Moringa oleifera regulates some sickle cell genes

J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 837-846, September-October 2022.

Original Article

Moringa oleifera extract regulates the expression of some sickle cell related genes in normal Wistar rats

[Extracto de Moringa oleifera regula la expresión de algunos genes relacionados con la anemia falciforme en ratas Wistar normales]

Mojisola C. Cyril-Olutayo1*, Idowu O. Omotuyi2

1Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria.

2Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria.

*E-mail: mojiolutayo@oauife.edu.ng

Abstract

Context: In the current study, we employed gene-regulatory based approach to underscore the putative mechanism of how components of Moringa oleifera (MO) ethanol extract exert its antisickling effects.

Aims: To evaluate the relationship between mRNA expression profiles of some sickle cell related genes in normal rats.

Methods: Normal Wistar rats were administered with MO at 50 and 100 mg/kg body weight and the positive control group administered with folic acid for 14 days. The bone marrow and kidneys were harvested, followed by RT-PCR to assess the expression of Gardos channel [kccn1, kccn4], antioxidant [CAT, G6PD], and progression of meiosis [p21, p27] genes. Hematological parameters were also analyzed.

Results: A downregulation of the Gardos channel genes (KCNN-4 and KCNN-1) was observed on MO intervention at 100 mg/kg while folic acid showed no significant expression. Significantly (p<0.05), MO intervention increased antioxidant system in sickle cell anemia scenario due to the expression pattern of antioxidant genes analyzed in this study and caused changes in hematological parameters such as PCV, HBC, MCH relative to the control groups.

Conclusions: The study concluded that the administration of the ethanol extract of Moringa oleifera leaf increased blood production, has high antioxidant properties and reduced the expression of the Gardos channel pathway. These are important factors in the management of sickle cell disease and MO could be a candidate of interest in drug development.

Keywords: antioxidant; antisickling; Gardos’ channel; gene expression; Moringa oleifera.

jppres_pdf_free

Resumen

Contexto: En el estudio actual, empleamos un enfoque basado en la regulación de genes para subrayar el mecanismo putativo de cómo los componentes del extracto de etanol de Moringa oleifera (MO) ejercen sus efectos antidrepanocíticas.

Objetivos: Evaluar la relación entre los perfiles de expresión de ARNm de algunos genes relacionados con la anemia falciforme en ratas normales.

Métodos: A ratas Wistar normales se les administró extracto de MO a 50 y 100 mg/kg de peso corporal y al grupo control positivo se le administró ácido fólico durante 14 días. Se recolectaron la médula ósea y los riñones, seguidos de RT-PCR para evaluar la expresión de los genes del canal de Gardos [kccn1, kccn4], antioxidantes [CAT, G6PD] y progresión de la meiosis [p21, p27]. También se analizaron parámetros hematológicos.

Resultados: Se observó una regulación a la baja de los genes del canal Gardos (KCNN-4 y KCNN-1) con la intervención de MO a 100 mg/kg, mientras que el ácido fólico no mostró una expresión significativa. Significativamente (p<0,05), la intervención de MO aumentó el sistema antioxidante en el escenario de anemia de células falciformes debido al patrón de expresión de los genes antioxidantes analizados en este estudio y provocó cambios en los parámetros hematológicos como PCV, HBC, MCH en relación con los grupos de control.

Conclusiones: El estudio concluyó que la administración del extracto etanólico de hoja de Moringa oleifera incrementó la producción de sangre, tiene altas propiedades antioxidantes y redujo la expresión de la vía del canal de Gardos. Estos son factores importantes en el manejo de la enfermedad de células falciformes y MO podría ser un candidato de interés en el desarrollo de fármacos.

Palabras Clave: antidrepanocítica; antioxidante; canal de Gardos; expresión génica; Moringa oleifera.

jppres_pdf_free

Citation Format: Cyril-Olutayo MC, Omotuyi IO (2022) Moringa oleifera extract regulates the expression of some sickle cell related genes in normal Wistar rats. J Pharm Pharmacogn Res 10(5): 837–846.
References

Adejumo OE, Kolapo AL, Akintomiwa AO (2012) Moringa oleifera Lam. (Moringaceae) grown in Nigeria: In vitro antisickling activity on deoxygenated erythrocyte cells. J Pharm Bioallied Sci 4(2): 118-122.

Agoreyo FO, Nwanze N (2010) Plasma sodium and potassium changes in sickle cell patients. Int J Genet Mol Biol 2(2): 14-19.

Al Balushi H, Dufu K, Rees DC, Brewin JN, Hannemann A, Oksenberg D, Lu DC-Y, Gibson JS (2019) The effect of the antisickling compound GBT 1118 on the permeability of red blood cells from patients with sickle cell anemia. Physiol Rep 7(6): e14027.

Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132(1): 108-113.

Ashafa AO, Orekoya LO, Yakubu MT (2012) Toxicity profile of ethanolic extract of Azadirachta indica stem bark in male Wistar rats. Asian Pac J Trop Biomed 2: 811-817

Aziz MA, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R (2018) Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. J Ethnobiol Ethnomed 14(1): 2.

Belcher JD, Beckman JD, Balla G, Balla J, Vercellotti G (2010) Heme degradation and vascular injury. Antioxid Redox Signal 12(2): 233-248

Brown FC, Conway A J, Cerruti L, Collinge JE, McLean C, Wiley JS, Curtis DJ (2015) Activation of the erythroid K-Cl cotransporter Kcc1 enhances sickle cell disease pathology in a humanized mouse model. Blood 126(26): 2863-2870.

Brugnara C (2018) Sickle cell dehydration: Pathophysiology and therapeutic applications. Clin Hemorheol Microcirc 68(2-3): 187–204.

Brugnara C, Bunn HF, Tosteson DC (1986) Regulation of erythrocyte cation and water content in sickle cell anemia. Science 232(4748): 388-390.

Brugnara C, de Franceschi L, Alper SL (1993) Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J Clin Invest 92(1): 520-526.

Casadevall N (1995) Cellular mechanism of resistance to erythropoietin. Nephrol Dial Transplant 10: 27-30.

Cernaro V, Coppolino G, Visconti L, Rivoli L, Lacquaniti A, Santoro D, Buemi A, Loddo S, Buemi M (2019) Erythropoiesis and chronic kidney disease–related anemia: From physiology to new therapeutic advancements. Med Res Rev 39(2): 427-460.

Chirico EN, Pialoux V (2012) Review role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life 64(1):72-80.

Cho CS, Kato GJ, Yang SH, Bae SW, Lee JS, Gladwin MT, Rhee SG (2010) Hydroxyurea-induced expression of glutathione peroxidase 1 in red blood cells of individuals with sickle cell anemia. Antioxid Redox Signal 13: 1–11

Crable SC, Hammond SM, Papes R, Rettig RK, Zhou GP, Gallagher PG, Joiner CH, Anderson KP (2005) Multiple isoforms of the KC1 cotransporter are expressed in sickle and normal erythroid cells. Exp Hematol 33: 624-631.

Cyril-Olutayo MC, Agbedahunsi JM, Akinola NO (2018) In vitro evaluation of Moringa oleifera leaf extracts used in managing sickle cell patients in South West Nigeria. Nig J Pharm Res 14(1): 69-79.

Dolznig H, Bartunek P, Nasmyth K, Mullner EW, Beug H (1995) Terminal differentiation of normal chicken erythroid progenitors: Shortening of G~ 1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth Differ 6(11): 1341-1352.

Eaton WA, Hofrichter J (1990) Sickle cell hemoglobin polymerization. Adv Protein Chem 40: 63-279.

Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL (2013) Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp 73: e50166.

Gallagher PG (2017) Disorders of erythrocyte hydration. Blood 130(25): 2699-2708.

Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85(2): 423-493.

Ghafari S, Tavakoli Z, Shirooyeh P, Meybodi RN, Behmanesh E, Mokaberinejad R, Tansaz M, Fahimi S (2018) The herbal medicine proposed by Iranian Traditional Medicine (Persian Medicine) for treatment of primary dysmenorrhea: A review. Tradit Integr Med 3(1): 30-42.

Glader BE, Sullivan DW (1979) Erythrocyte disorders leading to potassium loss and cellular dehydration. Prog Clin Biol Res 30: 503-513.

Glogowska E, Gallagher PG (2015) Disorders of erythrocyte volume homeostasis. Int J Lab Haematol 37: 85-91.

Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A (2003) The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Proc Natl Acad Sci USA 100: 7366-7371.

Iuchi Y (2012) Anemia Caused by Oxidative Stress. In Anemia, Dr. Donald Silverberg (Ed.) InTech, Available from: http://www.intechopen.com/books/anemia/anemia-caused-by-oxidative-stress.

Joiner CH (1993) Cation transport and volume regulation in sickle red blood cells. Am J Physiol 264(2 Pt 1): C251-C270.

Kennedy JN, Dioka CE, Ifeanyichukwu M, Augustine I (2015) Cytokine expression in homozygous sickle cell anaemia. J Krishna Inst Med Sci Univ 4(1): 34-37.

Kimmons J, Gillespie C, Seymour J, Serdula M, Blanck HM (2009) Fruit and vegetable intake among adolescents and adults in the United States: percentage meeting individualized recommendations. Medscape J Med 11(1): 26.

Lew VL, Etzion Z, Bookchin RM (2002) Dehydration response of sickle cells to sickling-induced Ca (++) permeabilization. Blood 99: 2578–2585.

Lew VL, Ortiz OE, Bookchin RM (1997) Stochastic nature and red cell population distribution of the sickling-induced Ca2+ permeability. J Clin Invest99: 2727–2735.

Maher AD, Kuchel PW (2003) The Gardos channel: a review of the Ca2+-activated K+ channel in human erythrocytes. Int J Biochem Cell Biol 35(8): 1182-1197.

Manganelli G, Fico A, Martini G, Filosa S (2010) Discussion on pharmacogenetic interaction in G6PD deficiency and methods to identify potential hemolytic drugs. Cardiovasc Hematol Disord Drug Targets10: 143-150.

Morris CR, Morris SM Jr, Hagar W, Warmerdam JV, Claster S, Kepka-Lenhart D, Machado L, Kuypers FA, Vichinsky EP (2003) Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease? Am J Respir Crit Care Med 168:63-69.

Nnodim Jk, Udujih BU, Nwaokoro JC, Uche U, Onah C (2015) Alterations of homocysteine in sickle cell anaemia. J Med Biol Sci Res 1(4): 44-46

Olmos G, Muñoz‐Félix JM, Mora I, Müller AG, Ruiz‐Torres MP, López‐Novoa JM, Rodríguez‐Puyol D (2018) Impaired erythropoietin synthesis in chronic kidney disease is caused by alterations in extracellular matrix composition. J Cell Mol Med 22(1): 302-314.

Olsson MG, Centlow M, Rutardóttir S, Stenfors I, Larsson J, Hosseini-Maaf B, Olsson ML, Hansson SR, Åkerström B (2010) Increased levels of cell-free hemoglobin, oxidation markers, and the antioxidative heme scavenger α1-microglobulin in preeclampsia. Free Rad Biol Med 48(2): 284-291.

Pankaj PP, Varma MC (2013) Potential role of Spirulina platensis in maintaining blood parameters in alloxan induced diabetic mice. Int J Pharm Pharmaceut Sci 5: 450-456.

Peralta IN, Cogoi L, Filip R, Anesini C (2013) Prevention of hydrogen peroxide‐induced red blood cells lysis by Ilex paraguariensis aqueous extract: participation of phenolic and xanthine compounds. Phytother Res 27(2): 192-198.

Prasartkaew S, Bunyaratvej A, Fucharoen S (1988) Oxidative stress and antioxidant enzymes in hemoglobin H disease. BDOAS 23(5A): 193–198.

Price EA, Schrier SL (2008) Anemia in the elderly: introduction. Semin Hematol 45(4): 207-209.

Randle SJ, Nelson DE, Patel SP, Laman H (2015) Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol 237(2): 263-272.

Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9): 785.

Roth EF (1981) Ph dependency of potassium efflux from sickled red-cells. Am J Hematol 11: 19.

Sherr CJ, Sicinski P (2018) The D-type cyclins: a historical perspective. In: Hinds PW, Brown NE (eds.), D-type Cyclins and Cancer. Cham: Springer; pp. 1–26.

Stocks J, Offerman EL, Modell CB, Dormandy TL (1972) The susceptibility to autoxidation of human red cell lipids in health and disease. Br J Haematol 23(6):713-724.

Townes TM, McCune SL (1999) Anti-sickling hemoglobin. U.S. Patent No. 5,877,288. Washington, DC: U.S. Patent and Trademark Office.

Weiss SJ (1980) The role of superoxide destruction of erythrocyte targets by human neutrophils. J Biol Chem 255: 9912–9917.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)