Phyllanthus emblica flavonoid glycosides against xanthine oxidase

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1067-1078, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.1959_12.6.1067 Original Article Antioxidant potential and xanthine oxidase inhibition of flavonol glycosides from Phyllanthus emblica L. leaves [Potencial antioxidante e inhibición de la xantina oxidasa de los glucósidos de flavonol de las hojas de Phyllanthus emblica L.] Husnunnisa1, Rika Hartati1, Rachmat Mauludin2, … Continue reading Phyllanthus emblica flavonoid glycosides against xanthine oxidase

J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1067-1078, Nov-Dec 2024.

DOI: https://doi.org/10.56499/jppres24.1959_12.6.1067

Original Article

Antioxidant potential and xanthine oxidase inhibition of flavonol glycosides from Phyllanthus emblica L. leaves

[Potencial antioxidante e inhibición de la xantina oxidasa de los glucósidos de flavonol de las hojas de Phyllanthus emblica L.]

Husnunnisa1, Rika Hartati1, Rachmat Mauludin2, Muhamad Insanu1*

1Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa No. 10 Bandung, West Java 40132, Indonesia.

2Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa No. 10 Bandung, West Java 40132, Indonesia.

*E-mail: insanu99@itb.ac.id

Abstract

Context: Hyperuricemia is the cause of gout in the inflammatory joint condition. The xanthine oxidase enzyme is a therapeutic target for gout treatment because it plays a role in the generation of uric acid. Allopurinol is used to treat gout. It prevents the xanthine oxidase enzyme from producing as much uric acid. When selecting a medication, one must consider the various adverse effects of allopurinol. Phyllanthus emblica plants are among the medicinal plants that can be used as an alternative treatment for gout.

Aims: To evaluate isolated compounds from the Phyllanthus emblica as antihyperuricemia candidates.

Methods: The isolated compounds were characterized using High-Performance Liquid Chromatography Analysis and Thin Layer Chromatography-Densitometry. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and cupric ion (CUPRAC) antioxidant capacity procedures were used to develop the antioxidant activity index. The ability to inhibit xanthine oxidase was determined using a spectrophotometer.

Results: Compound 1 was indicated as rutin having antioxidant capacity with an antioxidant activity index (AAI) DPPH value of 7.89 ± 0.03 and AAI CUPRAC value of 15.83 ± 0.04 stronger than compound 2 (quercitrin) with an AAI DPPH value of 3.72 ± 0.01 and AAI CUPRAC 3.24 ± 0.03. The IC50 for quercitrin's inhibition of xanthine oxidase is 23.85 ± 2.04, which was higher than rutin’s IC50 value of 32.77 ± 4.49 µg/mL.

Conclusions: Flavonol glycosides present in the ethanol extract of Phyllanthus emblica leaves gave potent xanthine oxidase inhibitory activity stronger than the extract. Quercitrin gave stronger xanthine oxidase inhibitory activity, but this compound has weaker antioxidant capacity compared to rutin.

Keywords: antioxidants; hyperuricemia; Phyllanthus emblica; xanthine oxidase.

PDF Download

Resumen

Contexto: La hiperuricemia es la causa de la gota, una enfermedad inflamatoria de las articulaciones. La enzima xantina oxidasa es una diana terapéutica para el tratamiento de la gota porque interviene en la generación de ácido úrico. El alopurinol se utiliza para tratar la gota. Impide que la enzima xantina oxidasa produzca tanto ácido úrico. A la hora de elegir un medicamento, hay que tener en cuenta los diversos efectos adversos del alopurinol. Las plantas de Phyllanthus emblica se encuentran entre las plantas medicinales que pueden utilizarse como tratamiento alternativo para la gota.

Objetivos: Evaluar compuestos aislados de Phyllanthus emblica como candidatos antihiperuricemiantes.

Métodos: Los compuestos aislados se caracterizaron mediante análisis de cromatografía líquida de alto rendimiento y cromatografía de capa fina-densitometría. Se utilizaron los procedimientos de capacidad antioxidante 2,2-difenil-1-picrilhidrazilo (DPPH) e ion cúprico (CUPRAC) para desarrollar el índice de actividad antioxidante. La capacidad de inhibición de la xantina oxidasa se determinó con un espectrofotómetro.

Resultados: Se indicó que el compuesto 1 (rutina) tenía actividad antioxidante con un índice de actividad antioxidante (AAI) DPPH de 7,89 ± 0,03 y un valor AAI CUPRAC de 15,83 ± 0,04 más fuerte que el compuesto 2 (quercitrina) con un valor AAI DPPH de 3,72 ± 0,01 y un valor AAI CUPRAC de 3,24 ± 0,03. El IC50 para la inhibición de la xantina oxidasa por la quercitrina es de 23,85 ± 2,04, que fue superior al valor IC50 de la rutina de 32,77 ± 4,49 µg/mL.

Conclusiones: Los glucósidos de flavonol presentes en el extracto etanólico de las hojas de Phyllanthus emblica presentaron una potente actividad inhibidora de la xantina oxidasa, superior a la del extracto. La quercitrina presentó una actividad inhibidora de la xantina oxidasa más potente, pero este compuesto tiene una actividad antioxidante más débil en comparación con la rutina.

Palabras Clave: antioxidantes; hiperuricemia; Phyllanthus emblica; xantina oxidasa.

PDF Download
 
Citation Format: Husnunnisa, Hartati R, Mauludin R, Insanu M (2024) Potential antioxidant and xanthine oxidase inhibition of flavonol glycosides from Phyllanthus emblica L. leaves. J Pharm Pharmacogn Res 12(6): 1067–1078. https://doi.org/10.56499/jppres24.1959_12.6.1067
References

Ahmad B, Hafeez N, Rauf A, Bashir S, Linfang H, Rehman M, Mubarak MS, Uddin S, Bawazeer S, Shariati MA, Daglia M, Wan C, Rengasamy (2021) Review Phyllanthus emblica: A comprehensive review of its therapeutic benefits. S Afr J Bot 138: 278–310. https://doi.org/10.1016/j.sajb.2020.12.028

Alem MM (2018) Allopurinol and endothelial function: A systematic review with meta-analysis of randomized controlled trials. Cardiovasc Ther 36(4): 12432. https://doi.org/10.1111/1755-5922.12432

Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity. Pure Appl Chem 85: 957–998. https://doi.org/10.1351/PAC-REP-12-07-15

Atmani D, Chaher N, Atmani D, Berboucha M, Debbache N, Boudaoud H (2009) Flavonoids in human health: From structure to biological activity. Curr Nutr Food Sci 5(4): 225–237. https://doi.org/10.2174/157340109790218049

Bouman RW, Kebler PJ, Telford IR, Bruhl JJ, Strijk JS, Saunders RM, Esser HJ, Hidalgo BF, Van Welzen PC (2022) A revised phylogenetic classification of tribe Phyllantheae (Phyllanthaceae). Phytotaxa 540(1): 1. https://doi.org/10.11646/phytotaxa.540.1.1

Chaikul P, Kanlayavattanakul M, Somkumnerd J, Lourith N (2021) Phyllanthus emblica L. (amla) branch: A safe and effective ingredient against skin aging. J Tradit Complement Med 11(5): 390–399. https://doi.org/10.1016/j.jtcme.2021.02.004

Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10: 178–182. https://doi.org/10.38212/2224-6614.2748

Day RO, Kannangara DRW, Stocker SL, Carland JE, Williams KM, Graham GG (2017) Allopurinol: Insights from studies of dose-response relationships. Expert Opin Drug Metab Toxicol 13(4): 449–462. https://doi.org/10.1080/17425255.2017.1269745

Dirgantara S, Insanu M, Fidrianny I (2022) Evaluation of xanthine oxidase inhibitory, antioxidative activity of five selected Papua medicinal plants and correlation with phytochemical content. Pharmacia 69(4): 965–972. https://doi.org/10.3897/pharmacia.69.e91083

Faleschini T, Syafni N, Schulte HL, Garifulina A, Hering S, Espindola LS, Hamburger M (2023) A neolignan from Connarus tuberosus as an allosteric GABAA receptor modulator at the neurosteroid binding site. Biomed Pharmacother 161: 114498. https://doi.org/10.1016/j.biopha.2023.114498

Gliozzi M, Malara N, Muscoli S, Mollace V (2016) The treatment of hyperuricemia. Int J Cardiol 15(213): 23–27. https://doi.org/10.1016/j.ijcard.2015.08.087

Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10): 572–584. https://doi.org/10.1016/s0955-2863(02)00208-5

Huang H, Li M, Tan Q, Tang C, Gao J, Bao X, Fan S, Mo T, Han L, Zhang D, Lin J (2023) The impact of thermal extraction on the quality of Phyllanthus emblica Linn. fruit: A systematic study based on compositional changes. Arab J Chem 16(4): 104562. https://doi.org/10.1016/j.arabjc.2023.104562

Hu Q, Liu Z, Guo Y, Lu S, Du H, Cao Y (2021) Antioxidant capacity of flavonoids from folium Artemisia argyi and the molecular mechanism in Caenorhabditis elegans. J Ethnopharmacol 279: 114398. https://doi.org/10.1016/j.jep.2021.114398

Hu Y, Liang P, Wang Z, Jiang C, Zeng Q, Shen C, Wu, Y, Liu L, Yi Y, Zhu H, Liu Q (2023) Explore the effect of the structure-activity relationship and dose-effect relationship on the antioxidant activity of licorice flavonoids. J Mol Struct 1292: 136101. https://doi.org/10.1016/j.molstruc.2023.136101

Husnunnisa H, Hartati R, Mauludin R, Insanu M (2022) A review of the Phyllanthus genus plants: Their phytochemistry, traditional uses, and potential inhibition of xanthine oxidase. Pharmacia 69(3): 681–687. https://doi.org/10.3897/pharmacia.69.e87013

Ismed F, Dévéhat FL, Delalande O, Sinbandhit S, Bakhtiar A, Boustie J (2012) Lobarin from the Sumatran lichen, Stereocaulon halei. Fitoterapia 83: 1693–1698.  https://doi.org/10.1016/j.fitote.2012.09.025

Kiran KR, Swathy PS, Paul B, Prasada KS, Rao MR, Joshi MB, Rai PS, Satyamoorthy K, Muthusamy A (2021) Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species. J Ethnopharmacol 273: 113928. https://doi.org/10.1016/j.jep.2021.113928

Lee SC, Wo WK, Yeoh HS, Ali NM, Hariraj V (2021) Allopurinol induced severe cutaneous adverse drug reactions: An analysis of spontaneous reports in Malaysia (2000–2018). Ther Innov Regul Sci 55(3): 514–522. https://doi.org/10.1007/s43441-020-00245-w

Lin S, Zhang G, Liao Y, Pan J, Gong D (2015) Dietary flavonoids as xanthine oxidase inhibitors: structure-affinity and structure-activity relationships. J Agric Food Chem 63(35): 7784–94. https://doi.org/10.1021/acs.jafc.5b03386

Luo W, Zhao M, Yang B, Ren J, Shen G, Rao G (2011) Antioxidant and antiproliferative capacities of phenolics purified from Phyllanthus emblica L. fruit. Food Chem 126(1): 277–282. https://doi.org/10.1016/j.foodchem.2010.11.018

Mari E, Ricci F, Imberti D, Gallerani M (2011) Agranulocytosis: an adverse effect of allopurinol treatment. Ital J Med 5(2): 120–123. https://doi.org/10.4081/itjm.2011.120

Markham KR, Mabry TJ (1975) Ultraviolet-visible and proton magnetic resonance spectroscopy of flavonoid. In: The flavonoids, Ed. J.B. Harborne, T.J. Mabry, H. Mabry. USA: Springer-science+Business Media.

Mehmood A, Ishaq M, Zhao L, Safdar B, Ashfaq-ur-Rehman, Munir M, Raza A, Nadeem M, Iqbal W, Wang C (2019) Natural compounds with xanthine oxidase inhibitory activity: A review. Chem Biol Drug Des 93(4): 387–418. https://doi.org/10.1111/cbdd.13437

Nagao A, Seki M, Kobayashi H (1999) Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 63(10): 1787–1790. https://doi.org/10.1271/bbb.63.1787

Nayaka NMDMW, Fidrianny I, Sukrasno, Hartati R, Singgih M (2020) Antioxidant and antibacterial activities of multiflora honey extracts from the Indonesian Apis cerana bee. J Taibah Univ Med Sci 15(3): 211–217. https://doi.org/10.1016/j.jtumed.2020.04.005

Ongchai S (2019) Phyllanthus spp. as a potential alternative treatment for arthritic conditions. In: Watson RR, Preedy VR (Eds) Bioactive food as dietary interventions for arthritis and related inflammatory diseases (2nd Edn). United States of America: Academic Press, 523–533.

Owen PL, Johns T (1999) Xanthine oxidase inhibitory activity of northeastern North American plant remedies used for gout. J Ethnopharmacol 64(2): 149–160. https://doi.org/10.1016/S0378-8741(98)00119-6

Park HJ, Yun J, Kang DY, Park JW, Koh YI, Kim S, Kim SH, Nam YH, Jeong YY, Kim CW, Park HK, Kim SH, Kang HR, Jung JW (2019) Unique clinical characteristics and prognosis of allopurinol-induced severe cutaneous adverse reactions. J Allergy Clin Immunol Pract 7(8): 2739–2749. https://doi.org/10.1016/j.jaip.2019.05.047

Ponce AM, Blanco SE, Molina AS, Garcı´a-Domenech R, Ga´lvez J (2000) Study of the action of flavonoids on xanthine-oxidase by molecular topology. J Chem Inf Comput Sci 40: 1039–1045. https://doi.org/10.1021/ci000020k

Pourmorad F, Hosseinimehr SJ, Shahabimajd N (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol 5(11): 1142–1145. https://doi.org/10.4314/AJB.V5I11.42999

Purena R, Seth R, Bhatt R (2018) Protective role of Emblica officinalis hydro-ethanolic leaf extract in cisplatin induced nephrotoxicity in rats. Toxicol Rep 5: 270–277. https://doi.org/10.1016/j.toxrep.2018.01.008

Rusmana D, Wahyudianingsih R, Elisabeth M, Balqis, Maesaroh, Widowati W (2017) Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin. Indones Biomed J 9(2): 84–90. https://doi.org/10.18585/inabj.v9i2.281

Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, El-Shazly M, Kumar V (2022) Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J Ethnopharmacol 282: 114570. https://doi.org/10.1016/j.jep.2021.114570

Saksit N, Tassaneeyakul W, Nakkam N, Konyoung P, Khunarkornsiri U, Chumworathayi P, Sukasem C, Suttisai S, Piriyachananusorn N, Tiwong P, Chaiyakunapruk N, Sawanyawisuth K, Rerkpattanapipat T, Tassaneeyakul W (2017) Risk factors of allopurinol-induced severe cutaneous adverse reactions in a Thai population. Pharmacogenet Genom 27(7): 255–263. https://doi.org/10.1097/fpc.0000000000000285.

Shahidi F, Naczk M (2003) Phenolics in food and nutraceuticals, 2nd ed. Boca Raton: CRC Press, pp. 490. https://doi.org/10.1201/9780203508732

Stamp LK, Chapman PT (2020) Allopurinol hypersensitivity: Pathogenesis and prevention. Best Pract Res Clin Rheumatol 34(4): 101501. https://doi.org/10.1016/j.berh.2020.101501

Sukrasno, Tuty S, Fidrianny I (2017) Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, Central Java, Indonesia. Asian J Pharm Clin Res 10(6): 377–382. https://dx.doi.org/10.22159/ajpcr.2017.v10i6.16565

Variya BC, Bakrania AK, Patel SS (2016) Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 111: 180–200. https://doi.org/10.1016/j.phrs.2016.06.013

Yadav SS, Singh MK, Singh PK, Kumar V (2017) Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed Pharmacother 93: 1292–1302. https://doi.org/10.1016/j.biopha.2017.07.065

Zhao J, Huang L, Sun C, Zhao D, Tang H (2020) Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods, and molecular simulations. Food Chem 323: 126807. https://doi.org/10.1016/j.foodchem.2020.126807

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio