Iridoid esters from *Valeriana pavonii* Poepp. & Endl. as GABA_A modulators: Structural insights in their binding mode and structure-activity relationship

[Sara E. Giraldo1,†, Mauricio Bedoya2,3,†, Carlos Peña-Varas4,5, Paula A. Santana6, Isabel L. Bazzocchi7, Ignacio A. Jiménez7, Mario F. Guerrero6, David Ramírez6,‡]

1Escuela de Ciencias Básicas y Aplicadas, Universidad de La Salle, 111711, Bogotá, Colombia. 2Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile. 3Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile. 4Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile. 5Departamento de Ciencias de la Computación, Facultad de Ingeniería, Universidad de Concepción, Concepción, Chile. 6Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile. 7Instituto Universitario de Bio-Organicano Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206-La Laguna, Tenérife, Canary Islands, Spain. 8Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAO), Buenos Aires, Argentina. 9Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, 111321, Bogotá, Colombia.

†These authors equally contributed to this work.

Abstract

Context: *Valeriana pavonii* Poepp. & Endl. (Caprifoliaceae), is a plant used in traditional medicine as a tranquilizer in Colombia. Valerian extracts have been widely used since ancient times for their sedative and anxiolytic properties; however, the way its active metabolites, including iridoids, interact on their respective targets is not fully understood.

Aims: To isolate and identify active iridoid esters from *V. pavonii*. Perform *in vitro* inhibition assays and computational analyses to study their possible interaction on the benzodiazepine site of the GABA_A receptor.

Methods: Two compounds were obtained from dichloromethane and petroleum ether fractions of *V. pavonii*, respectively, by chromatographic techniques. The structural elucidation was performed by NMR and spectroscopic analyses. *In vitro* inhibition assays of the binding of 3H-flunitrazepam (3H-FNZ) for the benzodiazepine binding site of the GABA_A receptor (BDZ-bs of the GABA_A receptor) were carried out.

Results: Two iridoid esters, hydride-type valepotriates (compounds 1 and 2), were reported for the first time in *V. pavonii*. Both iridoids, 1 and 2, inhibited the binding of 3H-FNZ on the BDZ-bs of the GABA_A receptor (40% at 300 µM). Docking studies and MMGBSA calculations revealed that these compounds exhibited molecular interactions with crucial residues of the benzodiazepine site, similar to those observed for drugs like flunitrazepam, diazepam, and flumazenil.

Conclusions: These findings contribute to understanding the *in vivo* activity of extracts of *Valeriana pavonii* on the central nervous system, which showed promising effects, especially as anticonvulsants, sedative-hypnotics, and antidepressants, through the modulation of the GABAergic system by hydride-type valepotriates and its derivatives.

Keywords: ensemble molecular docking; iridoids; GABA_A modulators; GABA_A receptor; valerian.

Resumen

Contexto: *Valeriana pavonii* Poepp. & Endl. (Caprifoliaceae), es una planta utilizada en la medicina tradicional como tranquilizante en Colombia. Los extractos de valeriana han sido ampliamente utilizados desde la antigüedad por sus propiedades sedantes y ansiolíticas; sin embargo, la forma como sus metabolitos activos, entre ellos los iridoides, interactúan sobre sus respectivas dianas no es del todo conocida.

Objetivos: Aislar e identificar ésteres iridoides activos de *V. pavonii*. Realizar ensayos de inhibición *in vitro* y análisis computacionales para estudiar su posible interacción en el sitio benzodiazepínico del receptor GABA_A.

Métodos: Se obtuvieron dos compuestos a partir de fracciones de diclorometano y éter de petróleo de *V. pavonii*, respectivamente, mediante técnicas cromatográficas. La elucidación estructural se realizó mediante RMN y análisis espectroscópicos. Se llevaron a cabo ensayos de inhibición *in vitro* de la unión del 3H-flunitrazepam (3H-FNZ) al sitio benzodiazepínico del receptor GABA_A (BDZ-bs del receptor GABA_A).

Resultados: Dos ésteres iridoides, valepotriatos de tipo hidrina (compuestos 1 y 2), fueron reportados por primera vez en *V. pavonii*. Ambos iridoides, 1 y 2, inhibieron la unión del 3H-FNZ en el BDZ-bs del receptor GABA_A (40% a 300 µM). Los estudios de docking y los cálculos MMGBSA revelaron que estos compuestos presentaban interacciones moleculares con residuos cruciales del sitio del benzodiazepina, similares a las observadas para fármacos como el flunitrazepam, el diazepam y el flumazenil.

Conclusiones: Estos hallazgos contribuyen a comprender la actividad *in vivo* de extractos de *Valeriana pavonii* sobre el sistema nervioso central, los cuales mostraron efectos prometedores, especialmente como anticonvulsivantes, sedantes-hipnóticos y antidepressivos, a través de la modulación del sistema GABAérgico por valepotriatos de tipo hidrina y sus derivados.

Palabras Clave: acoplamiento molecular en conjunto; iridoides; moduladores GABA_A; receptor GABA_A; valeriana.
INTRODUCTION

The GABA receptor family is one of the main families implicated in the mechanism of action of drugs that behave as central nervous system depressants. The GABA receptor family, also known as GABA (gamma aminobutyric acid) activated heteropentameric chloride channels, belongs to the superfamily of ligand-activated ion channels. GABA, the main inhibitory neurotransmitter of the central nervous system, exerts its physiological effects by binding to three different types of receptors on the neuronal membrane: GABA_A, GABA_B, GABA_C (GABA_A-rho). When activated, either by an endogenous ligand or by an agonist, the GABA_A receptor exerts an inhibitory effect, hyperpolarizing the neuron (the permeability of the membrane to chloride ions is increased) and reducing the likelihood of an action potential occurring (Savage et al., 2018). GABA type A receptor subunits are encoded by 19 different genes that have been grouped into eight subclasses according to sequence homology (α1–6, β1–3, γ1–3, δ, ε, θ, π, ρ1–3). The combination of subunits in the most abundant receptor subtypes in the brain represent combinations of 2α and 2β subunits, together with a single γ 2 or δ subunit. GABA type A receptors can be allosterically modulated by benzodiazepines, barbiturates, steroids, anaesthetics, anticonvulsants, and many other drugs, by binding to allosteric sites on the receptors, modulating the flux of chloride ions induced by GABA (Wasowski and Marder, 2012).

Different studies based on preclinical in vitro and animal models and supported by clinical evidence have also demonstrated the effects that active metabolites isolated from plants, including alkaloids, terpenoids and flavonoids, have exerted on the GABAergic system. Valeriana pavonii is a plant with long stems, liana type, that grows wildly in different regions of Colombia (Garcia, 1992). Currently, alcoholic extracts of V. pavonii are used for the manufacture of herbal products in Colombia (called phytotherapeutics), formulated as sedatives, and also for anxiety and sleep disorders. According to previous phytochemical studies by Thin Layer Chromatography (TLC), the stems were characterized by containing terpenoid, alkaloid, and flavonoid-type compounds (Parra, 2003). However, through pharmacological screening studies on the central nervous system, the alkaloid, dichloromethane, and petroleum ether fractions were the most active, from which isovaleramide and iridoid esters (hydrine-type valepotriates) were isolated, as described below.

In previous studies it was shown that the alcaloidal fraction from V. pavonii presented anticonvulsant effects in a maximum electroshock-induced seizure model (MES) (10 to 400 mg/kg, p.o., in mice), and antidepressant effects in a behavioural despair test (100 mg/kg, p.o., in mice); while hypnotic effects at 500 mg/kg (p.o., in mice) in the model of sleep induction by sodium pentobarbital were observed with the ethanolic extract (Árvalo et al., 2006; Celis et al.,...
Giraldo et al.

Iridoid esters from *Valeriana pavonii* as GABA modulators

http://jppres.com

Figure 1. Hydrine-type valepotriates isolated from anticonvulsant dichloromethane fraction of *V. pavonii*. Ac: acetyl, Iv: isovaleryl. (Giraldo et al., 2013).

2007). It was reported in subsequent tests that the dichloromethane fraction obtained from the ethanolic extract and the petroleum ether fraction obtained from the methanolic extract of *V. pavonii*, exhibited anticonvulsant effects, achieving a protection index around 90% in MES, at doses of 35 and 65 mg/kg, p.o., respectively. Biological activity was attributed to the presence of alkaloid and iridoid-type metabolites detected by TLC in these fractions (Giraldo et al., 2008).

Subsequently, isolation and identification studies of active metabolites were performed: Isovaleramide, a metabolite isolated from active alkaloid fraction, showed a significant effect achieving a protection index around 90% in MES (100 mg/kg, p.o. in mice) (Giraldo et al., 2010). Moreover, three already known iridoid esters (hydrine-type valepotriates) reported for the first time in this species, valtrate acetoxyhydrine, valtrate isovaleroyloxyhydrine, and valtrate chlorohydrin, were isolated from dichloromethane fraction, which had exhibited anticonvulsant activity (Fig. 1). Binding assays showed that the molecular mechanism of these compounds was not fully related to the BDZ-bs of the GABA_A receptor (Giraldo et al., 2013).

Although a wide variety of iridoid esters-type metabolites have been isolated from different species of the genus *Valeriana*, to date there are no computational studies of these metabolites to explain their possible binding mode on the GABA_A receptor. Here, the isolation of two other iridoid esters from the stems of *V. pavonii* is reported, along with *in vitro* assay of binding to the BDZ site of the GABA_A as well as computational analysis to describe their binding mode. For this purpose, molecular modeling studies on the GABA_A receptor were performed and the interactions at the benzodiazepine binding site are described. Different in-house scripts were developed to automatically run ensemble docking simulations in different GABA_A receptor conformations (extracted from molecular dynamics simulations), and a KNIME workflow to analyze how the sampled conformations of the studied compounds interact at the binding site. These results contribute to gain structural insights about how active metabolites such as iridoids, isolated from species of the *Valerian* genus modulate the GABAergic system, which is involved in central nervous system disorders such as epilepsy, insomnia, and anxiety.

MATERIAL AND METHODS

Plant material

V. pavonii stems were collected in the rural area of the San Antonio del Tequendama municipality from department of Cundinamarca (1549 m, Colombia), 4°37'1"N (latitude) and 74°21'0"W (longitude). Botanical identification was carried out at the Herbario Nacional Colombiano of the Universidad Nacional de Colombia and two voucher specimens (Col 495179 and Col 495756) were deposited as indicated in previous studies (Celis et al., 2007).
Extraction and isolation

The ethanolic extract of *V. pavonii* (EE), was obtained from the stems by solid-liquid extraction at room temperature and drying by evaporation under reduced pressure, while the dichloromethane fraction (DF) was obtained from the EE according to previous studies (Giraldo, et al., 2013). The petroleum ether fraction of *V. pavonii* (PEF) was obtained from the methanolic extract (ME) as described below. Dry and crushed stems of *V. pavonii* (about 750 g) were subjected to liquid-solid extraction at room temperature with methanol (1:4). Three extraction processes of 24 h each were carried out. The solvent was removed by evaporation under reduced pressure, obtaining the crude methanolic extract (122.2 g). To obtain the iridoids the following protocols were followed (Nishiya et al., 1994). A quantity of methanolic extract (80 g) were dissolved in water and subjected to successive extractions with petroleum ether, ethyl acetate, and butanol, then by evaporation at reduced pressure the respective dry extracts were obtained. The fractions in ethyl acetate and butanol were not included in this study. Under this procedure, 9.9 g of PEF was obtained.

Compound 1 was obtained from dichloromethane fraction of *V. pavonii* (DF) according to the previous report (Giraldo, et al., 2013), as follows: column chromatography with silica gel 60 (0.063-0.200 mesh, Merck®), column chromatography with sephadex LH-20 (20-100 mm, Sigma Aldrich®) and flash column chromatography (silica gel, 254 nm / TLC, Machery Nagel®). Solvents of increasing polarity were used. Initially partially purified fractions were obtained, which according to their follow-up in TLC (eluent: CHCl₃:MeOH, 9.8:0.2, iridoids specific staining reagent: HCl:AcOH 8:2), were combined in smaller groups of fractions. One of these fractions (207.0 mg) was purified by preparative thin layer chromatography (SiL-G-100/UV 254 nm, Sigma Aldrich®) and flash column chromatography (silica gel, 254 nm / TLC, Machery Nagel®). Solvents of increasing polarity were used. Initially partially purified fractions were obtained, which according to their follow-up in TLC (eluent: CHCl₃:MeOH, 9.8:0.2, iridoids specific staining reagent: HCl:AcOH 8:2), were combined in smaller groups of fractions. One of these fractions (207.0 mg) was purified by preparative thin layer chromatography (SiL-G-100/UV 254 nm, 1 mm, Macherey Nagel®), eluting with a solution of n-hexane:Et₂O (1:1), subsequently preparative thin layer chromatography (TLC nano, silica gel 60/UV 254 nm, 0.25 mm, Macherey Nagel®) was used eluting with a solution of Toluene-EtOAc (8:2), obtaining compound 1: Light yellow viscous liquids; (2.4 mg, 0.02% with respect to PEF); [α]D 20 +93.53 (c 0.17, CHCl₃); IR cm⁻¹ (KBr) 3498 cm⁻¹ (hydroxyl group), 1737 cm⁻¹ (carbonyl ester group), 1611 and 1643 cm⁻¹ (diene double bond characteristics) (Fig. S2). The structural elucidation was performed by one-dimensional (¹H, ¹³C, DEPT135, DEPT90) and two-dimensional NMR experiments (COSY, HSQC, HMBC and ROESY) (Figs. S1, S4-S9) and comparison of their spectral data with those reported in the literature (Table S1).

Compound 2 was obtained from PEF, as follows: 5.9 g of the fraction was purified by column chromatography (silica gel 60, 0.063-0.200 mesh, Merck®) eluting with a solution of n-hexane:CHCl₃:MeOH in gradient. Initially, 82 major fractions were obtained, which subsequently, according to their follow-up by TLC (eluent: CHCl₃:MeOH, 9.8:0.2, iridoids specific staining reagent: HCl:AcOH 8:2), were joined in 14 groups of fractions (A-N). The pooled fraction (E-G), corresponding to 941.0 mg, was purified by column chromatography (silica gel 60, 0.063-0.200 mm Merck®) eluting with a gradient solution of CHCl₃:MeOH, obtaining 17 groups of fractions as monitored by TLC. (EG1-EG17). The EG8 fraction (124 mg) was purified by preparative thin layer chromatography (silica gel 60, HF 254 + 366/TLC Merck®) using as eluent a CHCl₃:MeOH (9.85:0.15) solution, obtaining compound 2: Dark yellow viscous liquid (17.0 mg, 0.3% with respect to PEF); [α]D 20 +49.94 (c 0.39, MeOH); IR cm⁻¹ (KBr) 3477 cm⁻¹ (hydroxyl group), 1737 cm⁻¹ (carbonyl ester group), 1612 cm⁻¹ and 1644 cm⁻¹ (diene double bond) (Fig. S12). The structural elucidation was performed by one-dimensional (¹H, ¹³C, DEPT135, DEPT90) and two-dimensional NMR experiments (COSY, HSQC, HMBC and ROESY) (Figs. S11, S14-S19) and comparison of their spectral data with those reported in the literature (Table S2).

Experimental techniques

Spectroscopic studies were carried out at the Instituto Universitario de Bio-Orgánica Antonio González (La Laguna University) and at the Universidad Nacional de Colombia by IR (HP/FT-IR 1600 Perkin Elmer® and FTIR Bruker® IF 55) and UV (UV/VIS Spectrophotometer V-560 Jasco Corporation®) analysis. The optical rotation results were determined by Polarimeter 343 Perkin Elmer®. Structural elucidation was performed by one-dimensional (¹H, ¹³C, DEPT135, DEPT90) and two-dimensional NMR experiments (COSY, HSQC, HMBC and ROESY), recorded in CDCl₃ (chloroform-d, 99.8%, Sigma-Aldrich®) or MeOD (Methanol-d4, 99.8%, Scharlau®) in Bruker DRX® 400 MHz and Bruker Avance® 400 and 600 MHz equipment. The chemical shifts (δ) were reported in ppm relative to the internal standard of tetramethylsilane (TMS) and the coupling constants (J) in Hz. The mass and molecular formula were confirmed by electronic impact using low and high mass spectrometry resolution (HREIMS) (VG Micromass ZAB-2F and Micromass Autospec).
In vitro assay of binding to the BDZ site of the GABA_A receptor

Adult male Wistar rats weighing 200–300 g, used for binding assays, were obtained from the Central Animal House of the School of Pharmacy and Biochemistry, University of Buenos Aires. Housing, handling, and experimental procedures complied with the recommendations and regulations set forth by the National Institutes of Health Guide for Care and Use of Laboratory Animals (Guide for the Care and Use of Laboratory Animals, 2011) and the Institutional Committees for the Care and Use of Laboratory Animals of the Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina (CICUAL, protocol’s approved code numbers: CUDAP: EXP-FYB N.: 0058084/2015, N. CICUAL FFyB: 02052016-63).

This test was carried out evaluating the inhibition caused by the compounds isolated from *V. pavonii* (300 µM) of the binding of tritiated flunitrazepam (H-FNZ) to GABA_A/BDZ-bs (81.8 Ci/mmol; PerkinElmer Life and Analytical Sciences, Boston, MA, USA) in washed crude synaptosomal membranes from rat cerebral cortex, which contained 0.2–0.4 mg of protein. The samples were incubated at 4°C for 60 min with 0.4 nM ³H-FNZ according to the previous report (Giraldo et al., 2013). For each compound, the test was performed in triplicate. The displacement of the ³H-FNZ binding to BDZ-bs was determined through a liquid scintillation counter according to previously described procedures. Values are expressed as mean ± S.E.M (Marder et al., 2003; Wasowski et al., 2002).

Computational studies

Human α₁β₂γ₂ GABA_A cryo-electron microscopy structure (PDB code: 6D6U) was used for molecular dynamics simulation and molecular docking. Conformation A was chosen due there is no evidence about the difference between both conformations (A and B) reported for this channel. In addition, the transmembrane domain of the γ₂-subunit in conformation B, was comparatively more disordered than the rest of the receptor (Zhu et al., 2018).

To study how both compounds 1 and 2 interacts with GABA_A receptor, a systematic pipeline including molecular dynamics simulations, massive docking and binding free energy calculations was employed. This pipeline has been successfully used to study how different ligands interacts with membrane proteins (Ramírez et al., 2017; 2019). Briefly, one hundred different GABA_A conformations were obtained from 100-ns molecular dynamics simulation (MDs) applying restrictions on the protein backbone (force constant 0.5 kcal × mol⁻¹ × Å⁻²), then both compounds 1 and 2 were docked into the extracted GABA_A conformations. The relative binding free energy of the obtained poses was calculated using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method. Finally, clustering analysis of all the poses was performed to find the most likely interacting conformations. The most populated clusters and the most energetically favorable pose regarding MM-GBSA energy of each cluster were selected to describe the binding mode. Initially a different molecular dynamics protocol was explored, 500 ns of molecular dynamics simulation without applying any restriction. However, it was observed that the binding site was closed and a validation by re-docking the flumazenil ligand was not achieved with this approach.

Molecular Dynamics simulation (MDs)

GABA_A crystal was prepared using the protein preparation wizard module of Maestro suite (Jacobson et al., 2002; 2004; Wizard, 2019). The missing residues in chain E (233-236, and 287-291) were completed using "crosslink protein" tool in Maestro. The co-crystallized ligand flumazenil at the binding site was removed, and its binding site was used as a reference in this study (holo-like). Protonation states of amino acids were assigned at pH 7.0 with PROPKA (Olsson et al., 2011). The protein was embedded into a pre-equilibrated POPC bilayer and solvated using the TIP3P water model. A total of 27 chloride ions were added to neutralize the system and then, the ion concentration was set to 0.15 M NaCl.

The Desmond membrane relaxation protocol (consisting of 6 stages) was used. The first stage consists of a 100 ps Brownian dynamics in an NVT ensemble at 10 K, applying restrictions on the heavy atoms of the protein (force constant 50 kcal × mol⁻¹ × Å⁻²). The second stage corresponds to a Brownian dynamics of 20 ps in NPT ensemble at 100 K, applying restrictions to the heavy atoms of the protein (force constant 20 kcal × mol⁻¹ × Å⁻²) and to the membrane (except for the hydrogen atoms) in the z-direction (force constant 5 kcal × mol⁻¹ × Å⁻²). The third stage consisted of a 10 ps simulation in an NPTγT ensemble at 100 K, applying restrictions to the heavy atoms of the protein (force constant 10 kcal × mol⁻¹ × Å⁻²) and phosphorus and nitrogen atoms of the membrane in the z direction (2 kcal × mol⁻¹ × Å⁻²). The fourth stage consisted of heating from 100 K to 300 K during 150 ps using the same restrictions as the previous step, but gradually releasing the restrictions. The fifth stage consisted of a 100 ps simulation in NVT ensemble applying a restriction to the protein backbone (force constant 5 kcal × mol⁻¹ × Å⁻²). Finally, the sixth stage consisted of a simula-
tion of 100 ps in an NPγT ensemble at 300 K applying a restriction to the protein backbone (force constant 5 kcal × mol⁻¹ × Å⁻²).

After a proper system equilibration, a 100 ns - MDs in NPγT semi-isotropic ensemble was performed applying restrictions to the protein backbone (force constant 0.5 kcal × mol⁻¹ × Å⁻²) with constant surface tension of 0.0 bar × Å. Temperature and pressure were kept constant at 300 K and 1.01325 bar respectively by coupling to a Nose-Hoover Chain thermostat (Cheng and Merz, 1996) and Martyna-Tobias-Klein barostat (Martyna et al., 1994) with an integration time step of 2 fs. The simulations were performed with Desmond (Bowers et al., 2006) and the OPLS2005 force field (Banks et al., 2005).

Ensemble docking

To find the interacting mode of both compounds 1 and 2 with the GABA_A receptor and considering the flexibility of the amino acids side chains, ensemble docking simulations were performed in the GABA_A structures collected every 1 ns (100 structures) from the total 100 ns - MDs. Molecular docking calculations were done with Glide v.7.4 with the standard precision (SP) mode (Friesner et al., 2004). The grid boxes center was defined at the flumazenil binding site described in the cryo-electron microscopy structure of GABA_A (PDB code: 6D6U) at the α1-γ2 interface (α1: F100, H102, Y160, S205, S206, T207, Y210 and γ2: Y58, F77, A79, T142), which is also located at the BDZ-bs of the GABA_A receptor (Sigel and Buhr, 1997).

A cubic box with the axial length of 20 Å was used. Compounds 1 and 2 were prepared using LigPrep module in Maestro (Schrodinger, 2018b). Energy minimization in the gas phase using Macromodel (Schrodinger, 2018a) with the OPLS-2005 force field was performed. For the pose generation in every docking calculation, it was enabled the strain correction term for the GlideScore. A maximum of 10 poses were generated by docking simulation. An in-house script with the automated ensemble docking protocol is openly available in GitHub (https://doi.org/10.5281/zenodo.4739319).

Docking post-processing

To re-score docking solutions the binding free energy of all complexes were calculated using the MM-GBSA method (Gohlke and Case, 2004; Hou et al., 2011). This method combines energy from molecular mechanics according to the atoms parametrization in a given force field and uses implicit solvation models to estimate the binding energy in a molecular complex. The MM-GBSA method has been used as an alternative to reassign the score of the poses because it has shown more accurate results than the classical docking score (Guimarães and Cardozo, 2008). The binding energy was calculated as the difference between the energy of the complex and the energy of the protein and the ligand separately according to the equation [1].

$$E_{\text{binding}} = E_{\text{complex}} - E_{\text{protein}} - E_{\text{ligand}}$$ \[1\]

And the change in the binding free energy was calculated using the equation [2].

$$\Delta G_{\text{bind}} = \Delta H - T\Delta S = \Delta E_{\text{bind}} + \Delta G_{\text{sol}} - T\Delta S$$ \[2\]

Where ΔE_{bind} is the energy of all complexes were calculated using the equation [2].

$$\Delta G_{\text{bind}} = \Delta H - T\Delta S = \Delta E_{\text{bind}} + \Delta G_{\text{sol}} - T\Delta S$$ \[2\]

Where ΔE_{bind}, $\Delta E_{\text{internal}}$, $\Delta E_{\text{electrostatic}}$, ΔE_{vDW}, and ΔG_{sol} correspond to the non-polar and polar contribution, respectively. $\Delta G_{\text{GB/SA}}$ is the generalized Born solvation energy, which corresponds to the non-polar contribution. In this study, the Generalized Born (GB) model to calculate the polar contribution was used.

To process the different conformers obtained for both compounds 1 and 2, all the re-scored poses were extracted from the protein structures, merged, and clustered. The conformers of compounds 1 and 2 were clustered using the Conformer-cluster based on cartesian RMSD script available in the Schrödinger suite software. To perform the clustering, only the heavy atoms of the ligands and a RMSD cutoff of 2 Å was considered using the average linkage method (Bottega et al., 2006). Then, the most populated clusters for each compound were selected to analyze how 1 and 2 interacts with GABA_A at the BDZ-bs. To analyze the frequency of receptor-ligand interactions in the selected clusters, scripts included in Schrödinger Suite (v2020-1) and in-house functional workflow (Peña-Varas and Ramirez, 2021) built on KNIME (Berthold et al., 2009) were used. All the scripts as well as the workflow designed in this study are openly available in Zenodo (https://doi.org/10.5281/zenodo.4739319).

Prior to the docking of compounds 1 and 2 and for the validation of the docking protocol, a re-docking of the crystallized flumazenil ligand was done. Then a clustering was performed with the same parameters mentioned before and the experimental flumazenil pose was obtained in the most populated cluster, which also had the most favorable average binding free energy among the first two clusters (where about 50% of the generated poses are located). This cluster represents 31.7% of the obtained poses and the average binding free energy value of the poses within the cluster was -67.47 kcal/mol.

The same validation protocol was performed for the 500 ns of molecular dynamics simulation approach without any constraint. A clustering of the binding site was performed, and the inertia was cal-
culated to select the clusters that best describe all the conformational variability obtained (Fig. S22). Thirty clusters of GABA_A receptor were selected using the “elbow method” (Yuan and Yang, 2019), and flumazenil was re-docked into the centroid structure of the selected clusters. With this approach, the crystallographic pose within the most populated clusters (first two clusters, where about 50% of the generated poses are located) was not obtained. However, the experimental ligand pose was obtained in another cluster, the most energetically favorable, with an average free energy of -50.16 kcal/mol. However, this cluster represents only 9.43% of the generated poses. According to these results, the size of the binding site was analyzed, and it was found that in the 500 ns MDs, the binding site closes and maintains a volume with a median value of 96.89 Å³ in the thirty frames chosen. For the simulation where protein backbone was constrained, the binding site volume has a median value of 422.68 Å³ (Fig. S23). This allows us to conclude that without restrictions, and due to the characteristics of the binding site studied in this work, the pocket is closed and does not give rise to known interactions such as those described in the cryo-electron microscopy structure of flumazenil with GABA_A.

Statistical analysis

For the in vitro inhibition assays of binding to the BDZ-bs of the GABA_A receptor, tests were performed in triplicate, for each compound. Values were expressed as mean ± S.E.M (Marder et al., 2003) using GraphPad Prism8 software (GraphPad Software, San Diego, CA, USA).

RESULTS

Identification and structural elucidation of iridoids

The chemical structures of compounds 1 and 2 are presented in Fig. 2. Their structural elucidation allowed them to be identified as a diene-type valepotriate hydrines, which present at C-1, C-7, and C-11, the own substitutions of the valtrate (Thies, 1968). By means of the one-dimensional (1H, 13C) and two-dimensional NMR experiments (COSY, ROESY, HMBC, and HSQC) it was possible to fully elucidate the chemical structure of the compounds. The analysis of the ROESY spectra of the compound confirmed their relative configuration. By HREIMS, the mass and molecular formula of the compounds were determined, corresponding to m/z: 468.2343, C₂₄H₃₆O₉ (calcld. 468.2359) for compound 1 (Fig. S10) and m/z: 454.2221, C₂₃H₃₄O₉ (calcld. 454.2203) for compound 2 (Fig. S20).

According to the spectroscopic study and by comparing the (1H and 13C) NMR data recorded for these compounds with those reported, compound 1 was identified as valerjatadoid A, isolated from *Valeriana jatamansi* Jones (*V. jatamansi*) (Yang et al., 2015) (Table S1, Fig. 2) and compound 2 corresponds to valerandoid F, isolated from *V. jatamansi* (Xu et al., 2012), (Table S2, Fig. 2). The compound isolated from *V. jatamansi* recorded an optical rotation value of [α]²⁵D: -51.7 (c 0.37, CH₂Cl₂), while the compound 2 isolated from *V. pavonii* obtained an optical rotation value of [α]²⁵D: +49.94 (c 0.39, MeOH), suggesting compound 2 is an enantiomer of valeriandoid F, and thus, a new reported compound.

![Figure 2. Structures of compounds 1 and 2 from V. pavonii.](https://jppres.com)
The most populated cluster for compound 1 and 2 corresponds to 38.8% and 38.3% of the total poses generated for each compound by molecular docking, respectively. Fig. 3B shows the binding free energy calculated with the MM-GBSA method for the most populated clusters of each compound. A variable and similar energy distribution is observed for the two compounds, which agrees with the experimental data, and a similar energy distribution is observed for the two compounds when interacting with GABA\textsubscript{A} at the same binding site, and in a remarkably similar mode. Compounds 1 and 2 are observed to overlap with the crystallized flumazenil antagonist on the GABA\textsubscript{A} receptor (Fig. 6C). The flumazenil rings are also located in the center of the binding site, the same happens for compounds 1 and 2.

In the flumazenil crystal at the GABA\textsubscript{A} receptor, the diazepine ring is against the phenyl ring of residue γ2-F77, however, the rings of 1 and 2 are parallel to the phenyl ring of residue γ2-F77 (Fig. 6C). This shows that although compounds 1 and 2 overlap in a similar way to flumazenil, there are differences in the orientation of the ligands rings as well as the interacting residues at the BDZ-bs.

To further study how both compounds 1 and 2 interact with GABA\textsubscript{A}, all the conformers of the most populated clusters by categorizing one by one conformer interaction (Fig. 7) were also analyzed. The results show that the most frequent interactions for both compounds are hydrophobic, and some hydrogen bonds were also identified. As expected, the main difference between both compounds when interacts with GABA\textsubscript{A} lies on the R4 groups, which varies between 1 and 2. It is observed that compound 1 interacts with residues γ2-F77, γ2-M 130, γ2-T142, α\textsubscript{1}-Y160, α\textsubscript{1}-T207, and α\textsubscript{1} -Y210, whereas compound 2 does not present such interactions.

https://jppres.com

DISCUSSION

In this study, iridoid esters-type compounds (hydrine-type valepotriates) were isolated from DF (compound 1) and from PEF (compound 2) of *V. pavonii*. It was previously reported that these fractions showed anticonvulsant in vivo activity in MES, with significant protection values of 90% in doses of 35 and 65 mg/kg, p.o. respectively (Giraldo, et al., 2008; 2013). In other in vivo test, it was found that PEF achieved a protection percentage of 60% in pentylenetetrazole (PTZ) induce seizure model (42.5 mg/kg, s.c.) at a dose of 100 mg/kg, p.o. in mice. Both animal models are widely used for the study of drugs with...
potential antiepileptic activity, whether they inhibit
generalized tonic-clonic seizures (MES model) or gen-
eralized myoclonic seizures and also absence seizures
(PTZ model), being the GABA_A receptor one of the
most widely studied drug targets.

Although the results obtained in the in vitro bind-
ing assay showed partial inhibition activity of ^H-
FNZ binding to BDZ-bs of the GABA_A receptor, it
should be noted that they show differences with re-
spect to those obtained in previous reports, where
iridoid esters-type compounds (valepotriate hydrines)
isolated from V. pavonii only achieved inhibition per-
centages below 30%: valtrate acetoxyhydrin (11%),
valtrate isovaleroyloxyhydrin (14%) and valtrate chlo-
rohydrin (34%) at concentrations of 300 μM (Giraldo,
et al., 2013). It is highlighted that the percentage inhi-
bition of compounds 1 and 2 are close to those ob-
tained for isovaleramide, an anticonvulsant molecule
isolated from V. pavonii, which achieved an inhibition
of 42% in the same test (Giraldo et al., 2010). Isova-
leramide is an amide derived from valerenic acid,
whose chemical structure is similar to valproic acid,
derived from natural valeric acid, whose mechanism
of action is related to the inhibition of GABA transam-
inase but also blocking voltage-gated ion channels
(Rahman and Nguyen, 2020).

A few previous studies have demonstrated the
modulation of the GABAergic system by iridoid-type
metabolites isolated from species of the genus Valeri-
an, focusing mainly on valtrate derivatives. In this
regard, valtrate isolated from V. jatamansi showed
antiepileptic effects in vivo in MES and PTZ at doses
of 5, 10 and 20 mg/kg. Its mechanism of action was
explained by a significant up-regulation dose-
dependent of the expression of the GABA_A receptor,
GAD65 (glutamic acid decarboxylase65, GAD iso-
form) and the Bcl2 protein (inhibits neuronal apopto-
sis during seizures) in the brain of chronic epileptic
rats by western blot assays (Wu et al., 2017). More
recently, a fraction of valepotriates from V. edulis
(subsp. procer, Kunth, Mexico) evaluated at a dose of
100 mg/kg (i.p.) in PTZ in rats, showed a decrease in
seizures, a significant decrease in seizure severity,
and a significant increase in latency. In a molecular
docking interaction study for the GABA_A receptor,
valtrate was the compound with the best docking
score, followed by isodihydrovaltrate and homoval-
trate, all of them exhibit hydrogen bond interactions
with Thr256 from chain D, as well as hydrophobic
contacts with Ile255 and Ala252 from chain B (Gonzá-
lez-Trujano et al., 2021).

Different factors could be contributing to the in vi-
vo anticonvulsant activity of both DF and PEF of V.
pavonii, enriched fractions of iridoid esters (hydrine-
type valepotriates). Within these factors, there could
be possible synergistic effects, in which valepotriates
not yet unidentified act as allosteric modulators for
the benzodiazepine binding site of the GABA_A recep-
tor, or act via GABAergic by regulating enzymes in-
volved either with the biosynthesis of GABA (GAD:
glutamic acid decarboxylase) or with its catabolism
(GABA-T: GABA transaminase). Additionally, there
could be other complementary mechanisms of action
such as voltage-gated sodium channel blocking,
which also explains the results obtained in vivo in the
MES assay.

To describe how both compounds 1 and 2 interacts
with the GABA_A receptor, a systematic computational
pipeline was implemented, involving molecular dy-
namics of the GABA_A receptor in the holo-like form,
followed by exhaustive docking of both compounds
in different (100) conformations of the receptor, then
the docking solutions were re-scored by MM-GBSA, merged and clustered to study the interaction mode of both iridoids at the BDZ-bs. To perform this protocol in the best way, MD simulations of the receptor in the holo-like form with and without constraints were carried out, and it was found that when no constraints are applied, the binding pocket closes (Fig. S23), which drastically changes the site and does not allow to reproduce binding modes for known ligands (flumazenil – PDB code: 6D6U) by using docking simulations. For this reason, the massive docking protocol on structures derived from constrained MDs was used, in the same way as other authors have done for similar protocols applied on membrane proteins (Peña-Varas et al., 2022; Ramirez et al., 2017). In addition, it has been shown that molecular docking methods are often more successful when starting from protein structures in the bound state than in the unbound state, or when the set of structures has a higher similarity to the bound state (Ritchie, 2008; Zacharias, 2010; Zhang et al., 2017).

With the systematic pipeline implemented here, one significant cluster for each compound (Fig. 3A) was found. Both clusters interact similarly with GABA_{A} at the BDZ-bs, with the key residues F100, H102, K156, Y160, V203, S205, S206, T207, Y210, and V212 from subunit α_{1}, as well as residues Y58, F77, A79, M130, L140, and T142 from subunit γ_{2}. However, further interaction analysis (Fig. 7) reveals differences in the R4 moiety interaction, this is because the methoxymethyl moiety (R4) of compound 2 is not long enough to establish proper hydrophobic contacts with GABA_{A}. However, those interactions do not seem to explain how these compounds interact at the BDZ-bs because the experimental data obtained from the in vitro assay showed percentages of inhibition of the binding of {sup}3H-FNZ to BDZ-bs between 40% and 44%. On the other hand, the contacts of the R2 and R3 groups were similar for 1 and 2, and some differences between both compounds were observed in the interactions of the core and the R1 moieties (Fig. 7). Both compounds showed a high interaction fraction with the F77 residue of the γ_{2} subunit (core). Compound 1 had the highest interaction fraction with residue F77, with a hydrophobic fraction of 0.8 and hydrogen bond of 0.39. Compound 2 presented the highest interaction fraction with groups R1 and R3, and residue F77, 0.9 being hydrophobic interactions, and 0.7 hydrogen bonds.

Furthermore, the conformers of the most populated clusters presented several interactions that have been previously described for other active molecules that bind at the binding site of benzodiazepines between the α_{1}-γ_{2} interface of the GABA_{A} receptor. Mutation studies have shown that γ_{2}-Y58 residue is relevant for the binding of flunitrazepam (Kucken et al., 2000). The residue γ_{2}-F77 has shown to be relevant for binding diazepam (Buhr et al., 1997a), flumazenil, CL218,872 and methyl-b-carboline-3-carboxylate (Wingrove et al., 1997). Residue γ_{2}-T142 is implicated in the selectivity of zolpidem and eszopiclone, and residue α_{1}-T206 is implicated in the affinity of eszopiclone, diazepam, and zolpidem (Buhr et al., 1997b; Hanson et al., 2008). Other authors have described through theoretical studies that residues γ_{2}-Y58, γ_{2}-F77, α_{1}-F100, γ_{2}-T142, α_{1}-Y160, α_{1}-S206, α_{1}-T207 and α_{1}-Y210 are involved in the interaction of clonazepam, and flunitrazepam with GABA_{A}, while α_{1}-F100, α_{1}-Y160, α_{1}-T207, α_{1}-Y210, γ_{2}-Y58, γ_{2}-F77, and γ_{2}-T142 are involved in the flurazepam, Ro144513, zolpidem, and eszopiclone binding site (Amundarain et al., 2019). Those studies show that interactions found between different benzodiazepines and the GABA_{A} receptor are common with the contact interactions for the compounds 1 and 2 reported here. It is the first time that a complete interaction profile of two metabolites (isolated from V. pavonii stems) against the GABA_{A} receptor is reported, the systematic conformational sampling of both compounds using MD simulations and an ensemble docking protocol, together with the rescoring by MM-GBSA of docking solutions in order to better rank the different poses, followed by the conformational clustering allow us to gain structural insights in the ligand-GABA_{A} interactions at the BDZ-bs. The protocol implemented here, and the findings obtained can be used to study how different phytochemicals interact with the GABAergic system, as well as to enhance the drug design process.

CONCLUSION

These results contribute to the study of the neuropharmacological profile of Valeriana pavonii, a native species from Colombia used in traditional medicine as a tranquilizer, especially for insomnia and anxiety problems. In this study, two iridoid esters from V. pavonii stems were identified; compound 1 and 2, isolated from dichloromethane and petroleum ether fraction, respectively. Both compounds presented binding affinity for the BDZ-bs of the GABA_{A} receptor. The computational results allow us to describe how both compounds interact at their binding site, presenting a similar interaction profile, which reflects the registered biological activity against GABA_{A} receptors. These findings help us to explain why the ethanolic extract and the dichloromethane, petroleum ether and alkaloid fractions of Valeriana pavonii have shown promising effects on the central nervous system, especially as anticonvulsants and sedative-hypnotics, which could be related to the modulation of the GABAergic system by hydrine-type valepotriates and their derivatives. Further in vitro/in silico
studies are needed to better understand the mecha-
nisms of action of these compounds, evaluating their
action on other key molecular targets, such as voltage-
gated sodium channels.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ACKNOWLEDGMENTS

This research was funded by Fondo Nacional de Desar-
rollo Científico y Tecnológico (FONDECYT), grant number
1220656; the Agencia Nacional de Investigación y Desarrol-
lo (ANID) grant number ATE220043 and FOVI210027;
Spanish MINECO co-funded by the European Regional
Development Fund (FEDER), grant number RTI2018-
094356-B-C21; Universidad de Buenos Aires (UBA, UBA-
CyT), grant number 2002105100128A; and Departamento
Administrativo de Ciencia, Tecnología e Innovación-
Colciencias, grant number 110140820449. S.G. thanks the
Departamento de Farmacia of the Universidad Nacional de
Colombia for the technical and scientific support for the
development of this research and the Universidad de La
Salle, Bogotá, for academic support for the publication of
this study. M.B. acknowledges FONDECYT-ANID for his
postdoctoral grant Nº 3210774.

REFERENCES

Amundarin MJ, Viso, JF, Zamarreño, F, Giorgetti, A, Costabel M
(2019) Orthosteric and benzoazepine cavities of the α1β2γ2
GABA_A receptor: insights from externally validated in
//doi.org/10.1080/07391102.2018.1462733

alcaloidal obtenida de Valeriana parvoni Poeppe con actividad

Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Felts AK,
Giraldo SE, Rincón J, Guerrero MF (2008) MM- GB/SA rescoring of
the α1β2γ2 GABA_A subunit of α1β2γ2 GABA_A receptors influence affinities for benzo diazepine binding site.
272.1181799

References

Giraldo et al.

Iridoid esters from *Valeriana pavonii* as GABA\(_A\) modulators

AUTHOR CONTRIBUTION:

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Giraldo SE</th>
<th>Bedoya M</th>
<th>Peña-Varas C</th>
<th>Santana PA</th>
<th>Bazzocchi IL</th>
<th>Jiménez IA</th>
<th>Marder M</th>
<th>Vergel NE</th>
<th>Guerrero MF</th>
<th>Ramírez D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts or ideas</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Design</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Definition of intellectual</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>content</td>
<td></td>
</tr>
<tr>
<td>Literature search</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental studies</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data acquisition</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Data analysis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Manuscript preparation</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manuscript editing</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Manuscript review</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

https://jppres.com