP, Saraf SA (2019) Pectin-encrusted gold nanocomposites containing phytic acid and jacalin: 1,2-dimethylhydrazine-induced colon carcinogenesis in Wistar rats, PI3K/Akt, COX-2, and serum metabolomics as potential targets. Drug Deliv Transl Res 9(1): 53–65.

Basak S, Annapure US (2022) Trends in “green” and novel methods of pectin modification – A review. Carbohydr Polym 278: 118967.

BeMiller JN (1967) Acid-catalyzed hydrolysis of glycosides. Adv Carbohydr Chem 22: 25–108.

Biagi G, Cipollini I, Grandi M, Zaghini G (2010) Influence of some potential prebiotics and fibre-rich foodstuffs on composition and activity of canine intestinal microbiota. Animal Feed Sci Technol 159(1): 50–58.

Blachier F, Beaumont M, Andriamihaja M, Davila AM, Lan A, Grauso M, Armand L, Benamouzig R, Tomé D (2017) Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. Am J Pathol 187(3): 476–486.

Cao J, Yang J, Wang Z, Lu M, Yue K (2020) Modified citrus pectins by UV/H2O2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydr Polym 247: 116742.

Cervantes A (2018) Resistencia a la quimioterapia: mecanismos y vías de modulación. Investigación sobre el cáncer en España: de la Biología Molecular a la clínica, pp. 93–99.

Chang C, Wang ZC, Quan CY, Cheng H, Cheng SX, Zhang XZ, Zhuo RX (2007) Fabrication of a novel pH-sensitive glutaraldehyde cross-linked pectin nanogel for drug delivery. J Biomater Sci Polym Ed 18(12): 1591–1599.

Chang WC, Chapkin RS, Lupton JR (1997) Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 18(4): 721–730.

Charles River (2021) Modelos de Investigación y Servicios. Charles River Acquires Vigene Biosciences. Disponible en: https://www.criver.com/es [Consultado 18 de diciembre del 2021].

Chasquibol-Silva N, Arroyo-Benites E, Morales-Gomero J (2008) Extracción y caracterización de pectinas obtenidas a partir de frutos de la biodiversidad peruana. Ing Ind 26: 175–199.

Cheewatanakornkool K, Niratisai S, Manchun S, Dass CR, Sriamornsak P (2017) Characterization and in vitro release studies of oral microbeads containing thiolated pectin–doxorubicin conjugates for colorectal cancer treatment. Asian J Pharm Sci 12(6): 509–520.

Chen L, Hao M, Yan J, Sun L, Tai G, Cheng H, Zhou Y (2021) Citrus-derived DHCP inhibits mitochondrial complex II to enhance TRAIL sensitivity via ROS-induced DR5 upregulation. J Biol Chem 296: 100515.

Cheng H, Li S, Fan Y, Gao X, Hao M, Wang J, Zhang X, Tai G, Zhou Y (2011) Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Med Oncol 28(1): 175–181.

Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR (2012) A chemoprotective fish oil/pectin diet enhances apoptosis via Bcl-2 promoter methylation in rat azoxymethane-induced carcinomas. Exp Biol Med 237(12): 1387–1393.

Clapper ML, Chang WL, Cooper HS (2020) Dysplastic aberrant crypt foci: biomarkers of early colorectal neoplasia and response to preventive intervention. Cancer Prev Res 13(3): 229–240.

Comoglu T, Savaşer A, Ozkan Y, Gönül N, Baykara T (2007) Enhancement of ketoprofen bioavailability by formation of microsponge tablets. Pharmazie 62(1): 51–54.

Courts FL (2013) Profiling of modified citrus pectin oligosaccharide transport across Caco-2 cell monolayers. PharmaNutrition 1(1): 22–31.

Dahlin AM, Palmqvist R, Henriksson ML, Jacobsson M, Eklöf V, Rutegård J, Oberg A, Van Guelpen BR (2010) The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res 16(6): 1845–1855.

Das S, Ng KY, Ho PC (2011) Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: In vitro and in vivo evaluations. J Drug Target 19(6): 446–457.

Das S, Ng KY, Ho PC (2010) Formulation and optimization of zinc pectinate beads for the controlled delivery of resveratrol. AAPS PharmSciTech 11(2): 729–742.

do Prado SBR, Shiga TM, Harazono Y, Hogan VA, Raz A, Carpita NC, Fabi JP (2019) Migration and proliferation of cancer cells in culture are differentially affected by molecular size of modified citrus pectin. Carbohydr Polym 211: 141–151.

Downes MJ, Brennan ML, Williams HC, Dean RS (2016) Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 6: e011458.

Eliaz I, Raz A (2019) Pleiotropic effects of modified citrus pectin. Nutrients 11(11): 2619.

Escobar L, Rivera A, Aristizabal FA (2010) Comparison of resazurin and MTT methods on studies of citotoxicity in human tumor cell lines. Vitae 17(1): 67–74.

Escobar ML (2007) Estudio comparativo de los métodos de rezasurina y MTT empleados en la evaluación de citotoxicidad sobre tres líneas celulares tumorales [tesis de pregrado]. Pontificia Universidad Javeriana, Bogotá, Colombia.

Escobar ML, Aristizabal FA, Alfonso P (2009) Valoración de dos métodos de tinción en ensayos de citotoxicidad sobre líneas celulares tumorales. Rev Col de Biotecnol 11(2): 49–56.

Fan L, Zuo S, Tan H, Hu J, Cheng J, Wu Q, Nie SP (2020) Preventive effects of pectin with various degrees of esterification on ulcerative colitis in mice. Food Funct 11: 2886–2897.

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. (2020) Global Cancer Observatory: Cancer Today. Lyon: Centro Internacional de Investigaciones sobre el cáncer. Disponible en: https://gco.iarc.fr/today [Consultado el 09 de junio del 2021].

Ferreira-Lazarte A, Fernández J, Gallego-Lobillo P, Villar CJ, Lombó F, Moreno FJ, Villamiel M (2021) Behaviour of citrus pectin and modified citrus pectin in an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal carcinogenesis model. Int J Biol Macromol 167: 1349–1360.

Fröhlich E (2012) The role of surface charge in cell uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7: 5577–5591.

Gao X, Zhi Y, Sun L, Peng X, Zhang T, Xue H, Tai G, Zhou Y (2013) The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng Pectin on galectin-3 and its structure-activity relationship. J Biol Chem 288(47): 33953–33965.

Glinsky VV, Raz A (2009) Anti-metastatic properties of modified citrus pectin: one bullet, multiple targets. Carbohydr Res 344(14): 1788–1791.

Global Cancer Observatory (2020) New Global Cancer Data: GLOBOCAN 2020, UICC.

Grau de Castro JJ (2005) Inhibidores de la ciclooxigenasa-2 en la prevención del cáncer. Rev Clin Esp 205(9): 446–456.

Habermann N, Schön A, Lund EK, Glei M (2010) Fish fatty acids alter markers of apoptosis in colorectal adenoma and adenocarcinoma cell lines but fish consumption has no impact on apoptosis-induction ex vivo. Apoptosis 15(5): 621–630.

Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 19(1): 35–45.

Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P (2018) Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 19(2): 130–140.

Hu YL, Wang XB, Chen DD, Guo XJ, Yang QJ, Dong LH, Cheng L (2016) Germanicol induces selective growth inhibitory effects in human colon HCT-116 and HT29 cancer cells through induction of apoptosis, cell cycle arrest and inhibition of cell migration. J BUON 21(3): 626–632.

Inohara H, Raz A (1994) Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions. Glycoconj J 11(6): 527–532.

Instituto Nacional del Cáncer (2021) ¿Que es el cáncer?», NIH, Estados Unidos. Disponible en: https://www.cancer.gov/espanol/cancer/naturaleza/que-es [Consultado el 9 de junio del 2021].

Itriago GL, Silva NI, Cortes GF (2013) Cáncer en Chile y el mundo: Una mirada epidemiológica, presente y futuro. Rev Méd Clín Las Condes 24(4): 531–552.

Jackson CL, Dreaden TM, Theobald LK, Tran NM, Beal TL, Eid M, Gao MY, Shirley RB, Stoffel MT, Kumar MV, Mohnen D (2007) Pectin induces apoptosis in human prostate cancer cells: Correlation of apoptotic function with pectin structure. Glycobiology 17(8): 805–819.

Jacobasch G, Dongowski G, Florian S, Müller-Schmehl K, Raab B, Schmiedl D (2008) Pectin does not inhibit intestinal carcinogenesis in APC-deficient min/+ mice. J Agric Food Chem 56(4): 1501–1510.

Jacobs LR, Lupton JR (1986) Relationship between colonic luminal pH, cell proliferation, and colon carcinogenesis in 1,2-dimethylhydrazine treated rats fed high fiber diets. Cancer Res 46: 1727–1734.

Jar AM (2014) Bienestar animal y el uso de animales de laboratorio en la experimentación científica. Animal welfare and the use of laboratory animals in scientific research. Rev Argent Microbiol 46(2): 77–79.

Khazir J, Mir BA, Pilcher L, Riley DL (2013) Role of plants in anticancer drug discovery. Phytochem Lett 7(1): 173–181.

Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH (2000) Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 63(2):1702–1704.

Leclere L, Fransolet M, Cambier P, Bkassiny SEL, Tikad A, Dieu M, Vincent SP, Van Cutsem P, Michiels C (2016) Identification of a cytotoxic molecule in heat-modified citrus pectin. Carbohydr Polym 137: 39–51.

Leclere L, Van Cutsem P, Michiels C (2013) Anti-cancer activities of pH-or heat-modified pectin. Front Pharmacol 4: 128.

Li D-Q, Li J, Dong H-L, Li X, Zhang J-Q, Ramaswamy S, Xu F (2021) Pectin in biomedical and drug delivery applications: A review. Int J Biol Macromol 185: 49–65.

Li Y, Fan L, Niu Y, Mian W, Zhang F, Xie M, Mei Q (2017) An apple oligogalactan enhances the growth inhibitory effect of 5-fluorouracil on colorectal cancer. Eur J Pharmacol 804: 13–20.

Li Y, Niu Y, Sun Y, Mei L, Zhang B, Li Q, Liu L, Zhang R, Chen J, Mei Q (2014) An apple oligogalactan potentiates the growth inhibitory effect of celecoxib on colorectal cancer. Nutr Cancer 66(1): 29–37.

Liu L, Fishman ML, Kost J, Hicks KB (2003) Sistemas basados en pectina para la administración de fármacos específicos al colon por vía oral. Biomateriales 24(19): 3333–3343.

Liu L, Li YH, Niu YB, Sun Y, Guo ZJ, Li Q, Li C, Feng J, Cao SS, Mei QB (2010) An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis 31(10): 1822–1832.

Lizano Soberon M, Barrera Rodriquez R (1993) Resistencia múltiple a drogas: un problema en la quimioterapia de cáncer. Rev Invest Clin 45(5): 481–492.

López I, Balderas-Renteríac I, Gómeza I, González-Santiagoc O, González-Barrancoa P, Garza-Ocañas L, Ramírez-Cabrera MA (2020) MTT Vs WST-1, efficiency, cost, time, and waste generation: evaluating the silver nanoparticles cytotoxicity. Rev Cienc Farm Biomed 3: 3–12.

Marangoni VS, Paino IM, Zucolotto V (2013) Synthesis and characterization of jacalin-gold nanoparticles conjugates as specific markers for cancer cells. Colloids Surf B Biointerfaces 112: 380–386.

Martins AF, de Oliveira DM, Pereira AGB, Rubira AF, Muniz EC (2012) Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. Int J Biol Macromol 51(5): 1127–1133.

Mat Sharil AT, Ezzat MB, Widya L, Nurhakim Amri HM, Nor Hikmah AR, Nabilah Zafira Z, Haris MS (2022) Systematic review of flaxseed (Linum usitatissimum L.) extract and formulation in wound healing. J Pharm Pharmacogn Res 10(1): 1–12.

Maxwell EG, Belshaw NJ, Waldron KW, Morris VJ (2012) Pectin – an emerging bioactive food polysaccharide. Trends Food Sci Technol 24: 64–73.

Moghaddam FA, Atyabi F, Dinarvand R (2009) Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. Nanomed Nanotechnol Biol Med 5: 208–215.

Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 339: b2535.

Morales Yera R, Sierra Pérez L, Triana Díaz A (2018) Cardiotoxicidad inducida por quimioterapia. CorSalud 10(1): 68–77.

Morris ER, Powell DA, Gidley MJ, Rees DA (1982) Conformations and interactions of pectins. I. Polymorphism between gel and solid states of calcium polygalacturonate. J Mol Biol 155(4): 507–516.

Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, Raz A (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94(24): 1854–1862.

Odun-Ayo F, Mellem J, Naicker T, Reddy L (2015) Chemoprevention of azoxymethane-induced colonic carcinogenesis in Balb/c mice using a modified pectin alginate probiotic. Anticancer Res 35(9): 4765–4776.

Odun-Ayo F, Mellem J, Reddy L (2016) Improving the survival of probiotic in simulated conditions and azoxymethane induced colon tumor bearing mice using modified citrus pectin-alginate microencapsulation. Universidad Tecnológica, Cape Town, South. Afr J Tradit Complement Altern Med 13(2): 101–109.

Organización Mundial de la Salud (2021) Cáncer, WHO. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/cancer [Consultado 3 de marzo 2021].

Orlandi P, Gentile D, Banchi M, Cucchiara F, Di Desidero T, Cremolini C, Moretto R, Falcone A, Bocci G (2020) Pharmacological effects of the simultaneous and sequential combinations of trifluridine/tipiracil (TAS-102) and 5-fluorouracil in fluoropyrimidine-sensitive colon cancer cells. Investig New Drugs 38(1): 92–98.

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan-a web and mobile app for systematic reviews. Syst Rev 5(1): 210.

Öztürk K, Mashal AR, Yegin BA, Çalış S (2017) Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment. Pharm Dev Technol 22(5): 635–641.

Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS (2002) Prostaglandin E2, transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8(3): 289–293.

Perše M, Anton C (2011) Morphological and molecular alterations of 1,2-dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J Biomed Biotechnol 2011: 473964.

Popov SV, Ovodov YS (2013) Polypotency of the immunomodulatory effect of pectins. Biochemistry 78(7): 823–835.

RevMan (2020) Review Manager [Computer program]. Version 5.4. The Cochrane Collaboration.

Rojas Castillo N, Zuñiga Corvalan C (2020) Potenciales Efectos Anticaries de Fibras Prebióticas: Una Revisión Sistemática de la Literatura [Tesis de Pregrado]. Universidad de Talca, Talca, Chile.

Romero-Fernandez W, Batista-Castro Z, De Lucca M, Ruano A, García-Barceló M, Rivera-Cervantes M, García-Rodríguez J, Sánchez-Mateo S (2016) El 1, 2, 3 de la experimentación con animales de laboratorio. Rev Perú Med Exp Salud Publica 33(2): 288–299.

Sabra R, Billa N, Roberts CJ (2018) An augmented delivery of the anticancer agent, curcumin, to the colon. React Funct Polym 123: 54–60.

Sabra R, Billa N, Roberts CJ (2019) Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm 572: 118775.

Salama L, Pastor ER, Stone T, Mousa SA (2020) Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomedicines 8(9): 347.

Sánchez C (2013) Conociendo y comprendiendo la célula cancerosa: Fisiopatología Del Cáncer. Rev Méd Clín Las Condes 24(4): 553–562.

Santana-Gálvez J, Villela-Castrejón J, Serna-Saldívar SO, Cisneros-Zevallos L, Jacobo-Velázquez DA (2020) Synergistic combinations of curcumin, sulforaphane, and dihydrocaffeic acid against human colon cancer cells. Int J Mol Sci 21(9): 3108.

Saz-Peiró P, Tejero-Lainez MC (2016) Fitoterapia en la prevención y tratamiento del cáncer. Med Natur 10(2): 88–99.

Sriamornsak P, Nunthanid J (1998) Calcium pectinate gel beads for controlled release drug delivery: I. Preparation and in vitro release studies. Int J Pharm 160: 207–212.

Srivastava R, Kumar D, Pathak K (2012) Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet. Int J Pharm 427(2):153–162.

Tremaroli V, Bäckhed F (2012) Interacciones funcionales entre la microbiota intestinal y el metabolismo del huésped. Nature 489 (7415): 242–249.

Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R (2002) Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth Inhibition, G2-M arrest, and apoptosis. Clin Cancer Res 8(11): 3512–3519.

Valdespino-Gómez VM, Valdespino-Castillo PM, Valdespino-Castillo VE (2015) Interacción de las vías de señalización intracelulares participantes en la proliferación celular: potencial blanco de intervencionismo terapéutico. Cir Cir 83(2): 165–174.

Wang H, Gao Z, Liu X, Agarwal P, Zhao S, Conroy DW, Ji G, Yu J, Jaroniec CP, Liu Z, Lu X, Li X, He X (2018) Targeted production of reactive oxygen species in mitochondria to overcome resistance to anticancer drugs. Nat Commun 9(1): 562.

Wang Y, Nangia-Makker P, Balan V, Hogan V, Raz A (2010) Activation of calpain through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment. Cell Death Dis 1(11): 101–110.

Weber K (2017) Differences in types and incidence of neoplasms in Wistar Han and Sprague-Dawley rats. Toxicol Pathol 45(1): 64–75.

Wirtz S, Neufert C, Weigmann B, Neurath MF (2007) Chemically induced mouse models of intestinal inflammation. Nat Protocol 2(3): 541–546.

Wu KL, Kuo CM, Huang EY, Pan HM, Huang CC, Chen YF, Hsiao CC, Yang KD (2018) Extracellular galectin-3 facilitates the migration of colon cancer cells and is related to the epidermal growth factor receptor. Am J Transl Res 10(8): 2402–2412.

Zhang W, Xu P, Zhang H (2015) Pectin in cancer therapy: A review. Trends Food Sci Technol 44(2): 258–271.

Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, Yu Q, Yuan X (2017a) Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 8 (3): 3980–4000.

Zhao X, Pan J, Li W, Yang W, Qin L, Pan Y (2018) Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int J Nanomedicine 13: 6207–6221.

Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M (2017b) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16(1): 79.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)