Photoprotective compounds from Baccharis papillosa

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 33-46, January-February 2023. DOI: https://doi.org/10.56499/jppres22.1477_11.1.33 Original Article Quantification and in vitro photo-protective studies of phenolic compounds from Baccharis papillosa Rusby [Cuantificación y estudios de fotoprotección in vitro de compuestos fenólicos de Baccharis papillosa Rusby] Alberto Calle1#, Cecilia K. Curi-Borda1#, Cervando Gutiérrez1,2, Lily Salcedo1, Yonny Flores1, Giovanna R. … Continue reading Photoprotective compounds from Baccharis papillosa

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 33-46, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1477_11.1.33

Original Article

Quantification and in vitro photo-protective studies of phenolic compounds from Baccharis papillosa Rusby

[Cuantificación y estudios de fotoprotección in vitro de compuestos fenólicos de Baccharis papillosa Rusby]

Alberto Calle1#, Cecilia K. Curi-Borda1#, Cervando Gutiérrez1,2, Lily Salcedo1, Yonny Flores1, Giovanna R. Almanza1*

1Laboratorio de Bioorgánica, Instituto de Investigaciones Químicas (IIQ), Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, Calle Andrés Bello y Calle 27 Cota Cota, Edificio FCPN, 4º Piso, La Paz- Bolivia.

2Instituto de Investigaciones Fármaco Bioquímicas (IIFB), Facultad de Ciencias Farmaceúticas y Bioquímicas, Universidad Mayor de San Andrés, Av. Saavedra 222, Miraflores, La Paz-Bolivia.

#Authors contributed equally to the present study.

*E-mail: galmanza@fcpn.edu.bo

Abstract

Context: The ethanolic extract of the leaves from Baccharis papillosa, a plant used in Bolivian folk medicine, presents high UVB/UVA absorption spectrum, and therefore, it could have photo-protective potential.

Aims: To isolate, identify and quantify the compounds of an enriched extract in phenolic compounds obtained from the ethanolic extract of Baccharis papillosa in different seasons and geographical altitudes, and evaluate its photo-protective potential.

Methods: The enriched extract in phenolic compounds was submitted to phytochemical analysis for compound isolation. The enriched extract and isolated compounds were identified by NMR, and monitored by HPLC and spectroscopic methods. The enriched extract with photo-protective potential was analyzed to determine its Spectroscopic Sun Protection Factor (SSPF), its Broad Spectrum Index (BSI) and its photo-protective activity on Escherichia coli bacteria.

Results: Six flavonoids and two cinnamic acid derivatives were isolated and identified. Four of them are reported in B. papillosa for the first time in this study. The highest concentration of total flavonoids was observed in spring and at the highest altitude. The major compound, drupanin, was the main responsible of the high UVB (290-320 nm) absorption spectrum. The high presence of flavonoids in the extract explains the absorption spectrum in the UVA (320-400 nm) region.

Conclusions: The phenolic compounds enriched extract has photo-protective properties comparable to standard commercial synthetic sunscreens and presents an attractive BSI.

Keywords: Broad Spectrum Index (BSI); cinnamic acid derivative; flavonoids; photo-protective activity; Spectroscopic Sun Protection Factor (SSPF).

Resumen

Contexto: El extracto etanólico de las hojas de Baccharis papillosa, planta utilizada en la medicina popular boliviana, presenta un alto espectro de absorción UVB/UVA por lo que podría presentar potencial fotoprotector.

Objetivos: Aislar, identificar y cuantificar los compuestos de un extracto enriquecido en compuestos fenólicos obtenido a partir del extracto etanólico de Baccharis papillosa en diferentes épocas del año y altitudes geográficas y evaluar su potencial fotoprotector.

Métodos: El extracto enriquecido en compuestos fenólicos fue sometido a análisis fitoquímicos para aislamiento de compuestos. El extracto enriquecido y los compuestos aislados fueron identificados por RMN, y monitoreados por HPLC y métodos espectroscópicos. El potencial fotoprotector del extracto enriquecido se analizó mediante la determinación de su Factor de Protección Solar Espectroscópico (SSPF), su Índice de Amplio Espectro (BSR) y su actividad fotoprotectora sobre bacterias Escherichia coli.

Resultados: Se aislaron e identificaron seis flavonoides y dos derivados del ácido cinámico, de los cuales, cuatro de ellos se reportan en este estudio por primera vez en esta especie. La mayor concentración de flavonoides totales se observó en primavera y a mayor altura. El compuesto mayoritario, drupanina, fue el principal responsable del alto espectro de absorción UVB (290-320 nm) del extracto enriquecido. La alta presencia de flavonoides en el extracto explica el espectro de absorción en la región UVA (320-400 nm).

Conclusiones: El extracto enriquecido en compuestos fenólicos tiene propiedades fotoprotectoras comparables a filtros solares sintéticos comerciales estándar y presenta un amplio espectro de protección solar.

Palabras Clave: derivado del ácido cinámico; factor de protección solar espectroscópico; flavonoides; fotoprotección; índice de amplio espectro.

Citation Format: Calle A, Curi-Borda CK, Gutierrez C, Salcedo L, Flores Y, Almanza GR (2023) Quantification and in vitro photo-protective studies of phenolic compounds from Baccharis papillosa Rusby. J Pharm Pharmacogn Res 11(1): 33–46. https://doi.org/10.56499/jppres22.1477_11.1.33
References

Almanza G, Arduz C, Balderrama L, Ocaña L, Flores E (2000) Estudio fitoquímico de Baccharis leptophylla, biodirigido contra Neurospora crassa. Rev Bol Quim 17: 1-8.

Almeida WA, d. S. Sousa LRD, dos Santos A, de Azevedo AS, do Nascimento AM, Amparo TR, Bianco de Souza GH, Henrique dos Santos OD, Leão Andrade  Â, Cazati T, de Abreu Vieira PM, Pires Bueno PC, Rebello dos Santos VM (2020) Green propolis: In vitro photoprotective and photostability studies of single and incorporated extracts in a sunscreen formulation. Rev Bras Farmacogn 30: 436-443. https://doi.org/10.1007/s43450-020-00071-z

Andersen OM, Markham KR (2005) Flavonoids: Chemistry, biochemistry and applications: CRC Press, pp. 1256.

Calderón H (2001) Fotoprotección, bases y aplicación. Rev Chil Reumatol 17: 54-58.

Calle A, San Martín Á, Melgarejo M, Flores Y, Almanza G (2017) Evaluation of flavonoid contents and antibacterial activity of five Bolivian Baccharis species. Rev Bol Quím 34: 112-122.

Calle A, Yupanqui J, Flores Y, Almanza GR (2012) Flavonoides de Baccharis boliviensis. Rev Bol Quím 29: 158-163.

Camacho F (2001) Antiguos y nuevos aspectos de la fotoprotección. Rev Int Dermatol Dermocosmét Clín 4: 441-448.

CAS Common Chemistry (2021) CAS, a division of the American Chemical Society, n.d. Quercetin 3,4′-dimethyl ether. Retrieved from https://commonchemistry.cas.org/detail?cas_rn=33429-83-3 [Consulted July, 2022]

Catalogue No. TM50-TM60 (2002) McFarland Standard, for in vitro use only. Dalynn, Biologicals. http://www.dalynn.com/dyn/ck_assets/files/tech/TM53.pdf [Consulted July, 2022]

ChemSpider CSID:600426 (2021) trans-caffeic acid. Retrieved from http://www.chemspider.com/Chemical-Structure.600426.html [Consulted July, 2022]

Cornard J-P, Lapouge C (2006) Absorption spectra of caffeic acid, caffeate and their 1: 1 complex with Al (III): density functional theory and time-dependent density functional theory investigations. J Phys Chem 110: 7159-7166. https://doi.org/10.1021/jp060147y

da Silva Fernandes A, Alencar AS, Evangelista H, Mazzei JL, Felzenszwalb I (2015) Photoprotective and toxicological activities of extracts from the Antarctic moss Sanionia uncinata. Pharmacogn Mag 11: 38-43. https://doi.org/10.4103/0973-1296.149701

da Silva VV, Ropke CD, de Almeida RL, Miranda DV, Kera CZ, Rivelli DP, Sawada TCH, Barros SBM (2005) Chemical stability and SPF determination of Pothomorphe umbellata extract gel and photostability of 4-nerolidylcathecol. Int J Pharm 303: 125-131. https://doi.org/10.1016/j.ijpharm.2005.07.006

Diffey BL (1994) A method for broad spectrum classification of sunscreens. Int J Cosmet Sci 16: 47-52. https://doi.org/10.1111/j.1467-2494.1994.tb00082.x

Enríquez S, Quispe RE, Amurrio P, Peñaranda JC, Calle A, Orsag V, Almanza GR (2018) Flavonoid contents in leaves of Baccharis latifolia, according to the type of leaf, and its dependence on the physicochemical properties of soils. Rev Bol Quím 35: 146-154.

Escobar Z, Flores Y, Tejeda L, Alvarado JA, Sterner O, Almanza GR (2009) Phenolic compounds from Baccharis papillosa subsp. papillosa. Rev Bol Quím 26: 111-117.

Fleming DP (2008) Quantification of the environmental solar ultraviolet radiation field at the human eye and the investigation of peripherally focused rays. (Ph.D. thesis) Technological University Dublin, Dublin, Ireland. https://doi.org/10.21427/D7XG6P

Gajardo S, Aguilar M, Stowhas T, Salas F, Lopez J, Quispe C, Buc-Calderon P, Benites J (2016) Determination of sun protection factor and antioxidant properties of six Chilean Altiplano plants. Bol Latinoam Caribe Plant Med Aromat15: 352-363.

Garcia Forero A, Villamizar Mantilla DA, Núñez LA, Ocazionez RE, Stashenko EE, Fuentes JL (2019) Photoprotective and antigenotoxic effects of the flavonoids apigenin, naringenin and pinocembrin. Photochem Photobiol 95: 1010-1018. https://doi.org/10.1111/php.13085

Gene RM, Cartañá C, Adzet T, Marin E, Parella T, Canigueral S (1996) Anti-inflammatory and analgesic activity of Baccharis trimera: Identification of its active constituents. Planta Med 62: 232-235. https://doi.org/10.1055/s-2006-957866

Grotewold E (2006) The science of flavonoids. Columbus, Ohio: Springer. https://doi.org/10.1007/978-0-387-28822-2

Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22: 569-574. https://doi.org/10.1016/j.tree.2007.09.006

Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109: 1159-1166. https://doi.org/10.1104/pp.109.4.1159

Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18: 53-58. https://doi.org/10.1093/treephys/18.1.53

Li J, Ou-Lee T-M, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171-179. https://doi.org/10.1105/tpc.5.2.171

Lim H, Draelos Z (2009) Clinical guide to sunscreens and photoprotection. New York: Informa Healthcare USA, pp. 320.

Loza Almanza R, Neri Guarachi L, López Gavincha Y, Mamani Mamani M, Arias Miranda JL, Almanza Vega G, Gonzales Dávalos E, Bermejo Benito P (2011) Evaluación de la toxicidad de los extractos etanólicos de Baccharis latifolia y Baccharis papillosa en animales de experimentación. Biofarbo 19: 22-27.

Mansur J, Rodrigues M, D’ascenção M, Azulay R (1986a) Correlação entre a determinação do fator de proteção solar em seres humanos e por espectrofotometria. An Bras Dermatol 61(4): 167-172.

Mansur J, Rodrigues M, D’ascenção M, Azulay R (1986b) Determinação do fator de proteção solar por espectrofotometria. An Bras Dermatol 61(3): 121-124.

Mazza CA, Zavala J, Scopel, AL, Ballaré CL (1999) Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc Natl Acad Sci USA 96: 980-985. https://doi.org/10.1073/pnas.96.3.980

Monschein M, Jaindl K, Buzimkić S, Bucar F (2015) Content of phenolic compounds in wild populations of Epilobium angustifolium growing at different altitudes. Pharm Biol 53: 1576-1582. https://doi.org/10.3109/13880209.2014.993039

Moreno MI, Moreno LH (2010) Fotoprotección. Rev Asoc Colomb Dermatol 18: 31-39.

Muela A, Garcia-Bringas J, Arana I, Barcina I (2000) The effect of simulated solar radiation on Escherichia coli: the relative roles of UV-B, UV-A, and photosynthetically active radiation. Microb Ecol 39: 65-71. https://doi.org/10.1007/s002489900181

Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302: 71-83. https://doi.org/10.1007/s00403-009-1001-3

Nole G, Johnson AW (2004) An analysis of cumulative lifetime solar ultraviolet radiation exposure and the benefits of daily sun protection. Dermatol Ther 17: 57-62. https://doi.org/10.1111/j.1396-0296.2004.04S1007.x

Peñaranda JC, Rodrigo G, Ticona-Bustillos A, Valenzuela E, Ramos S, San Martin A, Ghezzi F, Almanza GR (2020) Variation in concentration of flavonoids and chlorophyll, and changes on morphology and foliar anatomy, due to visible (PAR) or ultraviolet (UVA, UVB) radiation in Baccharis latifolia. Rev Bol Quim 37: 210-222. http://doi.org/10.34098/2078-3949.37.5.1

Pérez MT (2012) Fotoprotección: 15 consejos para un broceado seguro. Farm Prof 26: 46-50.

Rengifo-Penadillos R (2013) Cuantificación de flavonoides en el extracto etanólico de propóleos. Pharmaciencia 1: 51-56.

Ribeiro RP (2004) Desenvolvimento e validação da metodologia de análise do teor de filtros solares e determinação do FPS in vitro em formulações fotoprotetoras comerciais. PhD Thesis, UFRJ, Rio de Janeiro, Brasil.

Rigel DS, Berson DS, Ceilley RI, Cole CA, Draelos ZD (2006) Photoprotection: Recent advances in sunscreen stability. Skin and Allergy News (suppl.): 4-11.

Rodrigo GC, Almanza GR, Akesson B, Duan R-D (2010) Antiproliferative activity of extracts of some Bolivian medicinal plants. J Med Plant Res 4: 2204-2210.

Salcedo Ortiz L, Flores Y, Sterner O, Almanza Vega GR (2013) ent-kaurane diterpenoids from Baccharis leptophylla Rev Bol de Quím 30: 60-65.

Sánchez-Saldaña L, Lanchipa P, Pancorbo J, Regis A, Sánchez E (2002) Fotoprotectores tópicos. Dermatol Peru 12(2): 156-163.

Silva-Carvalho R, Baltazar F, Almeida-Aguiar C (2015) Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med 2015: 206439. https://doi.org/10.1155/2015/206439

Sotillo WS, Tarqui S, Huang X, Almanza G, Oredsson S (2021) Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement Med Ther 21: 188. https://doi.org/10.1186/s12906-021-03349-4

Talhaoui N, Gómez-Caravaca AM, León L, De la Rosa R, Segura-Carretero A, Fernández-Gutiérrez A (2014) Determination of phenolic compounds of ‘Sikitita’olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’and ‘Picual’olive leaves. LWT- Food Sci Technol 58: 28-34. https://doi.org/10.1016/j.lwt.2014.03.014

Tarqui  S, Flores Y, Almanza  GR (2012) Polyoxygenated flavonoids from Baccharis pentlandii. Rev Bol Quím 29: 10-14.

Villagómez JR, Mollinedo P, Almanza GR (2006) (E)-3-prenil-4-hidroxicinamato de metilo de Baccharis santelices Rev Bol Quím 23: 13-18.

Zaratti F, Forno R, Cuarita L, Saavedra P (2003) Seis años de medidas de ozono y radiación ultravioleta en La Paz, Bolivia. Rev Bol Fis 9: 48-51.

Zdero C, Bohlmann F, Solomon J, King R, Robinson H (1989) Ent-clerodanes and other constituents from bolivian Baccharis species. Phytochemistry 28: 531-542. https://doi.org/10.1016/0031-9422(89)80047-0

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Toxicity evaluation of Ruta angustifolia leaves ethanolic extract
J. Pharm. Pharmacogn. Res., vol. 11, no. 3, pp. 437-447, May-June 2023. DOI: https://doi.org/10.56499/jppres23.1609_11.3.437 Original Article Acute and repeated dose 28-day oral toxicity of Ruta angustifolia Pers. leaves ethanolic extract in Wistar rats [Toxicidad oral aguda y por dosis repetidas durante 28 días del extracto etanólico de hojas de Ruta angustifolia Pers. en ratas Wistar] Tutik … Continue reading Toxicity evaluation of Ruta angustifolia leaves ethanolic extract
Adolescents in Indonesia and COVID-19 pandemic
J. Pharm. Pharmacogn. Res., vol. 11, no. 3, pp. 426-436, May-June 2023. DOI: https://doi.org/10.56499/jppres22.1560_11.3.426 Original Article Perception, mental health, and social media exposure on adolescents in Indonesia during COVID-19 pandemic [Percepción, salud mental y exposición a los medios sociales en adolescentes de Indonesia durante la pandemia de COVID-19] Efa Nugroho1*, Alfiana Ainun Nisa1, Widya Hary Cahyati1, … Continue reading Adolescents in Indonesia and COVID-19 pandemic
Decaffeinated green tea and coffee extracts and metabolic syndrome
J. Pharm. Pharmacogn. Res., vol. 11, no. 3, pp. 414-425, May-June 2023. DOI: https://doi.org/10.56499/jppres23.1593_11.3.414 Original Article Decaffeinated green tea and green coffee extracts as metformin’s add-on enhance metabolic syndrome risk factors and improve the cardiac insulin-gene-related pathway [Extractos de té verde y café verde descafeinados como complemento de la metformina mejoran los factores de riesgo del … Continue reading Decaffeinated green tea and coffee extracts and metabolic syndrome

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio