Plantas con actividad neuroprotectora estudiadas en C. elegans

J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 812-836, September-October 2022.

Review

Plantas medicinales con potencial actividad neuroprotectora estudiadas en cepas transgénicas de Caenorhabditis elegans. Revisión sistemática 2010-2021

[Medicinal plants with potential neuroprotective activity studied in transgenic strains of Caenorhabditis elegans. Systematic review 2010-2021]

Yenny Y. Lozano1, Sara E. Giraldo1, Harold S. Castro1, Ruth M. Sánchez2*

1Universidad de La Salle, Bogotá, D.C., Colombia.

2Universidad Colegio Mayor de Cundinamarca, Bogotá, D.C., Colombia.

*E-mail: rmsanchezm@unicolmayor.edu.co

Abstract

Context: Treatments for neurodegenerative diseases generate multiple adverse effects and do not reverse the progressive damage of the disease. It is a priority to find alternatives from medicinal plants as a source of molecules with neuroprotective potential. Caenorhabditis elegans as an in vivo screening model allows evaluating and selecting molecules with neuroprotective activity.

Aims: To carry out a systematic review between the years 2010-2021, on traditionally used plant resources with potential neuroprotective activity evaluated in C. elegans.

Methods: The review was carried out in 4 stages according to the PRISMA methodology. 1. Research question approach and objectives to define the thematic axes and create the search algorithm. 2. Search of ScienceDirect, Scopus, PubMed, Web of Science, Ebsco, Taylor and Francis and Scielo databases, 3. Selection of articles according to inclusion and exclusion criteria. 4. Organization of information relevant to the review.

Results: The search yielded 122 articles, defining 12 base articles for the construction of the review. The extracts in dichloromethane, butanol, ethanolic and aqueous stand out; as well as iridoid and flavonoid type biocompounds. Antioxidant activity was the most cited. Among the neuroprotective effects in C. elegans transgenic strains, the increase in the percentage of survival of nematodes, reduction of paralysis, inhibition of protein aggregation and regulation of genes associated with stress stand out.

Conclusions: The identification of bioactive molecules and extracts obtained from medicinal plants of traditional use with neuroprotective potential, is favored by the use of C. elegans as a model for the study of neurodegenerative diseases.

Keywords: Caenorhadbitis elegans; Alzheimer’s disease; Parkinson’s disease; Huntington’s disease; neuroprotection; medicinal plants.

jppres_pdf_free

Resumen

Contexto: Los tratamientos para las enfermedades neurodegenerativas generan múltiples efectos adversos y no revierten el daño progresivo de la enfermedad. Es prioritario encontrar alternativas a partir de plantas medicinales siendo una fuente de moléculas con potencial neuroprotector. Caenorhabditis elegans como modelo de tamizaje in vivo permite evaluar y seleccionar moléculas con actividad neuroprotectora.

Objetivos: Realizar una revisión sistemática comprendida entre los años 2010-2021 sobre recursos vegetales de uso tradicional con potencial actividad neuroprotectora evaluados en C. elegans.

Métodos: La revisión se realizó en 4 etapas según metodología PRISMA. 1. Planteamiento de pregunta de investigación y objetivos para definir los ejes temáticos y crear el algoritmo de búsqueda. 2. Búsqueda bases de datos ScienceDirect, Scopus, PubMed, Web of Science, Ebsco, Taylor and Francis y Scielo, 3. Selección de artículos según criterios de inclusión y exclusión. 4. Organización de la información relevante para la revisión.

Resultados: La búsqueda arrojó 122 artículos, definiendo 12 artículos base para la construcción de la revisión. Sobresalen los extractos en diclorometano, butanol, etanólicos y acuosos; así como biocompuestos tipo iridoide y flavonoide. La actividad antioxidante fue la más citada. Dentro de los efectos neuroprotectores en cepas transgénicas C. elegans se destaca el aumento en el porcentaje de supervivencia de los nematodos, reducción de parálisis, inhibición de la agregación proteica y la regulación de genes asociados al estrés.

Conclusiones: La identificación de moléculas bioactivas y extractos obtenidos de plantas medicinales de uso tradicional con potencial neuroprotector, se favorece mediante el empleo de C. elegans como modelo de estudio de enfermedades neurodegenerativas.

Palabras Clave: Caenorhadbitis elegans; enfermedad de Alzheimer; enfermedad de Parkinson; enfermedad de Huntington; neuroprotección; plantas medicinales.

jppres_pdf_free

Citation Format: Lozano YY, Giraldo SG, Castro HS, Sánchez RM (2022) Plantas medicinales con potencial actividad neuroprotectora estudiadas en cepas transgénicas de Caenorhabditis elegans. Revisión sistemática 2010-2021 [Medicinal plants with potential neuroprotective activity studied in transgenic strains of Caenorhabditis elegans. Systematic review 2010-2021]. J Pharm Pharmacogn Res 10(5): 812–836.
References

Abushouk AI, Negida A, Ahmed H, Abdel-Daim MM (2017) Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson’s disease. Biomed Pharmacother 85: 635–645.

Akhoon BA, Pandey S, Tiwari S, Pandey R (2016) Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp Gerontol 78: 47–56.

Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5: 279.

Anilakumar KR, Pal A, Khanum F, Bawa AS (2010) Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. Agric Conspec Sci 75(4): 159–168.

Anjaneyulu J, Vidyashankar R, Godbole A (2020) Differential effect of Ayurvedic nootropics on C. elegans models of Parkinson’s disease. J Ayurveda Integr Med 11(4): 440–447.

Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: A food plant with multiple medicinal uses. Phytother Res 21(1): 17–25.

Arellano-Acua E, Rojas-Zavaleta I, Paucar-Menacho LM (2016) Camu-camu (Myrciaria dubia): Fruta tropical de excelentes propiedades funcionales que ayudan a mejorar la calidad de vida. Sci Agropecu 7(4): 433–443.

Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6): 548–560.

Auddy B, Ferreira M, Blasina F, Lafon L, Arredondo F, Dajas F, Tripathi PC, Seal T, Mukherjee B (2003) Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 84(2-3): 131–138.

Azevêdo JCS, Borges KC, Genovese MI, Correia RTP, Vattem DA (2015) Neuroprotective effects of dried camu-camu (Myrciaria dubia HBK McVaugh) residue in C. elegans. Food Res Int 73: 135–141.

Barathikannan K, Venkatadri B, Khusro AA (2016) Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC Complement Altern Med 16: 264.

Bates EA, Victor M, Jones AK, Shi Y, Hart AC (2006) Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26(10): 2830–2838.

Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Primers 1: 15005.

Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288): 529–535.

Burke JR, Morgenlander JC (1999) Managing common behavioral problems in dementia: How to improve quality of life for patients and families. Postgrad Med 106(5): 131–140.

Büttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, Carmona-Gutierrez D, Eisenberg T, Michael E, Kroemer G, Tavernarakis N, Sigrist SJ, Madeo F (2014) Spermidine protects against α-synuclein neurotoxicity. Cell Cycle 13(24): 3903–3908.

Calahorro F, Ruiz-Rubio M (2011) Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson’s disease, Alzheimer’s disease and autism spectrum disorder. Invert Neurosci 11(2): 73–83.

Castro Rodríguez SY, Barrera García JA, Carrillo Bautista MP, Hernandez Gomez MS (2015) Asaí (Euterpe precatoria): Cadena de valor en el sur de la región amazónica. Bogotá, Colombia: Instituto Amazónico de Investigaciones Científicas- Sinchi, pp. 141.

Celis CT, Rincón J, Guerrero MF (2007) Actividad farmacológica sobre el sistema nervioso central del extracto etanólico y de la fracción alcaloidal de Valeriana pavonii. Rev Colomb Cienc Quím Farm 36(1): 11–22.

Chaubey MG, Chauhan AP, Chokshi PR, Amin RS, Patel SN, Madamwar D, Rastogi RP, Singh NK (2021) Therapeutic potential of bioactive compounds from Punica granatum extracts against aging and complicity of foxo orthologue daf-16 in Caenorhabditis elegans. EXCLI J 20: 80–98.

Chauhan AP, Chaubey MG, Patel SN, Madamwar D, Singh NK (2020) Extension of life span and stress tolerance modulated by DAF-16 in Caenorhabditis elegans under the treatment of Moringa oleifera extract. 3 Biotech 10(12): 504.

Chen LW, Wang YQ, Wei LC, Shi M, Chan YS (2007) Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 6(4): 273–281.

Chen W, Rezaizadehnajafi L, Wink M (2013) Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J Pharm Pharmacol 65(5): 682–688.

Consortium CeS (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282(5396): 2012–2018.

Cooper JFA, Van Raamsdonk JM (2018) Modeling Parkinson’s Disease in C. elegans. J Parkinsons Dis 8(1): 17–32.

de Oliveria DM, Barreto G, De Andrade DV, Saraceno E, Aon-Bertolino L, Capani F, Dos Santos El Bachá R, Giraldez LD (2009) Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 34(2): 215–220.

Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2017) Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 35(2): 178–216.

Dey A, De JN (2015) Neuroprotective therapeutics from botanicals and phytochemicals against Huntington’s disease and related neurodegenerative disorders. J Herb Med 5(1): 1–19.

Dimitriadi M, Hart AC (2010) Neurodegenerative disorders: Insights from the nematode Caenorhabditis elegans. Neurobiol Dis 40(1): 4–11.

Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S (2019) Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: A review. Eur J Med Chem 169: 185–199.

Diomede L, Rigacci S, Romeo M, Stefani M, Salmona M (2013) Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PloS One 8(3): e58893.

Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y (2010) Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-β. J Alzheimers Dis 19(2): 681–690.

Downes MJ, Brennan ML, Williams HC, Dean RS (2016) Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 6(12): e011458.

Faber PW, Voisine C, King DC, Bates EA, Hart AC (2002) Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci USA 99(26): 17131–17136.

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669): 806–811.

Fonnegra FG (2007) Plantas medicinales aprobadas en Colombia, Edición Ilustrada. Universidad de Antioquia.

Frank S (2014) Treatment of Huntington’s disease. Neurotherapeutics 11(1): 153–160.

GBD 2016 Parkinson’s Disease Collaborators (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11): 939–953.

Ghimire S, Subedi L, Acharya N, Gaire BP (2021) Moringa oleifera: A tree of life as a promising medicinal plant for neurodegenerative diseases. J Agric Food Chem 69(48): 14358–14371.

Giraldo SE, Rincón J, Guerrero MF, López I, Jiménez I, Marder NM, Wasowski CL, Vergel NE (2013) Valepotriate hydrines isolated from an anticonvulsant fraction of Valeriana pavonii Poepp. & Endl. Lat Am J Pharm 32(8): 1224–1230.

Giraldo SE, Rincón J, Puebla P, Marder M, Wasowski C, Vergel N, Guerrero MF (2010) Isovaleramide, an anticonvulsant molecule isolated from Valeriana pavonii. Biomedica 30(2): 245–250.

Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mech 10(5): 499–502.

Gómez LA, Tovar HC (2003) Utilización de servicios de salud y perfiles epidemiológicos como parámetros de adecuación del Plan Obligatorio de Salud en Colombia. Rev de Salud Pública 5(3): 246–262.

González Devia JL (2018) Evaluación del efecto del extracto etanólico de Witheringia coccoloboides sobre agregados de α-sinucleína en la cepa NL5901 de Caenorhabditis elegans. MSc tesis, Facultad de Medicina Departamento de Ciencias Fisiológicas, Universidad Nacional de Colombia, Bogotá, Colombia.

Gutierres Sánchez JS, Castro Cárdenas HS, Giraldo Quintero SE, Lozano Jiménez YY, Sánchez Mora RM (2020) Caenorhabditis elegans como modelo de estudio de enfermedades neurodegenerativas. Ámbito Invest 5(2): 24–33.

Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141(7): 1917–1933.

Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE (2008) Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin Interv Aging 3(2): 211.

Heinrich M, Dhanji T, Casselman I (2011) Açai (Euterpe oleracea Mart.)—A phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 4(1): 10–21.

Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8): 656–664.

Jamil S, Nizami Q, Salam M (2007) Centella asiatica (Linn.) Urban: a review. Indian J Nat Prod Resour 6: 158–170.

Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR 3rd, Bordone L, Guarente L, Krainc D (2011) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18(1): 159–165.

Johnson SL, Park HY, Dasilva NA, Vattem DA, Ma H, Seeram NP (2018) Levodopa-reduced mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 10(9): 1139.

Jugran AK, Rawat S, Bhatt ID, Rawal RS (2019) Valeriana jatamansi: An herbaceous plant with multiple medicinal uses. Phytother Res 33(3): 482–503.

Katerine P-F, Gualteros-Bustos A, Sanchez Mora R (2017) Phenotypic characterization of the N2 strain of Caenorhabditis elegans as a model in neurodegenerative diseases. Nova 15(28): 69–78.

Kautu BB, Carrasquilla A, Hicks ML, Caldwell KA, Caldwell GA (2013) Valproic acid ameliorates C. elegans dopaminergic neurodegeneration with implications for ERK-MAPK signaling. Neurosci Lett 541: 116–119.

Keowkase R, Shoomarom N, Bunargin W, Sitthithaworn W, Weerapreeyakul N (2018) Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomed Pharmacother 107: 656–664.

Kulczyski B, Gramza-Michaowska A (2016) Goji berry (Lycium barbarum): Composition and health effects–a review. Polish J Food Nutr Sci 66(2): 67–76.

Kumar R, Gupta K, Saharia K, Pradhan D, Subramaniam JR (2013) Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann Neurosci 20(1): 13–16.

Lee J, Lim S (2021) Anti-inflammatory, and anti-arthritic effects by the twigs of Cinnamomum cassia on complete Freund’s adjuvant-induced arthritis in rats. J Ethnopharmacol 278: 114209.

Li H, Shi R, Ding F, Wang H, Han W, Ma F, Hu M, Ma CW, Huang Z (2016) Astragalus polysaccharide suppresses 6-hydroxydopamine-induced neurotoxicity in Caenorhabditis elegans. Oxid Med Cell Longev 2016: 4856761.

Li J, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 250: 94–103.

Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92(20): 9368–9372.

Liu W, Ma H, DaSilva NA, Rose KN, Johnson SL, Zhang L, Wan C, Dain JA, Seeram NP (2016) Development of a neuroprotective potential algorithm for medicinal plants. Neurochem Int 100: 164–177.

Liu X, Cui C, Zhao M, Wang J, Luo W, Yang B, Jiang Y (2008) Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chem 109(4): 909–915.

López Locanto Ó (2015) Tratamiento farmacológico de la enfermedad de Alzheimer y otras demencias. Arch Med Int 37(2): 61–67.

Ma H, Liu W, Frost L, Kirschenbaum LJ, Dain JA, Seeram NP (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 7(5): 2213–2222.

Ma X, Li J, Cui X, Li C, Wang Z (2020) Dietary supplementation with peptides from sesame cake alleviates Parkinson’s associated pathologies in Caenorhabditis elegans. J Funct Foods 65: 103737.

Maher P (2019) The potential of flavonoids for the treatment of neurodegenerative diseases. Int J Mol Sci 20(12): 3056.

Mali PY (2015) Premna integrifolia L.: A review of its biodiversity, traditional uses and phytochemistry. Anc Sci Life 35(1): 4.

Marsden CD, Parkes JD (1977) Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 309(8007): 345–349.

Martínez-Fernández R, Gasca-Salas C, Sánchez-Ferro Á, Obeso JÁ (2016) Actualización en la enfermedad de Parkinson. Rev Med Clin Las Condes 27(3): 363-379.

Martínez-Lazcano J, Boll-Woehrlen C, Hernández-Melesio MPA, Rubio-Osornio M, Sánchez-Mendoz MA, Ríos C,  Pérez-Severiano F (2010) Radicales libres y estrés oxidativo en las enfermedades neurodegenerativas. Mensaje Bioquímico XXXIV: 43–59.

Masondo NA, Stafford GI, Aremu AO, Makunga NP (2019) Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S Afr J Bot 120: 39–64.

Mat Sharil AT, Basma Ezzat M, Widya L, Amri Nurhakim MH, Nor Hikmah AR, Nabilah Zafira Z, Haris MS (2022) Systematic review of flaxseed (Linum usitatissimum L.) extract and formulation in wound healing. J Pharm Pharmacogn Res 10(1): 1–12.

McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1): 24–34.

McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM; and the PRISMA-DTA Group, Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L, Hunt HA, Hyde CJ, Korevaar DA, Leeflang MMG, Macaskill P, Reitsma JB, Rodin R, Rutjes AWS, Salameh JP, Stevens A, Takwoingi Y, Tonelli M, Weeks L, Whiting P, Willis BH (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 319(4): 388–396.

Mishra G, Singh PK, Verma RK, Kumar S, Srivastav S, Jha KK, Khosa RL (2011) Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharm Lett 3: 141–164.

Moriwaki T, Kato S, Kato Y, Hosoki A, Zhanggakiyama Q (2013) Extension of lifespan and protection against oxidative stress by an antioxidant herb mixture complex (KPGG7) in Caenorhabditis elegans. J Clin Biochem Nutr 53(2): 81–88.

Mosquera OM, Nio J, Correa YM, Hernndez JA (2004) Detección in-vitro de inhibidores de la acetilcolinesterasa en extractos de cuarenta plantas de la flora colombiana mediante el método cromatográfico de Ellman. Sci Tech X(26): 155–160.

Müller T, Hefter H, Hueber R, Jost WH, Leenders KL, Odin P, Schwarz J (2004) Is levodopa toxic? J Neurol 251(6): vi44–vi46.

Nayak A, Ansar R, Verma SK, Bonifati DM, Kishore U (2011) Huntington’s disease: an immune perspective. Neurol Res Int 2011: 563784.

Niño J, Hernández JA, Correa YM, Mosquera OM (2006) In vitro inhibition of acetylcholinesterase by crude plant extracts from Colombian flora. Mem Inst Oswaldo Cruz 101: 783–785.

OMS (2013) Estrategia de la OMS sobre medicina tradicional 2014-2023. https://apps.who.int/iris/handle/10665/95008 [Consultado Junio 25, 2022].

OMS (2015) Estrategia de la OMS sobre medicina tradicional 2002-2005. https://apps.who.int/iris/handle/10665/67314 [Consultado Junio 25, 2022].

Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2003) Potent anti‐amyloidogenic and fibril‐destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87(1): 172–181.

Orozco JL, Valderrama-Chaparro JA, Pinilla-Monsalve GD, Molina-Echeverry MIA (2020) Parkinson’s disease prevalence, age distribution and staging in Colombia. Neurol Int 12(1): 9–14.

Pandey R, Gupta S, Shukla V, Tandon S, Shukla V (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). 51: 515–521.

Parker JA, Metzler M, Georgiou J, Mage M, Order JC, Rose AM, Michael R. Hayden MR, Néri C (2007) Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 27(41): 11056–11064.

Pasinetti GM, Eberstein JA (2008) Metabolic syndrome and the role of dietary lifestyles in Alzheimer’s disease. J Neurochem 106(4): 1503–1514.

Peixoto H, Roxo M, Krstin S, Wang X, Wink M (2016) Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.) mediates neuroprotective activities in Caenorhabditis elegans. J Funct Foods 26: 385–393.

Pérez-Loyola M, Valdés-González M, Garrido G (2022) Modified pectins with activity against colon cancer: A systematic review from 2010-2021. J Pharm Pharmacogn Res 10(4): 616–651.

Peters CM, Vásquez A (1987) Estudios ecológicos de Camu-Camu (Myrciaria dubia). I. Producción de frutos en poblaciones naturales. Acta Amazon 17: 161–188.

Phillips W, Shannon KM, Barker RA (2008) The current clinical management of Huntington’s disease. Mov Dis 23(11): 1491–1504.

Phulara SC, Shukla V, Tiwari S, Pandey R (2015) Bacopa monnieri promotes longevity in Caenorhabditis elegans under stress conditions. Pharmacogn Mag 11(42): 410–416.

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3: 17013.

Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 9(1): 63–75.

Przedborski S, Vila M, Jackson-Lewis V (2003) Series Introduction: Neurodegeneration: What is it and where are we? J Clin Invest 111(1): 3–10.

Rao SS, Hofmann LA, Shakil A (2006) Parkinson’s disease: diagnosis and treatment. Am Fam Physician 74(12): 2046–2054.

Regitz C, Dubling LM, Wenzel U (2014) Amyloid-beta (Aβ₁₋₄₂)-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res 58(10): 1931–1940.

Rodríguez A, Mondaini AO, Hitschfeld MA (2017) Bioeconomía en América Latina y el Caribe: Contexto global y regional y perspectivas, editorial CEPAL. América Latina y el Caribe: Naciones Unidas Comisión Económica para América Latina y el Caribe.

Rose K, Wan C, Thomas A, Seeram NP, Ma H (2018) Phenolic compounds isolated and identified from amla (Phyllanthus emblica) juice powder and their antioxidant and neuroprotective activities. Nat Prod Comm 13(10): 1309–1311.

Saul N, Pietsch K, Menzel R, Steinberg CEW (2008) Quercetin-mediated longevity in Caenorhabditis elegans: Is DAF-16 involved? Mech Ageing Dev 129(10): 611–613.

Seevaratnam V, Banumathi P, Premalatha MR, Sundaram SP, Arumugam T (2012) Functional properties of Centella asiatica (L.): A review. Int J Pharm Pharm Sci 4(5): 8–14.

Seo HW, Cheon SM, Lee MH, Kim HJ, Jeon H, Cha DS (2015) Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in Caenorhabditis elegans. Evid Based Complement Alternat Med 2015: 524878.

Shaye DD, Greenwald I (2011) Ortholist: A compendium of C. elegans genes with human orthologs. PloS One 6(5): e20085.

Shukla VA, Phulara SC, Yadav D, Tiwari S, Kaur S, Gupta MM, Nazir A, Pandey R (2012) Iridoid compound 10-O-trans-p-coumaroylcatalpol extends longevity and reduces alpha synuclein aggregation in Caenorhabditis elegans. CNS Neurol Disord Drug Targets 11(8): 984–992.

Siddiqui BS, Aslam H, Ali ST, Khan S, Begum S (2007) Chemical constituents of Centella asiatica. J Asian Nat Prod Res 9(4): 407–414.

Singh SK (2012) Phytochemical analysis of leaf callus of Bacopa monnieri L. Int J Sci Res 2(9): 1–3

Skovronsky DM, Doms RW, Lee VMY (1998) Detection of a novel intraneuronal pool of insoluble amyloid β protein that accumulates with time in culture. J Cell Biol 141(4): 1031–1039.

Sodhi RK, Jaggi AS, Singh N (2014) Animal models of dementia and cognitive dysfunction. Life Sci 109(2): 73–86.

Sudati JH, Fachinetto R, Pereira RP, Boligon AA, Athayde ML, Soares FAA (2009) In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents. Neurochem Res 34(8): 1372–1379.

Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM (2016) Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother 84: 892–908.

Summanen JO (1999) A chemical and ethnopharmacological study on Phyllanthus emblica L.(Euphorbiaceae). Dissertation. Department of Pharmacy, Division of Pharmacognosy, University of Helsinki.

Sun X, Jin L, Ling P (2012) Review of drugs for Alzheimer’s disease. Drug Discov Ther 6(6): 285–290.

Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1): 65–74.

Van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4(3): e1000027.

Vishwakarma S, Goyal R, Gupta V, Dhar KL (2016) GABAergic effect of valeric acid from Valeriana wallichii in amelioration of ICV STZ induced dementia in rats. Rev Bras Farmacogn 26: 484–489.

Voisine C, Varma H, Walker N, Bates EA, Stockwell BR, Hart AC (2007) Identification of potential therapeutic drugs for Huntington’s disease using Caenorhabditis elegans. PloS One 2(6): e504.

Walker FO (2007) Huntington’s disease. Lancet 369(9557): 218–228.

WHO (1999) Monographs on selected medicinal plants. https://apps.who.int/iris/handle/10665/42052 [Consultado Junio 25, 2022].

WHO (2013) Traditional Medicine Strategy 2014-2023. https://apps.who.int/iris/handle/10665/92455 [Consultado Junio 25, 2022].

WHO (2018) The global dementia observatory reference guide. https://apps.who.int/iris/handle/10665/272669 [Consultado Junio 25, 2022].

WHO (2021) Dementia. https://www.who.int/health-topics/dementia#tab=tab_1 [Consultado Junio 25, 2022].

Wilson CA, Doms RW, Lee VMY (1999) Intracellular APP processing and Aβ production in Alzheimer disease. J Neuropathol Exp Neurol 58(8): 787–794.

Yang X, Zhang P, Wu J, Xiong S, Jin N, Huang Z (2012) The neuroprotective and lifespan-extension activities of Damnacanthus officinarum extracts in Caenorhabditis elegans. J Ethnopharmacol 141(1): 41–47.

Yao X-L, Wu W-L, Zheng M-Y, Li W, Ye C-H, Lu X-L (2011) Protective effects of Lycium barbarum extract against MPP (+)-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. Zhong Yao Cai 34(8): 1241–1246.

Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR (2018) Frontotemporal dementia: Latest evidence and clinical implications. Ther Adv Psychopharmacol 8(1): 33–48.

Yu YB, Dosanjh L, Lao L, Tan M, Shim BS, Luo Y (2010) Cinnamomum cassia bark in two herbal formulas increases life span in Caenorhabditis elegansvia insulin signaling and stress response pathways. PloS One 5(2): e9339.

Zahra W, Rai SN, Birla H, Singh SS, Dilnashin H, Rathore AS, Singh SP (2020) The global economic impact of neurodegenerative diseases: Opportunities and challenges. In: Keswani, C. (eds) Bioeconomy for Sustainable Development. Springer, Singapore, pp. 333–345.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)