Piperine-HPMC 2910 solid dispersion freeze drying

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 175-183, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1734_12.1.175 Original Article Enhancing the solubility and dissolution rate of piperine via preparation of piperine–hydroxypropyl methylcellulose 2910 solid dispersion system using freeze-drying method [Mejora de la solubilidad y la velocidad de disolución de la piperina mediante la preparación de un sistema de … Continue reading Piperine-HPMC 2910 solid dispersion freeze drying

J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 175-183, Jan-Feb 2024.

DOI: https://doi.org/10.56499/jppres23.1734_12.1.175

Original Article

Enhancing the solubility and dissolution rate of piperine via preparation of piperine–hydroxypropyl methylcellulose 2910 solid dispersion system using freeze-drying method

[Mejora de la solubilidad y la velocidad de disolución de la piperina mediante la preparación de un sistema de dispersión sólida de piperina-hidroxipropilmetilcelulosa 2910 utilizando el método de liofilización]

Lili Fitriani, Swari Tirtania, Salman Umar, Erizal Zaini*

Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia.

*E-mail: erizal@phar.unand.ac.id

Abstract

Context: Piperine is the main secondary metabolite isolated from the family Piperaceae. This biologically active ingredient has many pharmacological effects, though its low water solubility limits its absorption in gastrointestinal fluid.

Aims: To improve piperine’s solubility and dissolution rate by incorporating it into a solid dispersion system with the hydrophilic polymer hydroxypropyl methylcellulose (HPMC) 2910 via the freeze-drying method.

Methods: Three different piperine:polymer ratios – 1:1, 1:2, and 2:1 (w/w) – were prepared. A physical mixture was also prepared in a 1:1 (w/w) ratio for comparison. The physicochemical properties of the samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The solubility and dissolution tests were conducted in distilled water.

Results: The solid dispersion characterization indicated a decrease in the melting points and endothermic peaks in the DSC analysis, a decrease in peak intensity in the PXRD patterns, no chemical interactions between active substances and polymers in the FTIR analysis, and significant morphological changes in the SEM analysis. The solubility test revealed the highest increase in piperine solubility (7.88-fold increase) for the 1:2 solid dispersion. Moreover, the 1:2 solid dispersion in the dissolution test led to the greatest amount of dissolved piperine (56.445 ± 1.13%).

Conclusions: The piperine–HPMC solid dispersion system improved the solubility and dissolution rate of piperine.

Keywords: dissolution; freeze drying; HPMC 2910; piperine; solid dispersion; solubility.

jppres_pdf_free

Resumen

Contexto: La piperina es el principal metabolito secundario aislado de la familia Piperaceae. Este ingrediente biológicamente activo tiene muchos efectos farmacológicos, aunque su baja solubilidad en agua limita su absorción en el líquido gastrointestinal.

Objetivos: Mejorar la solubilidad y la velocidad de disolución de la piperina incorporándola a un sistema de dispersión sólida con el polímero hidrófilo hidroxipropilmetilcelulosa (HPMC) 2910 mediante el método de liofilización.

Métodos: Se prepararon tres proporciones diferentes de piperina:polímero: 1:1, 1:2 y 2:1 (p/p). También se preparó una mezcla física en proporción 1:1 (p/p) para comparar. Las propiedades fisicoquímicas de las muestras se caracterizaron mediante calorimetría diferencial de barrido (DSC), análisis de difracción de rayos X en polvo (PXRD), espectroscopia infrarroja por transformada de Fourier (FTIR) y microscopia electrónica de barrido (SEM). Las pruebas de solubilidad y disolución se realizaron en agua destilada.

Resultados: La caracterización de la dispersión sólida indicó una disminución de los puntos de fusión y de los picos endotérmicos en el análisis DSC, una disminución de la intensidad de los picos en los patrones PXRD, ausencia de interacciones químicas entre las sustancias activas y los polímeros en el análisis FTIR, y cambios morfológicos significativos en el análisis SEM. La prueba de solubilidad reveló el mayor aumento en la solubilidad de la piperina (7,88 veces más) para la dispersión sólida 1:2. Además, la dispersión sólida 1:2 mostró un aumento en la solubilidad de la piperina. Además, la dispersión sólida 1:2 en la prueba de disolución produjo la mayor cantidad de piperina disuelta (56,445 ± 1,13%).

Conclusiones: El sistema de dispersión sólida piperina-HPMC mejoró la solubilidad y la velocidad de disolución de la piperina.

Palabras Clave: disolución; liofilización; HPMC 2910; piperina; dispersión sólida; solubilidad.

jppres_pdf_free
 
Citation Format: Fitriani L, Tirtania S, Umar S, Zaini E (2024) Enhancing the solubility and dissolution rate of piperine via preparation of piperine–hydroxypropyl methylcellulose 2910 solid dispersion system using freeze-drying method. J Pharm Pharmacogn Res 12(1): 175–183. https://doi.org/10.56499/jppres23.1734_12.1.175
References

Alshehri S, Imam SS, Hussain A, Altamimi MA (2020) Formulation of piperine ternary inclusion complex using β CD and HPMC: physicochemical characterization, molecular docking, and antimicrobial testing. Processes 8: 1450. https://doi.org/10.3390/pr8111450

Ashour EA, Majumdar S, Alsheteli A, Alshehri S, Alsulays B, Feng X, Gryczke A, Kolter K, Langley N, Repka MA (2016) Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J Pharm Pharmacol 68: 989–998. https://doi.org/10.1111/jphp.12579

Bhujbal S V, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, Zhou QT (2021) Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sinica B 11: 2505–2536. https://doi.org/10.1016/j.apsb.2021.05.014

Bonepally CR, Aukunuru J V, Yellu NR, Vanga MR (2008) Fabrication and investigations on hepatoprotective activity of sustained release biodegradable piperine microspheres. Int J Pharm Sci Nanotech 1: 87–96.

Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48: 798–802. https://doi.org/10.1016/j.fct.2009.12.009

Dwichandra Putra O, Yonemochi E, Uekusa H (2016) Isostructural multicomponent gliclazide crystals with improved solubility. Cryst Growth Des 16: 6568–6573. https://doi.org/10.1021/acs.cgd.6b01279

Fan N, He Z, Ma P, Wang X, Li C, Sun J, Sun Y, Li J (2018) Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions. Carbohydr Polym 181: 543–550. https://doi.org/10.1016/j.carbpol.2017.12.004

Fitriani L, Haqi A, Zaini E (2016) Preparation and characterization of solid dispersion freeze-dried efavirenz – polyvinylpyrrolidone K-30. J Adv Pharm Technol Res 7: 105–109. https://doi.org/10.4103/2231-4040.184592

Fitriani L, Afriyanti I, Afriyani, Ismed F, Zaini E (2018) Solid dispersion of usnic acid–HPMC 2910 prepared by spray drying and freeze drying techniques. Orient J Chem 34: 2083–2088. http://dx.doi.org/10.13005/ojc/3404048

Gorgani L, Mohammadi M, Najafpour GD, Nikzad M (2017) Piperine—The bioactive compound of black pepper: from isolation to medicinal formulations. Compr Rev Food Sci Food Saf 16: 124–140. https://doi.org/10.1111/1541-4337.12246

He X, Pei L, Tong HHY, Zheng Y (2011) Comparison of spray freeze drying and the solvent evaporation method for preparing solid dispersions of baicalein with Pluronic F68 to improve dissolution and oral bioavailability. AAPS PharmSciTech 12: 104–113. https://doi.org/10.1208/s12249-010-9560-3

Kanaze FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D (2006) Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: A comparative study. J Appl Polym Sci 102: 460–471. https://doi.org/10.1002/app.24200

Karataş A, Yüksel N, Baykara T (2005) Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco 60: 777–782. https://doi.org/10.1016/j.farmac.2005.04.014

Meghwal M, Goswami TK (2013) Piper nigrum and piperine: An update. Phytother Res 27: 1121–1130. https://doi.org/10.1002/ptr.4972

Okonogi S, Puttipipatkhachorn S (2006) Dissolution improvement of high drug-loaded solid dispersion. AAPS PharmSciTech 7: 148–153. https://doi.org/10.1208/pt070231

Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: Importance and enhancement techniques. Int Sch Res Notices 2012: 195727. https://doi.org/10.5402/2012/195727

Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J (2010) Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech 11: 518–527. https://doi.org/10.1208/s12249-010-9404-1

Smilkov K, Ackova DG, Cvetkovski A, Ruskovska T, Vidovic B, Atalay M (2019) Piperine: Old spice and new nutraceutical? Curr Pharm Des 25: 1729–1739. https://doi.org/10.2174/1381612825666190701150803

Srinivasan K (2007) Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit Rev Food Sci Nutr 47: 735–748. https://doi.org/10.1080/10408390601062054

Thenmozhi K, Yoo YJ (2017) Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Ind Pharm 43: 1501-1519. https://doi.org/10.1080/03639045.2017.1321658

Vasconcelos T, Costa P (2007) Development of a rapid dissolving ibuprofen solid dispersion. Pharm Sci World Conf 175: 2–3. http://dx.doi.org/10.13140/RG.2.1.4612.4000

Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12: 1068–1075. https://doi.org/10.1016/j.drudis.2007.09.005

Vo CL-N, Park C, Lee B-J (2013) Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 85: 799–813. https://doi.org/10.1016/j.ejpb.2013.09.007

Yuliandra Y, Fitriani L, Kurniawan R, Yasardi F, Zaini E (2020) Solid dispersions of famotidine: Physicochemical properties and in vivo comparative study on the inhibition of hyperacidity. ChemistrySelect 5: 9218–9225. https://doi.org/10.1002/slct.202001796

Zafar F, Jahan N, Khalil-Ur-Rahman, Bhatti HN (2019) Increased oral bioavailability of piperine from an optimized Piper nigrum nanosuspension. Planta Med 85: 249–257. https://doi.org/10.1055/a-0759-2208

Zaini E, Fitriani L, Effendy S, Noviza D, Halim A (2017) Preparation and characterization of solid dispersion telmisartan–hydroxypropyl methyl cellulose (HPMC) E5 LV by co-grinding method. Orient J Chem 33: 873–878. https://doi.org/10.13005/ojc/330236

Zaini E, Afriyani A, Fitriani L, Ismed F, Horikawa A, Uekusa H (2020) Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm 88: 21. https://doi.org/10.3390/scipharm88020021

Zaini E, Marhammah RP, Fitriani L, Hasanah U, Umar S (2021) The preparation and characterization of the solid dispersion of piperine with hydroxypropyl methylcellulose (HPMC) 2910 using spray drying. Trop J Nat Prod Res 5: 2103–2107.

© 2024 Journal of Pharmacy & Pharmacognosy Research

Alendronate and platelet-rich plasma in sheep anterior cruciate ligament
J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 526-538, May-Jun 2024. DOI: https://doi.org/10.56499/jppres23.1845_12.3.526 Original Article Effect of alendronate and platelet-rich plasma in tendon-bones integration in sheep anterior cruciate ligament surgery [Efecto del alendronato y del plasma rico en plaquetas en la integración tendón-hueso en la cirugía del ligamento cruzado anterior ovino] Tangkas Sibarani1*, Bambang … Continue reading Alendronate and platelet-rich plasma in sheep anterior cruciate ligament
Brassicaceae selenium complexes versus SARS-COV-2 MAP4 and spike protein
J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 514-525, May-Jun 2024. DOI: https://doi.org/10.56499/jppres23.1739_12.3.514 Original Article Antiviral potential of selenium complexes from Brassicaceae by inhibiting protein bond between MAP4 and the spike of SARS-CoV-2 [Potencial antiviral de complejos de selenio de Brassicaceae mediante la inhibición de la unión proteica entre MAP4 y la espiga de … Continue reading Brassicaceae selenium complexes versus SARS-COV-2 MAP4 and spike protein
Andrographis paniculata and cardiovascular diseases
J. Pharm. Pharmacogn. Res., vol. 12, no. 3, pp. 487-513, May-Jun 2024. DOI: https://doi.org/10.56499/jppres23.1841_12.3.487 Review Andrographis paniculata: A potential supplementary therapy for cardiovascular diseases - A systematic review of its effects and molecular actions [Andrographis paniculata: Una terapia suplementaria potencial para las enfermedades cardiovasculares - Una revisión sistemática de sus efectos y acciones moleculares] Oluebube … Continue reading Andrographis paniculata and cardiovascular diseases

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio