Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 929-942, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1936_12.5.929 Original Article Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid contained in Peperomia pellucida (L.) Kunth against various diabetes mellitus receptors [Estudios de acoplamiento y dinámica molecular del ácido 8,9-dimetoxielágico contenido en Peperomia pellucida (L.) Kunth frente a varios receptores … Continue reading Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 929-942, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1936_12.5.929

Original Article

Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid contained in Peperomia pellucida (L.) Kunth against various diabetes mellitus receptors

[Estudios de acoplamiento y dinámica molecular del ácido 8,9-dimetoxielágico contenido en Peperomia pellucida (L.) Kunth frente a varios receptores de diabetes mellitus]

Yasmiwar Susilawati1,2, Raden Bayu Indradi2, Aiyi Asnawi3, Ellin Febrina4*

1Herbal Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, 45363, Indonesia.

2Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia.

3Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Bhakti Kencana, Jl. Soekarno-Hatta No. 754, Bandung 40617, Indonesia.

4Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor 45363, Indonesia.

*E-mail: ellin.febrina@unpad.ac.id

Abstract

Context: The search for antidiabetic drugs that target the receptors involved in diabetes has received significant attention in recent years. Peperomia pellucida (L.) Kunth's ethanol extract and ethyl acetate fraction have antihyperglycemic activity. 8,9-dimethoxy ellagic acid (DEA) has shown significant diabetes mellitus activity in mice, but its interaction with diabetes receptors remains unknown.

Aims: To perform molecular docking and molecular dynamics simulations to explore the binding interactions and stability of DEA within the binding sites of enzymes involved in diabetes.

Methods: At the outset, the utilization of molecular docking was limited to forecasting the DEA's binding orientations and affinities within the active sites of the enzymes implicated in diabetes. Following this, molecular dynamics simulation was employed to investigate the interactions, stability, and dynamic behavior of these complexes over a period of 100 nanoseconds.

Results: Molecular docking results revealed that DEA interacts with all selected receptors involved in diabetes and interacts more strongly with the aldose reductase receptor (PDB ID 3S3G) than the native ligand, with a binding energy of -10.3 kcal/mol. However, further molecular dynamics simulations confirmed the stability of the receptor complex with DEA over 100 ns, which is less potent than that of the native ligand. This is probably due to the rigidity of the DEA molecular structure.

Conclusions: This study highlights the potential of DEA derived from P. pellucida as an inhibitor of various receptors involved in diabetes.

Keywords: 8,9-dimethoxy ellagic acid; antidiabetic; in silico; Peperomia pellucida.

PDF Download

Resumen

Contexto: La búsqueda de fármacos antidiabéticos que se dirijan a los receptores implicados en la diabetes ha recibido mucha atención en los últimos años. El extracto etanólico de Peperomia pellucida (L.) Kunth y la fracción de acetato de etilo tienen actividad antihiperglucemiante. El ácido 8,9-dimetoxielágico (DEA) ha mostrado una actividad significativa en la diabetes mellitus en ratones, pero su interacción con los receptores de la diabetes sigue siendo desconocida.

Objetivos: Realizar simulaciones de dinámica molecular y acoplamiento molecular para explorar las interacciones de unión y la estabilidad de la DEA dentro de los sitios de unión de las enzimas involucradas en la diabetes.

Métodos: Al principio, la utilización del acoplamiento molecular se limitaba a pronosticar las orientaciones y afinidades de unión de la DEA dentro de los sitios activos de las enzimas implicadas en la diabetes. A continuación, se empleó simulación de dinámica molecular para investigar las interacciones, la estabilidad y el comportamiento dinámico de estos complejos durante un período de 100 nanosegundos.

Resultados: Los resultados del acoplamiento molecular revelaron que la DEA interactúa con todos los receptores seleccionados implicados en la diabetes e interactúa más fuertemente con el receptor de aldosa reductasa (PDB ID 3S3G) que el ligando nativo, con una energía de unión de -10,3 kcal/mol. Sin embargo, otras simulaciones de dinámica molecular confirmaron la estabilidad del complejo del receptor con DEA durante 100 ns, que es menos potente que el del ligando nativo. Probablemente esto se deba a la rigidez de la estructura molecular de la DEA.

Conclusiones: Este estudio destaca el potencial de la DEA derivada de P. pellucida como inhibidor de diversos receptores implicados en la diabetes.

Palabras Clave: ácido 8,9-dimetoxi elágico; antidiabético; in silico; Peperomia pelucida.

PDF Download

 

 
 
Citation Format: Susilawati Y, Indradi RB, Asnawi A, Febrina E (2024) Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid contained in Peperomia pellucida (L.) Kunth against various diabetes mellitus receptors. J Pharm Pharmacogn Res 12(5): 929–942. https://doi.org/10.56499/jppres23.1936_12.5.929
References

Alves NSF, Setzer WN, da Silva JKR (2019) The chemistry and biological activities of Peperomia pellucida (Piperaceae): A critical review. J Ethnopharmacol 232: 90–102. https://doi.org/10.1016/j.jep.2018.12.021

American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 37: S81–S90. https://doi.org/10.2337/dc14-S081

Aryaeian N, Sedehi SK, Arablou T (2017) Polyphenols and their effects on diabetes management: A review. Med J Islam Repub Iran 31: 134. https://doi.org/10.14196/mjiri.31.134

Asnawi A, Aman LO, Nursamsiar, Yuliantini A, Febrina E (2022) Molecular docking and molecular dynamic studies: Screening phytochemicals of Acalypha indica against Braf kinase receptors for potential use in melanocytic tumours. Rasayan J Chem 15: 1352–1361. https://doi.org/10.31788/RJC.2022.1526769

Asnawi A, Nedja M, Febrina E, Purwaniati P (2023) Prediction of a stable complex of compounds in the ethanol extract of celery leaves (Apium graveolens L.) function as a VKORC1 antagonist. Trop J Nat Prod Res 7: 2362–2370. http://www.doi.org/10.26538/tjnpr/v7i2.10

Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383: 69–82. https://doi.org/10.1016/S0140-6736(13)60591-7

Behl T, Gupta A, Albratty M, Najmi A, Meraya AM, Alhazmi HA, Anwer MK, Bhatia S, Bungau SG (2022) Alkaloidal phytoconstituents for diabetes management: Exploring the unrevealed potential. Molecules 27: 5851. https://doi.org/10.3390/molecules27185851

Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R (2017) Insulin receptor isoforms in physiology and disease: An updated view. Endocrine Rev 38: 379–431. https://doi.org/10.1210/er.2017-00073

Borhani DW, Harter TM, Petrash JM (1992) The crystal structure of the aldose reductase.NADPH binary complex. J Biol Chem 267: 24841–24847. https://doi.org/10.2210/pdb1abn/pdb

Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Yu AI, Mahboob T, Tangpoong J, Nissapatorn V (2018) Recommended medicinal plants as source of natural products: A review. Digit Chin Med 1: 131–142. https://doi.org/10.1016/S2589-3777(19)30018-7

Clemen-Pascual LM, Macahig RAS, Rojas NRL (2022) Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicol Rep 9: 22–35. https://doi.org/10.1016/j.toxrep.2021.12.002

Ćorković I, Gašo-Sokač D, Pichler A, Šimunović J, Kopjar M (2022) Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life (Basel) 12: 1692. https://doi.org/10.3390/life12111692

Cragg GM, Newman DJ (2013) Natural products: A continuing source of novel drug leads. Biochim Biophys Acta 1830: 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

de Fátima Arrigoni-Blank M, Dmitrieva EG, Franzotti EM, Antoniolli AR, Andrade MR, Marchioro M (2004) Anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (Piperaceae). J Ethnopharmacol 91: 215–218. https://doi.org/10.1016/j.jep.2003.12.030

De Meyts P (2016) The insulin receptor and its signal transduction network. Endotext [Internet]. Feingold KR, Anawalt B, Blackman MR, et al., editors. South Dartmouth (MA): MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK378978/

DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1: 15019. https://doi.org/10.1038/nrdp.2015.19

Dirir AM, Daou M, Yousef AF, Yousef LF (2022) A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev 21: 1049–1079. https://doi.org/10.1007/s11101-021-09773-1

Elam E, Feng J, Lv Y-M, Ni Z-J, Sun P, Thakur K, Zhang J-G, Ma Y-L, Wei Z-J (2021) Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. J Funct Foods 86: 104674. https://doi.org/10.1016/j.jff.2021.104674

Escribano O, Beneit N, Rubio-Longás C, López-Pastor AR, Gómez-Hernández A (2017) The role of insulin receptor isoforms in diabetes and its metabolic and vascular complications. J Diabetes Res 2017: 1403206. https://doi.org/10.1155/2017/1403206

Febrina E, Alamhari RK, Asnawi A, Abdulah R, Lestari K, Levita J, Supratman U (2021) Molecular docking and molecular dynamics studies of Acalypha indica L. phytochemical constituents with caspase-3. Int J App Pharm 13: 210–215. https://doi.org/10.22159/ijap.2021.v13s4.43861

Febrina E, Asnawi A, Abdulah R, Lestari K, Supratman U (2022) Identification of flavonoids from Acalypha indica L. (Euphorbiaceae) as caspase-3 activators using molecular docking and molecular dynamics. International J App Pharm 14: 162–166. https://doi.org/10.22159/ijap.2022.v14s5.34

Guasch L, Sala E, Ojeda MJ, Sala E, Cereto-Massagué A, Mulero M, Valls C, Pinent M, Ardévol A, Garcia-Vallvé S, Pujadas G (2012) Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (Part II): In silico prediction in antidiabetic extracts. PLoS ONE 7(9): e44971. https://doi.org/10.1371/journal.pone.0044971

Hall C, Yu H, Choi E (2020) Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med 52: 911–920. https://doi.org/10.1038/s12276-020-0456-3

Ischak NI, Aman LO, Hasan H, Kilo AL, Asnawi A (2023) In silico screening of Andrographis paniculata secondary metabolites as anti-diabetes mellitus through PDE9 inhibition. Res Pharm Sci 18: 100–111. https://doi.org/10.4103/1735-5362.363616

Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A (2012) Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: Systematic review and meta-analysis. BMJ 344: e1369. https://doi.org/10.1136/bmj.e1369

Kusuma SAF, Wardhani P, Febrina E (2017) Stool form scale as an indicator of klutuk banana (Musa balbisiana Colla) fruit extracts inhibition effect against Shigella dysenteriae Atcc 13313 in vivo. Asian J Pharm Clin Res 10: 266–268. https://doi.org/10.22159/ajpcr.2017.v10i12.21592

Li Q, Wong YL, Kang C (2014) Solution structure of the transmembrane domain of the insulin receptor in detergent micelles. Bioch Biophys Acta 1838: 1313–1321. https://doi.org/10.1016/j.bbamem.2014.01.005

Magaji U, Sacan O, Yanardag R (2020) Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. S Afr J Bot 128: 225–230. https://doi.org/10.1016/j.sajb.2019.11.024

Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7: 146–157. https://doi.org/10.2174/157340911795677602

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30: 2785–2791. https://doi.org/10.1002/jcc.21256

Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL-DR, Sacre JW, Karuranga S, Sun H, Boyko EJ, Magliano DJ (2022) IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract 183: 109118. https://doi.org/10.1016/j.diabres.2021.109118

Rahman H, Bintang MI, Asnawi A, Febrina E (2023) Exploring the molecular interactions between volatile compounds in coconut shell liquid smoke and human bitter taste TAS2R46 based on the molecular docking and molecular dynamics. Trop J Nat Prod Res 7: 5587–5594 http://www.doi.org/10.26538/tjnpr/v7i12.31

Singh A-K, Yadav D, Sharma N, Jin J-O (2021) Dipeptidyl peptidase (DPP)-IV inhibitors with antioxidant potential isolated from natural sources: A novel approach for the management of diabetes. Pharmaceuticals 14: 586. https://doi.org/10.3390/ph14060586

Siregar M, Awaluddin A, Nurnahari N, Nur S, Febrina E, Asnawi A (2020) Molecular docking and molecular dynamic simulation of the aglycone of curculigoside a and its derivatives as alpha glucosidase inhibitors. Rasayan J Chem 13: 690–698. http://dx.doi.org/10.31788/RJC.2020.1315577

Srishti K, Rohit R, Rashmi K (2022) Microbial production of amylase using lignocellulosic biomass: Recent developments and prospects. Res J Biotechnol 17: 192–199. http://dx.doi.org/10.25303/1705rjbt192199

Stanzione F, Giangreco I, Cole JC (2021) Use of molecular docking computational tools in drug discovery. Prog Med Chem 60: 273–343. https://doi.org/10.1016/bs.pmch.2021.01.004

Susilawati Y, Megantara S, Levita J (2022) Antidiabetic activity of novel chromene compound isolated from Peperomia pellucida L. Kunth and in silico study against DPP-IV, alpha-glucosidase, alpha-amylase, and aldose reductase for blood glucose homeostasis. Int J App Pharm 14: 110–116. https://doi.org/10.22159/ijap.2022.v14s5.22

Susilawati Y, Nugraha R, Krishnan J, Muhtadi A, Sutardjo S, Supratman U (2017) A new antidiabetic compound 8, 9-dimethoxy ellagic acid from sasaladaan (Peperomia pellucida L. Kunth). Res J Pharm Biol Chem Sci 8: 269–274.

Susilawati Y, Nugraha R, Muhtadi A, Soetardjo S, Supratman U (2015) (S)-2-Methyl-2-(4-methylpent-3-enyl)-6-(propan-2-ylidene)-3,4,6,7-tetrahydropyrano[4,3-g]chromen-9(2H)-one. Molbank 2015: M855. https://doi.org/10.3390/M855

Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP (2019) Key topics in molecular docking for drug design. Int J Mol Sci 20: 4574. https://doi.org/10.3390/ijms20184574

Wei LS, Wee W, Siong JYF, Syamsumir DF (2011) Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med Iran 49: 670–674. https://pubmed.ncbi.nlm.nih.gov/22071643/

Yan L-S, Cheng BC-Y, Zhang S-F, Luo G, Zhang C, Wang Q-G, Fu X-Q, Wang Y-W, Zhang Y (2021) Tibetan medicine for diabetes mellitus: Overview of pharmacological perspectives. Front Pharmacol 12: 748500. https://doi.org/10.3389/fphar.2021.748500

Yang S, Qin X, Luo T, Hao X, Zhu C (2015) Novel Nitro Derivatives of Benzothiadiazine 1, 1-Dioxide as Aldose Reductase Inhibitors. Proceedings of the 2015 International Conference on Industrial Technology and Management Science. Atlantis Press, pp. 1077–1080. https://doi.org/10.2991/itms-15.2015.260

Yayla M, Binnetoğlu D (2022) Experimental approaches to diabetes mellitus. Eurasian J Med 54: 145–153. https://doi.org/10.5152/eurasianjmed.2022.22304

Yuliantini A, Ocktavyanie S, Febrina E, Asnawi A (2024) Virtual screening using a ligand-based pharmacophore model from ashitaba (Angelica keiskei K.) isolates and molecular docking to obtained new candidates as -glucosidase inhibitors. Trop J Nat Prod Res 8: 5811–5819. http://www.doi.org/10.26538/tjnpr/v8i1.15

Zhang X, Xu L, Chen H, Zhang X, Lei Y, Liu W, Xu H, Ma B, Zhu C (2022) Novel hydroxychalcone-based dual inhibitors of aldose reductase and α-glucosidase as potential therapeutic agents against diabetes mellitus and its complications. J Med Chem 65: 9174–9192. https://doi.org/10.1021/acs.jmedchem.2c00380

Zheng X, Zhang L, Zhai J, Chen Y, Luo H, Hu X (2012) The molecular basis for inhibition of sulindac and its metabolites towards human aldose reductase. FEBS Lett 586: 55–59. https://doi.org/10.1016/j.febslet.2011.11.023

Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414: 782–787. https://doi.org/10.1038/414782a

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio