Phytochemistry and tyrosinase inhibition of Salvia officinalis extracts

J. Pharm. Pharmacogn. Res., vol. 10, no. 4, pp. 605-615, July-August 2022.

Original Article

Phytochemical characterization and mushroom tyrosinase inhibition of different extracts from Salvia officinalis L. leaves

[Caracterización fitoquímica e inhibición de la tirosinasa de hongos de diferentes extractos de hojas de Salvia officinalis L.]

Lana Y.M. Juee

Department of Pharmacognosy, Pharmacy College, Hawler Medical University, Erbil, Kurdistan Region, Iraq.



Context: Sage (Salvia officinalis) is an ancient valuable plant used in the treatment of variant health issues.

Aims: To evaluate the depigmentation activity of S. officinalis leaf chloroformic (SOCF) and ethanolic (SOMF) extracts via its efficacy to inhibit tyrosinase enzyme using in vitro model and bioassay-guided identification and quantification of the main active constituents.

Methods: Plant extracts efficacy as a depigmentation agent has been studied via mushroom tyrosinase inhibition using in vitro model at two concentrations (100 and 200 µg/mL). Extracts were analyzed for phenolic compounds that could be responsible for the biological activity using LC-MS/MS analysis.

Results: Significant potency at a high concentration of 200 µg/mL for the methanolic extract were recorded (p≤0.05). The LC-MS/MS analysis of S. officinalis leaf extracts revealed the presence of eight and fourteen analytes of origin of thirty-seven analytes in both SOCF and SOMF, respectively. Analytes’ quantification recorded the highest amount for rosmarinic acid (46 016 µg/g) in SOMF and the lowest was hesperidin (0.6 µg/g) in SOCF.

Conclusions: S. officinalis extracts recorded significant tyrosinase inhibition potency could control the melanin synthesis process and exhibit beneficiary effect in hyperpigmentation issues.

Keywords: hesperidin; hyperpigmentation; LC-MS/MS spectroscopy; rosmarinic acid; sage; tyrosinase inhibitors.

This image has an empty alt attribute; its file name is jppres_pdf_free.png


Contexto: La salvia (Salvia officinalis) es una planta antigua y valiosa utilizada en el tratamiento de problemas de salud variantes.

Objetivos: Evaluar la actividad despigmentante de los extractos chorofórmico (SOCF) y etanólico (SOMF) de hojas de S. officinalis a través de su eficacia para inhibir la enzima tirosinasa utilizando un modelo in vitro y la identificación y cuantificación guiada por bioensayos de los principales componentes activos.

Métodos: La eficacia de los extractos de plantas como agente despigmentante se ha estudiado mediante la inhibición de la tirosinasa de hongos utilizando un modelo in vitro a dos concentraciones (100 y 200 µg/mL). Los extractos se analizaron en busca de compuestos fenólicos que pudieran ser responsables de la actividad biológica mediante análisis LC-MS/MS.

Resultados: Se registró potencia significativa a alta concentración 200 µg/mL para el extracto metanólico (p≤0.05). El análisis LC-MS/MS de extractos de hojas de salvia reveló la presencia de ocho y catorce analitos de origen de treinta y siete analitos tanto en SOCF como en SOMF, respectivamente. La cuantificación de los analitos registró la mayor cantidad de ácido rosmarínico (46 016 µg/g) en SOMF y la menor de hesperidina (0,6 µg/g) en SOCF.

Conclusiones: Los extractos de S. officinalis registraron una potencia significativa de inhibición de la tirosinasa que podría controlar el proceso de síntesis de melanina y exhibir un efecto beneficioso en los problemas de hiperpigmentación.

Palabras Clave: ácido rosmarínico; espectroscopia LC-MS/MS; hesperidina; hiperpigmentación; inhibidores de tirosinasa; salvia.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Citation Format: Juee LYM (2022) Phytochemical characterization and mushroom tyrosinase inhibition of different extracts from Salvia officinalis L. leaves. J Pharm Pharmacogn Res 10(4): 605–615.

Adhikari A, Devotka HP, Takano K, Nakane T, Basnet P, Skalko-Basnet N (2008) Screening of Nepalese crude drugs traditionally used to treat hyperpigmentation: in vitro tyrosinase inhibition. Int J Cosm Sci 30: 353–360.

Akdeniz M (2018) Screening of Chemical Content Specific to Hypericum Species Growing in Different Parts of Turkey by LC-MS/MS and Method Validation; Investigation of Their Biological Activities and Chemometric Evaluation. Dicle University Institute of Science Department of Chemistry, Ph.D. Thesis, Diyarbakır.

Bauer J, Kuehnl S, Rollinger JM, Scherer O, Northoff H, Stuppner H, Werz O, Koeberle A (2012). Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E-2 synthase-1. J Pharmacol Exp Ther 342: 169–176.

Ben Taarit M, Msaada K, Hosni K, Marzouk B (2012) Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food Agric 92: 1614–1619.

Bisset NG, Wichtl M (2001) Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis with Reference to German Commision E Monographs. 2nd Edition, Boca Raton FI: CRC Press, pp. 440–443.

Biswas R, Mukherjee PK, Dalai MK, Mandal PK, Nag M (2015) Tyrosinase inhibitory potential of purpurin in Rubia cordifolia-A bioactivity guided approach. Ind Crops Prod 74: 319–326.

Boonsiripiphat K, Theerakulkait C (2009) Extraction of rice bran extract and some factors affecting its inhibition of polyphenol oxidase activity and browning in potato. Prep Biochem Biotechnol 39: 147–158.

Burnett CL, Bergfeld WF, Donald VB, Ronald AH, Curtis DK, Daniel CL, James GM, Ronald CS, Thomas JS, Paul WS, Andersen FA (2010) Final report of the safety assessment of kojic acid as used in cosmetics. Int J Toxicol 29: 6.

Chang TS (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10: 2440–2475.

Costa RS, Carneiro TCB, Cerqueira-Lima AT, Queiroz NV, Alcantara-Neves NM, Pontes-de-Carvalho LC, Velozo ED, Oliveira EJ, Figueiredo CA (2012) Ocimum gratissimum Linn. and rosmarinic acid, attenuate eosinophilic airway inflammation in an experimental model of respiratory allergy to Blomia tropicalis. Int Immunopharmacol 13: 126–134.

Crespo MI, Chaban MF, Lanza PA, Joray MB, Palacios SM, Vera DMA, Carpinella MC (2019) Inhibitory effects of compounds isolated from Lepechinia meyenii on tyrosinase. Food Chem Toxicol 125: 383–391.

De Oliveira NCD, Sarmento MS, Nunes EA, Porto CM, Rosa DP, Bona SR, Rodrigues G, Marroni NP, Pereira P, Picada JN, Ferraz ABF, Thiesen FV, Da Silva J (2012) Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food Chem Toxicol 50: 1208–1214.

Dinç M, Pinar NM, Dogu S, Yildirimli S (2009) Micromorphological studies of Lallemantia L. (Lamiaceae) species growing in Turkey. Acta Biol Crac Ser Bot 51: 45–54.

Fatiha B, Didier H, Naima G, Khodir M, Martin K, Léocadie K, Caroline S, Mohamed C, Pierre D (2015) Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Ind Crops Prod 74: 722–730.

Fiocco D, Fiorentino D, Frabboni L, Benvenuti S, Orlandini G, Pellati F, Gallone A (2011) Lavender and peppermint essential oils as effective mushroom tyrosinase inhibitors: a basic study. Flavour Fragr J 26: 6, 441–446.

Gunia-Krzy˙zak A, Popiol J, Marona H (2016) Melanogenesis inhibitors: strategies for searching for and evaluation of active compounds. Curr Med Chem 23: 3548–3574.

Ha SK, Koketsu M, Lee K, Choi SY, Park JH, Ishihara H, Kim SY (2005) Inhibition of tyrosinase activity by N, N-unsubstituted selenourea derivatives. Biol Pharm Bull 28: 838–840.

Iuvone T, De Filippis D, Esposito G, D’Amico A, Izzo AA (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther 317: 1143–1149.

Jakovljević M, Jokić S, Molnar M, Jašić M, Babić J, Jukić H, Banjari I (2019) Bioactive profile of various Salvia officinalis L. preparations. Plants (Basel) 8: 55.

Kang MA, Yun SY, Won J (2003) Rosmarinic acid inhibits Ca2+-dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-gamma 1 and Itk activity. Blood 101: 3534–3542.

Karina BO, Érika P, Almeriane M, Weffort-Santos Oliveira BH (2013) Influence of rosmarinic acid and Salvia officinalis extracts on melanogenesis of B16F10 cells. Rev Bras Farmacogn 23: 249–258.

Karmokar A, Marczylo TH, Cai H, Steward WP, Gescher AJ, Brown K (2012) Dietary intake of rosmarinic acid by ApcMin mice, a model of colorectal carcinogenesis: levels of parent agent in the target tissue and effect on adenoma development. Mol Nutr Food Res 56: 775– 783.

Kim DH, Lee JH (2019) Comparative evaluation of phenolic phytochemicals from perilla seeds of diverse species and screening for their tyrosinase inhibitory and antioxidant properties. S Afr J Bot 123: 341–350.

Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62: 1707–1723.

Kumari S, Tien GTS, Kumar VN, Gautam HK (2018) Melanogenesis inhibitors. Acta Dermatol Venereol 98: 924–931.

Lee SY, Baek N, Nam TG (2016) Natural, semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem 31: 1–13.

Lin VC, Ding H, Kuo S, Chin L, Wu J, Chang T (2011) Evaluation of in vitro and in vivo depigmenting activity of raspberry ketone from Rheum officinale. Int J Mol Sci 12: 4819–4835.

Lu YR, Foo LY (2002) Polyphenolics of Salvia – a review. Phytochemistry 59: 117–140.

Macrini DJ, Suffredini IB, Varella AD, Younes RN, Ohara MT (2009) Extracts from Amazonian plants have inhibitory activity against tyrosinase: an in vitro evaluation. Braz J Pharm Sci 45: 715–21.

Martina J, Stela J, Maja M, Midhat J, Jurislav B, Huska J, Ines B (2019) Bioactive profile of various Salvia officinalis L. preparations. Plants 8: 55.

Nagarani G, Abirami A, Siddhuraju P (2014) A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and anti-inflammatory activity of leaf extract from different Momordica species. Food Sci Hum 3: 36–46.

Omar SH, Scott CJ, Hamlin AS, Obied HK (2018) Biophenols: enzymes (β-secretase, cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.). Fitoterapia 128: 118–129.

Panzella L, Napolitano A (2019) Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: recent advances. Cosmetics 6: 57.

Pillaiyar T, Namasivayam V, Manickam M, Jung SH (2018) Inhibitors of melanogenesis: an updated review. J Med Chem 61: 7395–7418.

Psotova J, Svobodova A, Kolarova H, Walterova D (2006) Photoprotective properties of Prunella vulgaris and rosmarinic acid on human keratinocytes. J Photochem Photobiol B 84: 167–174.

Sarikurkcu C, Zengin G, Oskay M, Uysal S, Ceylan R, Aktumsek A (2015) Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind Crops Prod 70: 178–184.

Sharmila R, Manoharan S (2012) Anti-tumor activity of rosmarinic acid in 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. Indian J Exp Biol 50: 187–194.

Siriangkhawut W, Kaewboo I (2013) Ultrasonic extraction method for alizarin from roots of Morinda citrifolia. Anal Chem Indian J 12: 65–69.

Souza PM, Elias ST, Simeoni LA, De Paula JE, Gomes SM, Guerra ENS, Fonseca YM, Silva EC, Silveira D, Magalhãe PO (2012) Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity. PLoS ONE 7: 11.

Teixeira RS, Rocha PR, Polonini HC, Brandão, MAF, Chaves MGA, Raposo NRB (2012) Mushroom tyrosinase inhibitory activity and major fatty acid constituents of Amazonian native flora oils. Braz J Pharm Sci 48: 399–404.

Thanigaimalai P, Manoj M, Vigneshwaran N (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32: 403–425.

Virador VM, Kobayashi N, Matsunaga J, Hearing VJ (1999) A standardized protocol for assessing regulators of pigmentation. Anal Biochem 270: 207–219.

Walker JB, Sytsma KJ (2007) Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot 100: 375–391.

Wang KH, Lin R, Hsu FL, Huang YH, Chang HC, Huang CY, Lee MH (2006) Cosmetic applications of selected traditional Chinese herbal medicines. J Ethnopharmacol 106: 353–362.

Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA (2019) A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 34: 279–309.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)