Piceatannol-rich extract from Passiflora edulis and hyperpigmentation

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 900-910, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1717_12.5.900 Original Article Piceatannol-rich extract from Passiflora edulis Sims seeds attenuates morphological differentiation through the reduction of MITF mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells [El extracto rico en piceatannol de las semillas de Passiflora edulis Sims atenúa la … Continue reading Piceatannol-rich extract from Passiflora edulis and hyperpigmentation

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 900-910, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1717_12.5.900

Original Article

Piceatannol-rich extract from Passiflora edulis Sims seeds attenuates morphological differentiation through the reduction of MITF mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells

[El extracto rico en piceatannol de las semillas de Passiflora edulis Sims atenúa la diferenciación morfológica mediante la reducción de la expresión de ARNm de MITF y la polimerización de F-actina en células B16F10 hiperpigmentadas inducidas por UVB]

Paween Kunsorn1, Witchuda Payuhakrit1,2, Nasapon Povichit3, Prasit Suwannalert1,2*

1Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand.

2Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand.

3Detox (Thailand) Co., Ltd., Chiangmai, Thailand.

*E-mail: prasit.suw@mahidol.ac.th

Abstract

Context: Ultraviolet B (UVB) light irradiation causes skin problems by increasing cellular oxidants, melanogenesis, and morphological changes of melanocytes. The use of active compounds derived from plants to mitigate these problems has been studied. Piceatannol (PCT), a phytochemical in the phenolic group contained in Passiflora edulis fruit seed (PFS), has gained interest for its anti-melanogenesis effects. However, the inhibitory effect on morphological differentiation related to melanin production of PFS extract is absent.

Aims: To investigate the effect of PFS extract on the inhibition of morphological differentiation associated with microphthalmia-associated transcription factor (MITF) mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells.

Methods: Three fractions of PFS extract were analyzed for their total phenolics, PCT proportion, and antioxidant capacity. The fraction with the highest PCT proportion and antioxidant activity was investigated for its reductive effects on cellular oxidants, number of melanin-containing cells, melanin content, MITF mRNA expression, and tyrosinase activity in UVB-induced B16F10 cells. Morphological differentiation, as well as F-actin polymerization and arrangement, were analyzed.

Results: The PFS-F3 extract showed the highest antioxidant effect related to the proportion of PCT and phenolic contents. It attenuated cellular oxidants, the number of melanin-containing cells, melanin content, MITF mRNA expression, and tyrosinase activity. Differentiation, polymerization, and the arrangement of F-actin of most UVB-irradiated cells were repressed after treatment with the extract.

Conclusions: The PFS extract rich in PCT attenuated morphological differentiation by suppressing the functions of MITF mRNA and F-actin polymerization through the reduction of cellular oxidants, resulting in a decrease in melanin production.

Keywords: F-actin polymerization; hyperpigmentation; oxidative stress; passion fruit seed; piceatannol.

PDF Download

Resumen

Contexto: La irradiación con luz ultravioleta B (UVB) causa problemas cutáneos al aumentar los oxidantes celulares, la melanogénesis y los cambios morfológicos de los melanocitos. Se ha estudiado el uso de compuestos activos derivados de plantas para mitigar estos problemas. El piceatannol (PCT), un fitoquímico del grupo fenólico contenido en la semilla de la fruta de Passiflora edulis (PFS), ha cobrado interés por sus efectos antimelanogénicos. Sin embargo, el efecto inhibidor sobre la diferenciación morfológica relacionada con la producción de melanina del extracto de PFS está ausente.

Objetivos: Investigar el efecto del extracto de PFS en la inhibición de la diferenciación morfológica asociada a la expresión de ARNm del factor de transcripción asociado a la microftalmia (MITF) y la polimerización de F-actina en células B16F10 hiperpigmentadas inducidas por UVB.

Métodos: Se analizaron tres fracciones de extracto de SFP para determinar sus fenólicos totales, la proporción de PCT y su capacidad antioxidante. La fracción con la mayor proporción de PCT y actividad antioxidante se investigó por sus efectos reductores sobre los oxidantes celulares, el número de células con melanina, el contenido de melanina, la expresión de ARNm de MITF y la actividad tirosinasa en células B16F10 inducidas por UVB. Se analizó la diferenciación morfológica, así como la polimerización y disposición de la F-actina.

Resultados: El extracto PFS-F3 mostró el mayor efecto antioxidante relacionado con la proporción de PCT y el contenido fenólico. Atenuó los oxidantes celulares, el número de células con melanina, el contenido de melanina, la expresión de ARNm de MITF y la actividad tirosinasa. La diferenciación, la polimerización y la disposición de la F-actina de la mayoría de las células irradiadas con UVB se reprimieron tras el tratamiento con el extracto.

Conclusiones: El extracto de PFS rico en PCT atenuó la diferenciación morfológica mediante la supresión de las funciones del ARNm de MITF y la polimerización de F-actina a través de la reducción de los oxidantes celulares, resultando en la disminución de la producción de melanina.

Palabras Clave: estrés oxidativo; hiperpigmentación; piceatannol; polimerización de F-actina; semilla de maracuyá.

PDF Download

 

 
 
Citation Format: Kunsorn P, Payuhakrit W, Povichit N, Suwannalert P (2024) Piceatannol-rich extract from Passiflora edulis Sims seeds attenuates morphological differentiation through the reduction of MITF mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells. J Pharm Pharmacogn Res 12(5): 900–910. https://doi.org/10.56499/jppres23.1717_12.5.900
References

Alam MB, Ahmed A, Motin MA, Kim SW, Lee SH (2018) Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/ MAPKs/MITF and proteasomal degradation of tyrosinase. Sci Rep 8: 13928. https://doi.org/10.1038/s41598-018-32303-7

Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, Goding CR (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20(24): 3426–3439. https://doi.org/10.1101/gad.406406

Chalortham N, Povichit N, Kreawsa S, Moonsawat K, Yasamoot D, Jaisit N, Saefong C, Leepatanakun L, Pongtakam C, Na Lamphun J, Suwannalert P, Ezure Y (2019) Comparison of piceatannol content in seed coat and embryo of passion fruit. Thai Bull Pharm Sci 14(1): 35–48. https://doi.org/10.14456/tbps.2019.4

D’Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17(7): 1144. https://doi.org/10.3390/ijms17071144

D’Orazio J, Jarrett S, Ortiz AA, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14(6): 12222–12248. https://doi.org/10.3390/ijms140612222

Díaz-Camino C, Conde R, Ovsenek N, Villanueva MA (2005) Actin expression is induced and three isoforms are differentially expressed during germination in Zea mays. J Exp Bot 56(412): 557–565. https://doi.org/10.1093/jxb/eri034

González-Gutiérrez AG, Verdín J, Rodríguez-Garay B (2020) Simple whole-mount staining protocol of F-actin for studies of the female gametophyte in Agavoideae and other Crassinucellate ovules. Front Plant Sci 11: 384. https://doi.org/10.3389/fpls.2020.00384

Hobanthad T, Maneetong S (2019) Simple extraction for the scanning of antioxidant activity of vegetables and fruits in Buriram, Thailand by DPPH, ABTS and FRAP assays. SNRU J Sci Tech 11(3): 114–121.

Ishimoto T, Mori H (2022) Control of actin polymerization via reactive oxygen species generation using light or radiation. Front Cell Dev Biol 10: 1014008. https://doi.org/10.3389/fcell.2022.1014008

Kamiński K, Kazimierczak U, Kolenda T (2022) Oxidative stress in melanogenesis and melanoma development. Contemp Oncol 26(1): 1–7. https://doi.org/10.5114/wo.2021.112447

Katoh K, Kano Y, Noda Y (2011) Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. J R Soc Interface 8: 305–311. https://doi.org/10.1098/rsif.2010.0419

Kawakami A, Fisher DE (2017) The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest 97(60): 649–656. https://doi.org/10.1038/labinvest.2017.9

Kim HR, Lee SH, Noh EM, Oh BJ, Kim SY, Park MH (2023) Anti‑melanogenic effect of Moju through inhibition of tyrosinase activity. Mol Cell Toxicol. https://doi.org/10.1007/s13273-022-00329-8

Knapp SK, Iden S (2020) Melanocyte differentiation and epidermal pigmentation is regulated by polarity proteins. bioRxiv 2020.04.20.051722. https://doi.org/10.1101/2020.04.20.051722

Lawag IL, Nolden ES, Schaper AAM, Lim LY, Locher C (2023) A modified Folin-Ciocalteu assay for the determination of total phenolics content in honey. Appl Sci 13(4): 2135. https://doi.org/10.3390/app13042135

Li M, Knapp SK, Iden S (2020) Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr Opin Cell Biol 67: 99–108. https://doi.org/10.1016/j.ceb.2020.09.001

Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T (2010) Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis, J Agric Food Chem 58(20): 11112–11118. https://doi.org/10.1021/jf102650d

Medrano-Padial C, Prieto AI, Puerto M, Pichardo S (2021) Toxicological evaluation of piceatannol, pterostilbene, and ε-viniferin for their potential use in the food industry: A review. Foods. 10(3): 592. https://doi.org/10.3390/foods10030592

Nguyen NT, Fisher DE (2019) MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res 32(2): 224–236. https://doi.org/10.1111/pcmr.12726

Pintor AVB, Queiroz LD, Barcelos R, Primo LSG, Maia LC, Alves GG (2020) MTT versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: A systematic review. Int Endod J 53(10): 1348–1373. https://doi.org/10.1111/iej.13353

Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1-3): 88–102. https://doi.org/10.1016/s1011-1344(01)00206-8

Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp (50): 2597. https://doi.org/10.3791/2597

Rodboon T, Okada S, Suwannalert P (2020) Germinated riceberry rice enhanced protocatechuic acid and vanillic acid to suppress melanogenesis through cellular oxidant-related tyrosinase activity in B16 cells. Antioxidants. 9(3): 247. https://doi.org/10.3390/antiox9030247

Rossi M, Caruso F, Opazo C, Salciccioli J (2008) Crystal and molecular structure of piceatannol; scavenging features of resveratrol and piceatannol on hydroxyl and peroxyl radicals and docking with transthyretin. J Agric Food Chem 56(22): 10557–10566. https://doi.org/10.1021/jf801923j

Wu QY, Fung AHY, Xu ML, Kaman P, Etta YLL, Xiang PK, Yao P, Xiong QP, Dong TTX, Tsim KWK (2018) Microphthalmia-associated transcription factor up-regulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J Biol Chem 293(37): 14417–14428. https://doi.org/10.1074/jbc.RA118.003729

Wu QY, Wong ZCF, Wang C, Fung AHY, Womg EOY, Chan GKL, Dong TTX, Chen Y, Tsim KWK (2019) Isoorientin derived from Gentiana veitchiorum Hemsl. flowers inhibits melanogenesis by down-regulating MITF-induced tyrosinase expression. Phytomedicine 57: 129–136. https://doi.org/10.1016/j.phymed.2018.12.006

Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Munoz-Munoz J, Saboury AA (2023) Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises. Biochem Pharmacol 212: 115574. https://doi.org/10.1016/j.bcp.2023.115574

© 2024 Journal of Pharmacy & Pharmacognosy Research

Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 972-993, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres24.1956_12.5.972 Original Article Anti-inflammatory effect of the mixture of Ageratum conyzoides L. extract and eggshell membrane hydrolysates and in silico active compound predictions [Efecto antiinflamatorio de la mezcla de extracto de Ageratum conyzoides L. e hidrolizados de membrana de cáscara de huevo, … Continue reading Ageratum conyzoides and eggshell membrane hydrolysates in chronic inflammation
SS-31 for diabetic nephropathy
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 956-971, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1904_12.5.956 Review SS-31 protects diabetic nephropathy progression: A systematic review of in vivo and in vitro studies [El SS-31 protege la progresión de la nefropatía diabética: Una revisión sistemática de estudios in vivo e in vitro] Jonathan Christianto Sutadji1#, Dian Anggraini Permatasari … Continue reading SS-31 for diabetic nephropathy
Hypertension knowledge and its associated factors in primary care
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 943-955, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres24.1955_12.5.943 Original Article Hypertension knowledge and its associated factors among hypertensive patients in primary care settings in Central Vietnam: A cross-sectional study [Conocimiento de la hipertensión y sus factores asociados entre pacientes hipertensos en entornos de atención primaria en el centro de … Continue reading Hypertension knowledge and its associated factors in primary care

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio