Orthodontic force: Immunohistochemistry versus hematoxylin-eosin

J. Pharm. Pharmacogn. Res., vol. 10, no. 4, pp. 695-700, July-August 2022.

Short Communication

Histological analyses of orthodontic force in Cavia porcellus: Comparison between immunohistochemistry and hematoxylin-eosin

[Análisis histológicos de la fuerza ortodóncica en Cavia porcellus: Comparación entre inmunohistoquímica y hematoxilina-eosina]

Erliera Sufarnap1,3*, Syafruddin Ilyas2, Nazruddin Nazruddin3, Deddi P. Putra4, Aditya Rachmawati3

1Doctorate Program, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia.

2Department of Biology, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, Indonesia.

3Department of Orthodontic, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia.

4Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia.

*E-mail: erliera@usu.ac.id


Context: Histological quantification of osteoclasts and osteoblasts can evaluate biological responses to orthodontic tooth movement. Histological analysis of bone samples can be technically challenging.

Aims: To evaluate the differences between hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) in quantifying osteoblast and osteoclast cells following the application of static orthodontic force.

Methods: Orthodontic force was applied using a rubber separator around the maxilla incisor of Cavia porcellus. Tooth samples were taken at 0, 4, 8, 14, 21, and 28 days after applying orthodontic force. HE and IHC staining quantify osteoblast and osteoclast cells in the alveolar bone. IHC staining, i.e., Tartrate-resistant acid phosphatase (TRAP) staining, was used to identify osteoclasts, and osteocalcin (OCN) staining was used to identify osteoblasts.

Results: Significantly higher numbers of osteoclasts and osteoblasts were observed with IHC compared to HE staining (p<0.05). Significant positive linear correlations in the numbers of osteoclasts (r = 0.757) and osteoblasts (r = 0.622) identified were observed between IHC and HE staining.

Conclusions: The results of this study indicate HE staining may represent an acceptable alternative method of quantifying osteoclasts and osteoblasts in the preliminary research of orthodontic tooth movement (OTM).

Keywords: hematoxylin; immunohistochemistry; orthodontic; osteocalcin; tartrate-resistant acid phosphatase.



Contexto: La cuantificación histológica de osteoclastos y osteoblastos puede evaluar las respuestas biológicas al movimiento dental ortodóncico. El análisis histológico de muestras de hueso puede ser técnicamente desafiante.

Objetivos: Evaluar las diferencias entre la tinción con hematoxilina y eosina (HE) y la inmunohistoquímica (IHC) en la cuantificación de células de osteoblastos y osteoclastos después de la aplicación de fuerza ortodóncica estática.

Métodos: Se aplicó fuerza de ortodoncia utilizando un separador de goma alrededor del incisivo maxilar de Cavia porcellus. Se tomaron muestras de dientes a los 0, 4, 8, 14, 21 y 28 días después de aplicar la fuerza de ortodoncia. La tinción con HE e IHC cuantifica las células de osteoblastos y osteoclastos en el hueso alveolar. Se usó tinción IHC, es decir, tinción con fosfatasa ácida resistente a tartrato (TRAP), para identificar osteoclastos, y tinción con osteocalcina (OCN) para identificar osteoblastos.

Resultados: Se observaron números significativamente más altos de osteoclastos y osteoblastos con IHC en comparación con la tinción con HE (valor de p<0,05). Se observaron correlaciones lineales positivas significativas en el número de osteoclastos (r = 0,757) y osteoblastos (r = 0,622) identificados entre la tinción IHC y HE.

Conclusiones: Los resultados de este estudio indican que la tinción HE puede representar un método alternativo aceptable para cuantificar osteoclastos y osteoblastos en la investigación preliminar del movimiento dental ortodóncico (OTM).

Palabras Clave: fosfatasa ácida tartrato resistente; hematoxilina; inmunohistoquímica; ortodoncia; osteocalcina.


Citation Format: Sufarnap E, Ilyas S, Nazruddin N, Putra DP, Rachmawati A (2022) Histological analyses of orthodontic force in Cavia porcellus: Comparison between immunohistochemistry and hematoxylin-eosin. J Pharm Pharmacogn Res 10(4): 695–700.

Ariffin S, Yamamoto Z, Abidin I, Wahab R, Ariffin Z (2011) Cellular and molecular changes in orthodontic tooth movement. Sci World J 11: 1788–1803.

Bennett JH, Moffatt S, Horton M (2001) Cell adhesion molecules in human osteoblasts: Structure and function. Histol Histopathol 16: 603–611.

Blumer MJF, Hausott B, Schwarzer C, Hayman AR, Stempel J, Fritsch H (2012) Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Mech Dev 129: 162–176.

Dang V, Bao S, Ault A, Murray C, McFarlane-Mills J, Chiedi C, Dillon M, Todd JP, DeTolla L, Rao S (2008) Efficacy and safety of five injectable anesthetic regimens for chronic blood collection from the anterior vena cava of guinea pigs. J Am Assoc Lab Anim Sci 47: 56–60.

de Araujo RMS, Oba Y, Moriyama K (2007) Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J Periodontal Res 42: 15–22.

Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86: 77–91.

Fawcett A (2012) Guideline 22: Guidelines for the Housing of Mice in Scientific Institutions. Orange NSW: Animal Welfare Branch, pp. 1–143.

Fedchenko N, Reifenrath J (2014) Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue – a review. Diagn Pathol 9: 221.

Fischer AH, Jacobson KA, Rose J, Rolf Z (2017) Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008: pdb.prot4986.

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015: 421746.

Grosset AA, Loayza-Vega K, Adam-Granger É, Birlea M, Gilks B, Nguyen B, Soucy G, Tran-Thanh D, Albadine R, Trudel D (2019) Hematoxylin and eosin counterstaining protocol for immunohistochemistry interpretation and diagnosis. Appl Immunohistochem Mol Morphol 27: 558–563.

Hamilton PW, van Diest PJ, Williams R, Gallagher AG (2019) Do we see what we think we see? The complexities of morphological assessment. J Pathol 218(3): 285-291.

Holland R, Bain C, Utreja A (2019) Osteoblast differentiation during orthodontic tooth movement. Orthod Craniofac Res 22: 177–182.

Jonsdottir SH, Giesen EBW, Maltha JC (2012) The biomechanical behaviour of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement. Eur J Orthod 34: 542–546.

Kirschneck C, Bauer M, Gubernator J, Proff P, Schröder A (2020) Comparative assessment of mouse models for experimental orthodontic tooth movement. Sci Rep 10: 12154.

Matos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5: 9-20.

Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28: 221-240.

Mukaka (2012) Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24: 69–71.

Phan TCAA, Xu J, Zheng MH (2004) Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol 19: 1325–1344.

Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23: 291–299.

Sufarnap E, Siregar D, Lindawati Y (2020) Effect of vitamin E supplementation on orthodontic tooth movement in Wistar rats: A prelimary study. F1000Res 9: 1093.

Taddei SR, Moura AP, Andrade I Jr, Garlet GP, Garlet TP, Teixeira MM, da Silva TA (2012) Experimental model of tooth movement in mice: A standardized protocol for studying bone remodeling under compression and tensile strains. J Biomech 45: 2729–2735.

Taylor CR, Levenson RM (2006) Quantification of immunohistochemistry? Issues concerning methods, utility and semiquantitative assessment II. Histopathology 49: 411–424.

Vandevska-Radunovic V, Murison R (2010) Emotional stress and orthodontic tooth movement: Effects on apical root resorption, tooth movement, and dental tissue expression of interleukin-1 alpha and calcitonin gene-related peptide immunoreactive nerve fibres in rats. Eur J Orthod 32: 329–335.

Wahab RMA, Dasor MM, Senafi S, Abdullah AAA, Jemain AA, Kasim NA, Yamamoto Z, Ariffin SHZ (2011) Crevicular tartrate resistant acid phosphatase activity and rate of tooth movement under different continuous force applications. African J Pharm Pharmacol 5: 2213–2219.

Watts NB (1999) Clinical utility of biochemical markers of bone remodeling. Clin Chem 45: 1359–1368.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)