J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 33-46, January-February 2023.
DOI: https://doi.org/10.56499/jppres22.1477_11.1.33
Original Article
Quantification and in vitro photo-protective studies of phenolic compounds from Baccharis papillosa Rusby
[Cuantificación y estudios de fotoprotección in vitro de compuestos fenólicos de Baccharis papillosa Rusby]
Alberto Calle1#, Cecilia K. Curi-Borda1#, Cervando Gutiérrez1,2, Lily Salcedo1, Yonny Flores1, Giovanna R. Almanza1*
1Laboratorio de Bioorgánica, Instituto de Investigaciones Químicas (IIQ), Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, Calle Andrés Bello y Calle 27 Cota Cota, Edificio FCPN, 4º Piso, La Paz- Bolivia.
2Instituto de Investigaciones Fármaco Bioquímicas (IIFB), Facultad de Ciencias Farmaceúticas y Bioquímicas, Universidad Mayor de San Andrés, Av. Saavedra 222, Miraflores, La Paz-Bolivia.
#Authors contributed equally to the present study.
*E-mail: galmanza@fcpn.edu.bo
Abstract
Context: The ethanolic extract of the leaves from Baccharis papillosa, a plant used in Bolivian folk medicine, presents high UVB/UVA absorption spectrum, and therefore, it could have photo-protective potential.
Aims: To isolate, identify and quantify the compounds of an enriched extract in phenolic compounds obtained from the ethanolic extract of Baccharis papillosa in different seasons and geographical altitudes, and evaluate its photo-protective potential.
Methods: The enriched extract in phenolic compounds was submitted to phytochemical analysis for compound isolation. The enriched extract and isolated compounds were identified by NMR, and monitored by HPLC and spectroscopic methods. The enriched extract with photo-protective potential was analyzed to determine its Spectroscopic Sun Protection Factor (SSPF), its Broad Spectrum Index (BSI) and its photo-protective activity on Escherichia coli bacteria.
Results: Six flavonoids and two cinnamic acid derivatives were isolated and identified. Four of them are reported in B. papillosa for the first time in this study. The highest concentration of total flavonoids was observed in spring and at the highest altitude. The major compound, drupanin, was the main responsible of the high UVB (290-320 nm) absorption spectrum. The high presence of flavonoids in the extract explains the absorption spectrum in the UVA (320-400 nm) region.
Conclusions: The phenolic compounds enriched extract has photo-protective properties comparable to standard commercial synthetic sunscreens and presents an attractive BSI.
Keywords: Broad Spectrum Index (BSI); cinnamic acid derivative; flavonoids; photo-protective activity; Spectroscopic Sun Protection Factor (SSPF).

Resumen
Contexto: El extracto etanólico de las hojas de Baccharis papillosa, planta utilizada en la medicina popular boliviana, presenta un alto espectro de absorción UVB/UVA por lo que podría presentar potencial fotoprotector.
Objetivos: Aislar, identificar y cuantificar los compuestos de un extracto enriquecido en compuestos fenólicos obtenido a partir del extracto etanólico de Baccharis papillosa en diferentes épocas del año y altitudes geográficas y evaluar su potencial fotoprotector.
Métodos: El extracto enriquecido en compuestos fenólicos fue sometido a análisis fitoquímicos para aislamiento de compuestos. El extracto enriquecido y los compuestos aislados fueron identificados por RMN, y monitoreados por HPLC y métodos espectroscópicos. El potencial fotoprotector del extracto enriquecido se analizó mediante la determinación de su Factor de Protección Solar Espectroscópico (SSPF), su Índice de Amplio Espectro (BSR) y su actividad fotoprotectora sobre bacterias Escherichia coli.
Resultados: Se aislaron e identificaron seis flavonoides y dos derivados del ácido cinámico, de los cuales, cuatro de ellos se reportan en este estudio por primera vez en esta especie. La mayor concentración de flavonoides totales se observó en primavera y a mayor altura. El compuesto mayoritario, drupanina, fue el principal responsable del alto espectro de absorción UVB (290-320 nm) del extracto enriquecido. La alta presencia de flavonoides en el extracto explica el espectro de absorción en la región UVA (320-400 nm).
Conclusiones: El extracto enriquecido en compuestos fenólicos tiene propiedades fotoprotectoras comparables a filtros solares sintéticos comerciales estándar y presenta un amplio espectro de protección solar.
Palabras Clave: derivado del ácido cinámico; factor de protección solar espectroscópico; flavonoides; fotoprotección; índice de amplio espectro.

Citation Format: Calle A, Curi-Borda CK, Gutierrez C, Salcedo L, Flores Y, Almanza GR (2023) Quantification and in vitro photo-protective studies of phenolic compounds from Baccharis papillosa Rusby. J Pharm Pharmacogn Res 11(1): 33–46. https://doi.org/10.56499/jppres22.1477_11.1.33
References
Almanza G, Arduz C, Balderrama L, Ocaña L, Flores E (2000) Estudio fitoquímico de Baccharis leptophylla, biodirigido contra Neurospora crassa. Rev Bol Quim 17: 1-8.
Almeida WA, d. S. Sousa LRD, dos Santos A, de Azevedo AS, do Nascimento AM, Amparo TR, Bianco de Souza GH, Henrique dos Santos OD, Leão Andrade Â, Cazati T, de Abreu Vieira PM, Pires Bueno PC, Rebello dos Santos VM (2020) Green propolis: In vitro photoprotective and photostability studies of single and incorporated extracts in a sunscreen formulation. Rev Bras Farmacogn 30: 436-443. https://doi.org/10.1007/s43450-020-00071-z
Andersen OM, Markham KR (2005) Flavonoids: Chemistry, biochemistry and applications: CRC Press, pp. 1256.
Calderón H (2001) Fotoprotección, bases y aplicación. Rev Chil Reumatol 17: 54-58.
Calle A, San Martín Á, Melgarejo M, Flores Y, Almanza G (2017) Evaluation of flavonoid contents and antibacterial activity of five Bolivian Baccharis species. Rev Bol Quím 34: 112-122.
Calle A, Yupanqui J, Flores Y, Almanza GR (2012) Flavonoides de Baccharis boliviensis. Rev Bol Quím 29: 158-163.
Camacho F (2001) Antiguos y nuevos aspectos de la fotoprotección. Rev Int Dermatol Dermocosmét Clín 4: 441-448.
CAS Common Chemistry (2021) CAS, a division of the American Chemical Society, n.d. Quercetin 3,4′-dimethyl ether. Retrieved from https://commonchemistry.cas.org/detail?cas_rn=33429-83-3 [Consulted July, 2022]
Catalogue No. TM50-TM60 (2002) McFarland Standard, for in vitro use only. Dalynn, Biologicals. http://www.dalynn.com/dyn/ck_assets/files/tech/TM53.pdf [Consulted July, 2022]
ChemSpider CSID:600426 (2021) trans-caffeic acid. Retrieved from http://www.chemspider.com/Chemical-Structure.600426.html [Consulted July, 2022]
Cornard J-P, Lapouge C (2006) Absorption spectra of caffeic acid, caffeate and their 1: 1 complex with Al (III): density functional theory and time-dependent density functional theory investigations. J Phys Chem 110: 7159-7166. https://doi.org/10.1021/jp060147y
da Silva Fernandes A, Alencar AS, Evangelista H, Mazzei JL, Felzenszwalb I (2015) Photoprotective and toxicological activities of extracts from the Antarctic moss Sanionia uncinata. Pharmacogn Mag 11: 38-43. https://doi.org/10.4103/0973-1296.149701
da Silva VV, Ropke CD, de Almeida RL, Miranda DV, Kera CZ, Rivelli DP, Sawada TCH, Barros SBM (2005) Chemical stability and SPF determination of Pothomorphe umbellata extract gel and photostability of 4-nerolidylcathecol. Int J Pharm 303: 125-131. https://doi.org/10.1016/j.ijpharm.2005.07.006
Diffey BL (1994) A method for broad spectrum classification of sunscreens. Int J Cosmet Sci 16: 47-52. https://doi.org/10.1111/j.1467-2494.1994.tb00082.x
Enríquez S, Quispe RE, Amurrio P, Peñaranda JC, Calle A, Orsag V, Almanza GR (2018) Flavonoid contents in leaves of Baccharis latifolia, according to the type of leaf, and its dependence on the physicochemical properties of soils. Rev Bol Quím 35: 146-154.
Escobar Z, Flores Y, Tejeda L, Alvarado JA, Sterner O, Almanza GR (2009) Phenolic compounds from Baccharis papillosa subsp. papillosa. Rev Bol Quím 26: 111-117.
Fleming DP (2008) Quantification of the environmental solar ultraviolet radiation field at the human eye and the investigation of peripherally focused rays. (Ph.D. thesis) Technological University Dublin, Dublin, Ireland. https://doi.org/10.21427/D7XG6P
Gajardo S, Aguilar M, Stowhas T, Salas F, Lopez J, Quispe C, Buc-Calderon P, Benites J (2016) Determination of sun protection factor and antioxidant properties of six Chilean Altiplano plants. Bol Latinoam Caribe Plant Med Aromat15: 352-363.
Garcia Forero A, Villamizar Mantilla DA, Núñez LA, Ocazionez RE, Stashenko EE, Fuentes JL (2019) Photoprotective and antigenotoxic effects of the flavonoids apigenin, naringenin and pinocembrin. Photochem Photobiol 95: 1010-1018. https://doi.org/10.1111/php.13085
Gene RM, Cartañá C, Adzet T, Marin E, Parella T, Canigueral S (1996) Anti-inflammatory and analgesic activity of Baccharis trimera: Identification of its active constituents. Planta Med 62: 232-235. https://doi.org/10.1055/s-2006-957866
Grotewold E (2006) The science of flavonoids. Columbus, Ohio: Springer. https://doi.org/10.1007/978-0-387-28822-2
Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22: 569-574. https://doi.org/10.1016/j.tree.2007.09.006
Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109: 1159-1166. https://doi.org/10.1104/pp.109.4.1159
Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18: 53-58. https://doi.org/10.1093/treephys/18.1.53
Li J, Ou-Lee T-M, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171-179. https://doi.org/10.1105/tpc.5.2.171
Lim H, Draelos Z (2009) Clinical guide to sunscreens and photoprotection. New York: Informa Healthcare USA, pp. 320.
Loza Almanza R, Neri Guarachi L, López Gavincha Y, Mamani Mamani M, Arias Miranda JL, Almanza Vega G, Gonzales Dávalos E, Bermejo Benito P (2011) Evaluación de la toxicidad de los extractos etanólicos de Baccharis latifolia y Baccharis papillosa en animales de experimentación. Biofarbo 19: 22-27.
Mansur J, Rodrigues M, D’ascenção M, Azulay R (1986a) Correlação entre a determinação do fator de proteção solar em seres humanos e por espectrofotometria. An Bras Dermatol 61(4): 167-172.
Mansur J, Rodrigues M, D’ascenção M, Azulay R (1986b) Determinação do fator de proteção solar por espectrofotometria. An Bras Dermatol 61(3): 121-124.
Mazza CA, Zavala J, Scopel, AL, Ballaré CL (1999) Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc Natl Acad Sci USA 96: 980-985. https://doi.org/10.1073/pnas.96.3.980
Monschein M, Jaindl K, Buzimkić S, Bucar F (2015) Content of phenolic compounds in wild populations of Epilobium angustifolium growing at different altitudes. Pharm Biol 53: 1576-1582. https://doi.org/10.3109/13880209.2014.993039
Moreno MI, Moreno LH (2010) Fotoprotección. Rev Asoc Colomb Dermatol 18: 31-39.
Muela A, Garcia-Bringas J, Arana I, Barcina I (2000) The effect of simulated solar radiation on Escherichia coli: the relative roles of UV-B, UV-A, and photosynthetically active radiation. Microb Ecol 39: 65-71. https://doi.org/10.1007/s002489900181
Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302: 71-83. https://doi.org/10.1007/s00403-009-1001-3
Nole G, Johnson AW (2004) An analysis of cumulative lifetime solar ultraviolet radiation exposure and the benefits of daily sun protection. Dermatol Ther 17: 57-62. https://doi.org/10.1111/j.1396-0296.2004.04S1007.x
Peñaranda JC, Rodrigo G, Ticona-Bustillos A, Valenzuela E, Ramos S, San Martin A, Ghezzi F, Almanza GR (2020) Variation in concentration of flavonoids and chlorophyll, and changes on morphology and foliar anatomy, due to visible (PAR) or ultraviolet (UVA, UVB) radiation in Baccharis latifolia. Rev Bol Quim 37: 210-222. http://doi.org/10.34098/2078-3949.37.5.1
Pérez MT (2012) Fotoprotección: 15 consejos para un broceado seguro. Farm Prof 26: 46-50.
Rengifo-Penadillos R (2013) Cuantificación de flavonoides en el extracto etanólico de propóleos. Pharmaciencia 1: 51-56.
Ribeiro RP (2004) Desenvolvimento e validação da metodologia de análise do teor de filtros solares e determinação do FPS in vitro em formulações fotoprotetoras comerciais. PhD Thesis, UFRJ, Rio de Janeiro, Brasil.
Rigel DS, Berson DS, Ceilley RI, Cole CA, Draelos ZD (2006) Photoprotection: Recent advances in sunscreen stability. Skin and Allergy News (suppl.): 4-11.
Rodrigo GC, Almanza GR, Akesson B, Duan R-D (2010) Antiproliferative activity of extracts of some Bolivian medicinal plants. J Med Plant Res 4: 2204-2210.
Salcedo Ortiz L, Flores Y, Sterner O, Almanza Vega GR (2013) ent-kaurane diterpenoids from Baccharis leptophylla Rev Bol de Quím 30: 60-65.
Sánchez-Saldaña L, Lanchipa P, Pancorbo J, Regis A, Sánchez E (2002) Fotoprotectores tópicos. Dermatol Peru 12(2): 156-163.
Silva-Carvalho R, Baltazar F, Almeida-Aguiar C (2015) Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med 2015: 206439. https://doi.org/10.1155/2015/206439
Sotillo WS, Tarqui S, Huang X, Almanza G, Oredsson S (2021) Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement Med Ther 21: 188. https://doi.org/10.1186/s12906-021-03349-4
Talhaoui N, Gómez-Caravaca AM, León L, De la Rosa R, Segura-Carretero A, Fernández-Gutiérrez A (2014) Determination of phenolic compounds of ‘Sikitita’olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’and ‘Picual’olive leaves. LWT- Food Sci Technol 58: 28-34. https://doi.org/10.1016/j.lwt.2014.03.014
Tarqui S, Flores Y, Almanza GR (2012) Polyoxygenated flavonoids from Baccharis pentlandii. Rev Bol Quím 29: 10-14.
Villagómez JR, Mollinedo P, Almanza GR (2006) (E)-3-prenil-4-hidroxicinamato de metilo de Baccharis santelices Rev Bol Quím 23: 13-18.
Zaratti F, Forno R, Cuarita L, Saavedra P (2003) Seis años de medidas de ozono y radiación ultravioleta en La Paz, Bolivia. Rev Bol Fis 9: 48-51.
Zdero C, Bohlmann F, Solomon J, King R, Robinson H (1989) Ent-clerodanes and other constituents from bolivian Baccharis species. Phytochemistry 28: 531-542. https://doi.org/10.1016/0031-9422(89)80047-0
© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)