Potential in silico antiviral activity from medicinal plants in Trujillo, Peru

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 323-347, Mar-Apr 2024. DOI: https://doi.org/10.56499/jppres23.1807_12.2.323 Original Article Identification of polyphenols by UPLC-MS/MS and their potential in silico antiviral activity from medicinal plants in Trujillo, Peru [Identificación de polifenoles por UPLC-MS/MS y su potencial actividad antiviral in silico de plantas medicinales en Trujillo, Perú] Juan E. Valdiviezo-Campos1*, … Continue reading Potential in silico antiviral activity from medicinal plants in Trujillo, Peru

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 323-347, Mar-Apr 2024.

DOI: https://doi.org/10.56499/jppres23.1807_12.2.323

Original Article

Identification of polyphenols by UPLC-MS/MS and their potential in silico antiviral activity from medicinal plants in Trujillo, Peru

[Identificación de polifenoles por UPLC-MS/MS y su potencial actividad antiviral in silico de plantas medicinales en Trujillo, Perú]

Juan E. Valdiviezo-Campos1*, Clara D. Rodriguez-Aredo2, Segundo G. Ruiz-Reyes3, Edmundo A. Venegas-Casanova3, Rainer W. Bussmann4,5, Mayar L. Ganoza-Yupanqui2

1Unidad de Posgrado en Farmacia y Bioquímica, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, 13011, Perú.

2Laboratorio Multifuncional, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, 13011, Perú.

3Departamento de Farmacotecnia, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, 13011, Perú.

4Department of Ethnobotany, Institute of Botany, Ilia State University, 0105 Tbilisi, Georgia.

5Department of Botany, State Museum of Natural History, 76133 Karlsruhe, Germany.

*E-mail: jvaldiviezo@unitru.edu.pe

Abstract

Context: Given the growing public health crisis caused by viral diseases, traditional medicine stands as one of the fundamental pillars for the study and discovery of phytometabolites with antiviral properties. It is necessary to investigate and evaluate these compounds, mostly phenolic, that could be used as drugs.

Aims: To identify the polyphenols by UPLC-MS/MS and the potential in silico antiviral activity of medicinal plants in Trujillo, Peru.

Methods: The ethnobotany of the eight most widely used medicinal plants in the city of Trujillo was described (Azadirachta indica A. Juss. “paradise”, Caesalpinia spinosa (Molina) Kuntze “tara”, Citrus limon (L.) Osbeck “lemon”, Clinopodium pulchellum (Kunth) Govaerts "panizara", Cordia lutea Lam. "overo", Ocimum basilicum L. "basil", Schinus molle L. "molle", and Taraxacum campylodes G.E. Haglund "dandelion"). The phytometabolites responsible for the antiviral activity were identified by LC-MS and evaluated in silico against the viral proteins NS2B/NS3 (DENV-2), NS5B (HCV), and ICP27 (HSV-1) by molecular docking using Chimera 1.16 software and molecular interaction by Maestro 13.1 software to identify the position and type of interaction.

Results: Five polyphenols (chlorogenic acid, gallic acid, caffeic acid, rosmarinic acid, and rutin) were found, and in the in-silico test, the antiviral activity of chlorogenic acid stood out against DENV-2 and HCV, rutin against HCV and HSV-1, rosmarinic acid against DENV-2 and HCV.

Conclusions: It is demonstrated that the medicinal plants studied contain phytometabolites that make them possible antiviral candidates, which would support their use in the traditional medicine of the province of Trujillo, Peru.

Keywords: antiviral; ethnobotany; molecular docking; polyphenols; Tandem Mass Spectrometry.

jppres_pdf_free

Resumen

Contexto: Ante el creciente problema de salud pública originado por enfermedades virales, la medicina tradicional representa uno de los pilares fundamentales para el estudio y descubrimiento de fitometabolitos con propiedades antivirales. Se requiere investigar y evaluar estos compuestos, mayoritariamente fenólicos, que puedan ser utilizados como fármacos.

Objetivos: Identificar los polifenoles mediante el método UPLC-MS/MS y la potencial actividad antiviral in silico de las plantas medicinales en Trujillo, Perú.

Métodos: Se describió la etnobotánica de las ocho plantas medicinales más utilizadas en la ciudad de Trujillo (Azadirachta indica A. Juss. "paraíso", Caesalpinia spinosa (Molina) Kuntze "tara", Citrus limon (L.) Osbeck "limón", Clinopodium pulchellum (Kunth) Govaerts "panizara", Cordia lutea Lam. "overo", Ocimum basilicum L. "albahaca", Schinus molle L. "molle", y Taraxacum campylodes G.E. Haglund "diente de león"). Los fitometabolitos responsables de la actividad antiviral se identificaron mediante LC-MS y se evaluaron in silico frente a las proteínas virales NS2B/NS3 (DENV-2), NS5B (HCV) e ICP27 (HSV-1) mediante acoplamiento molecular con el software Chimera 1.16 e interacción molecular con el software Maestro 13.1 para identificar la posición y el tipo de interacción.

Resultados: Se encontraron cinco polifenoles (ácido clorogénico, ácido gálico, ácido cafeico, ácido rosmarínico y rutina) y, en el ensayo in silico, destacó la actividad antiviral del ácido clorogénico frente a DENV-2 y HCV, la rutina frente a HCV y HSV-1, el ácido rosmarínico frente a DENV-2 y HCV.

Conclusiones: Se demuestra que las plantas medicinales estudiadas contienen fitometabolitos que las convierten en posibles candidatos antivirales, lo que apoyaría su uso en la medicina tradicional de la provincia de Trujillo, Perú.

Palabras Clave: acoplamiento molecular; antiviral; etnobotánica; espectrometría de masas en tándem; polifenoles.

jppres_pdf_free
 
Citation Format: Valdiviezo-Campos JE, Rodriguez-Aredo CD, Ruiz-Reyes SG, Venegas-Casanova EA, Bussmann RW, Ganoza- Yupanqui ML (2024) Identification of polyphenols by UPLC-MS/MS and their potential in silico antiviral activity from medicinal plants in Trujillo, Peru. J Pharm Pharmacogn Res 12(2): 323–347. https://doi.org/10.56499/jppres23.1807_12.2.323
References

Agrawal PK, Agrawal C, Blunden G (2021) Pharmacological significance of hesperidin and hesperetin, two Citrus flavonoids, as promising antiviral compounds for prophylaxis against and combating COVID-19. Nat Prod Commun 16: 1934578X211042540. https://doi.org/10.1177/1934578X211042540

Ahmed HR, Waly NGFM, El-Baky RMA, Yahia R, Hetta HF, Elsayed AM, Ibrahem RA (2021) Distribution of naturally occurring NS5B resistance-associated substitutions in Egyptian patients with chronic hepatitis C. PLoS One 16: e0249770. https://doi.org/10.1371/journal.pone.0249770

Amir-Hassan A, Lee VS, Baharuddin A, Othman S, Xu Y, Huang M, Yusof R, Rahman N, Othman R (2017) Conformational and energy evaluations of novel peptides binding to dengue virus envelope protein. J Mol Graph Model 74: 273–287. https://doi.org/10.1016/j.jmgm.2017.03.010

Arabi II, Mohinuddin M, Abir AY, Koo S, Alam DMS (2022) In-silico investigations on the antiviral activity of some polyphenolic derivatives: chemical reactivity descriptors, ADMET, QSAR and molecular docking studies against hepatitis C virus NS5B polymerase. Rochester, NY 11. https://papers.ssrn.com/abstract=4267458

Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M (2021) Antiviral activities of flavonoids. Biomed Pharmacother 140: 111596. https://doi.org/10.1016/j.biopha.2021.111596

Baldissera MD, Souza CF, De Matos AFIM, Doleski PH, Baldisserotto B, Da Silva AS, Monteiro SG (2018) Blood-brain barrier breakdown, memory impairment and neurotoxicity caused in mice submitted to orally treatment with thymol. Environ Toxicol Pharmacol 62: 114–119. https://doi.org/10.1016/j.etap.2018.06.012

Bernardini S, Tiezzi A, Laghezza MV, Ovidi E (2018) Natural products for human health: An historical overview of the drug discovery approaches. Nat Prod Res 32: 1926–1950. https://doi.org/10.1080/14786419.2017.1356838

Bhachoo J, Beuming T (2017) Investigating protein peptide interactions using the Schrödinger computational suite. In Modeling Peptide-Protein Interactions: Methods and Protocols; Schueler-Furman O, London N, Eds.; Methods in Molecular Biology. New York: Springer, pp. 235–254. https://doi.org/10.1007/978-1-4939-6798-8_14

Borad MA, Jethava DJ, Bhoi MN, Patel CN, Pandya HA, Patel HD (2020) Novel isoniazid-spirooxindole derivatives: design, synthesis, biological evaluation, in silico ADMET prediction and computational studies. J Mol Struct 1222: 128881. https://doi.org/10.1016/j.molstruc.2020.128881

Bussmann RW, Zambrana P, Narel Y, Sikharulidze S, Kikvidze Z, Kikodze D, Tchelidze D, Batsatsashvili K, Hart RE (2017) Ethnobotany of Samtskhe-Javakheti, Sakartvelo (Republic of Georgia), Caucasus. Indian J Tradit Knowl 16: 7–24. https://nopr.niscpr.res.in/handle/123456789/37009

Chen XB, Liu XC, Zhou L, Liu ZL (2013) Essential oil composition and larvicidal activity of Clinopodium gracile (Benth) Matsum (Labiatae) aerial parts against the Aedes albopictus Mosquito. Trop J Pharm Res 12: 799–804. https://doi.org/10.4314/tjpr.v12i5.21

Chiang LC, Chiang W, Liu MC, Lin CC (2003) In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 52: 194–198. https://doi.org/10.1093/jac/dkg291

David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14: 299–315. https://doi.org/10.1007/s11101-014-9367-z

de Sousa LRF, Wu H, Nebo L, Fernandes JB, da Silva MFGF, Kiefer W, Kanitz M, Bodem J, Diederich WE, Schirmeister T, Vieira PC (2015) Flavonoids as noncompetitive inhibitors of dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorg Med Chem 23: 466–470. https://doi.org/10.1016/j.bmc.2014.12.015

Denaro M, Smeriglio A, Barreca D, de Francesco C, Occhiuto C, Milano G, Trombetta D (2020) Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 34: 742–768. https://doi.org/10.1002/ptr.6575

Dwivedi VD, Bharadwaj S, Afroz S, Khan N, Ansari MA, Yadava U, Tripathi RC, Tripathi IP, Mishra SK, Kang SG (2021) Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J Biomol Struct Dyn 39: 1417–1430. https://doi.org/10.1080/07391102.2020.1734485

Elshafie HS, de Martino L, Formisano C, Caputo L, de Feo V, Camele I (2023) Chemical identification of secondary metabolites from Rhizospheric actinomycetes using LC-MS Analysis: In silico antifungal evaluation and growth-promoting effects. Plants 12: 1869. https://doi.org/10.3390/plants12091869

El-Zahar H, Menze ET, Handoussa H, Osman AK, El-Shazly M, Mostafa NM, Swilam N (2022) UPLC-PDA-MS/MS profiling and healing activity of polyphenol rich fraction of Alhagi maurorum against oral ulcer in rats. Plants 11: 455. https://doi.org/10.3390/plants11030455

Fadl N, Salem TZ (2020) Hepatitis C genotype 4: A report on resistance-associated substitutions in NS3, NS5A, and NS5B genes. Rev Med Virol 30: e2120. https://doi.org/10.1002/rmv.2120

Garber A, Barnard L, Pickrell C (2021) Review of whole plant extracts with activity against herpes simplex viruses in vitro and in vivo. J Evid Based Integr Med 26: 2515690X20978394. https://doi.org/10.1177/2515690X20978394

Gaurav S, Govindasamy J (2021) Hepatoprotective potential of ethanolic leaf extract of plant Piper attenuatum B. Ham and Caesalpinia crista Linn. Int J Drug Dev and Res 13(3): 162. https://doi.org/10.30750/ijpbr.9.1.2

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4: 17. https://doi.org/10.1186/1758-2946-4-17

Hassandarvish P, Rothan HA, Rezaei S, Yusof R, Abubakar S, Zandi K (2016) In silico study on baicalein and baicalin as inhibitors of dengue virus replication. RSC Adv 6: 31235–31247. https://doi.org/10.1039/C6RA00817H

Hayashi K, Hayashi T, Morita N, Niwayama S (1990) Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1. Planta Med 56: 439–443. https://doi.org/10.1055/s-2006-961006

Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC (2010) Comparative binding energy analysis for binding affinity and target selectivity prediction. Proteins Struct Funct Bioinforma 78: 135–153. https://doi.org/10.1002/prot.22579

Herowati R, Widodo GP, Herowati R, Widodo GP (2017) Chapter 5: Molecular docking analysis: interaction studies of natural compounds to anti-inflammatory targets; Kandemirli F, Eds.; IntechOpen, pp. 63–73. https://doi.org/10.5772/intechopen.68666

Holidah D, Dewi IP, Siregar IPA, Aftiningsih D (2022) Hepatoprotective effect of Caesalpinia sappan L. ethanolic extract on alloxan induced diabetic rats. J Farm Galen Galen J. Pharm. E-J. 8: 1–9. https://doi.org/10.22487/j24428744.2022.v8.i1.15601

Huaccho-Rojas J, Balladares A, Yanac-Tellería W, Rodríguez C, Villar-López M (2020) Review of antiviral and immunomodulatory effects of herbal medicine with reference to pandemic COVID-19. Arch Venez Farmacol y Ter 39(6): 795-807.

Kanna SU, Krishnakumar N (2019) Anti-dengue medicinal plants: A mini review. J Pharmacogn Phytochem 8: 4245–4249.

Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: Comparative data on docking algorithms. J Med Chem 47(3): 558–565. https://doi.org/10.1021/jm0302997

Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, Salata C, Christoff RR, Garcez PP, Mirazimi A, Knoblich JA (2021) Organoid modeling of zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 28: 1362-1379.e7. https://doi.org/10.1016/j.stem.2021.03.004

Kulkarni K, Jagtap G, Magdum SA (2019) Comprehensive review on herbal drug standardization. Am J PharmTech Res 9: 97–122. https://doi.org/10.46624/ajptr.2019.v9.i3.007

Kutal DH, Kunwar RM, Baral K, Sapkota P, Sharma HP, Rimal B (2021a) Factors that influence the plant use knowledge in the middle mountains of Nepal. PLoS One 16: e0246390. https://doi.org/10.1371/journal.pone.0246390

Kutal DH, Kunwar RM, Uprety Y, Adhikari YP, Bhattarai S, Adhikari B, Kunwar LM, Bhatt MD, Bussmann RW (2021b) Selection of medicinal plants for traditional medicines in Nepal. J Ethnobiol Ethnomedicine 17: 59. https://doi.org/10.1186/s13002-021-00486-5

Lagunin A, Zakharov A, Filimonov D, Poroikov V (2011) QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform 30(2–3): 241–250. https://doi.org/10.1002/minf.201000151

Lakshmi MV, Swapna TSA (2021) Computational study on cosmosiin, an antiviral compound from Memecylon randerianum S.M.Almeida & M.R.Almeida. Med Plants - Int J Phytomedicines Relat Ind 13: 515–523. https://doi.org/10.5958/0975-6892.2021.00059.9

Lalama AJM, Montes CS, Zaldumbide VMA (2016) Etnobotánica de plantas medicinales en el cantón Tena, para contribuir al conocimiento, conservación y valoración de la diversidad vegetal de la región Amazónica. Dominio Las Cienc 2: 26–52. https://doi.org/10.23857/dc.v2i2.147

Lim H, Nguyen TTH, Kim NM, Park JS, Jang TS, Kim D (2017) Inhibitory effect of flavonoids against NS2B-NS3 protease of zika virus and their structure activity relationship. Biotechnol Lett 39: 415–421. https://doi.org/10.1007/s10529-016-2261-6

Lima CS, Mottin M, de Assis LR, Mesquita NCMR, Sousa BKP, Coimbra LD, Santos KB, Zorn KM, Guido RVC, Ekins S, Marques RE, Proença-Modena JL, Oliva G, Andrade CH, Regasini LO (2021) Flavonoids from Pterogyne nitens as zika virus NS2B-NS3 protease inhibitors. Bioorganic Chem 109: 104719. https://doi.org/10.1016/j.bioorg.2021.104719

Lipinski CA (2004) Lead- and drug-like compounds: The rule-offive revolution. Drug Discov Today Technol 1(4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Lopes N, Faccin-Galhardi LC, Espada SF, Pacheco AC, Ricardo NMPS, Linhares REC, Nozawa C (2013) Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus. Int J Biol Macromol 60: 93–99. https://doi.org/10.1016/j.ijbiomac.2013.05.015

Maghfiroh K, Widyarti S, Batoro J, Sumitro SB (2021) Ethnopharmacological study of flavonoid compounds in Magnolia champaca (L.) Baill. ex Pierre as anti-inflammatory agents by molecular docking. J Pharm Pharmacogn Res 9(5): 584–597. https://doi.org/10.56499/jppres20.1004_9.5.584

Martin KW, Ernst E (2003) Antiviral agents from plants and herbs: A systematic review. Antivir Ther 8: 77–90. https://doi.org/10.1177/135965350300800201

Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A (2015) Antiviral drug discovery: Broad-spectrum drugs from nature. Nat Prod Rep 32: 29–48. https://doi.org/10.1039/C4NP00085D

Mehmood A, Khan S, Khan S, Ahmed S, Ali A, Xue M, Ali L, Hamza M, Munir A, Ur RS, Mehmood KA, Hussain SA, Bai Q (2021) In silico analysis of quranic and prophetic medicinals plants for the treatment of infectious viral diseases including corona virus. Saudi J Biol Sci 28: 3137–3151. https://doi.org/10.1016/j.sjbs.2021.02.058

Misra RC, Sharma S, Garg A, Ghosh S (2020) Virus-induced gene silencing in sweet basil (Ocimum basilicum). In virus-induced gene silencing in plants: methods and protocols; Courdavault V, Besseau S, Eds.; Methods in Molecular Biology; New York: Springer US, pp. 123–138. https://doi.org/10.1007/978-1-0716-0751-0_10

Mukherjee PK (2019) Antiviral evaluation of herbal drugs. In Quality control and evaluation of herbal drugs: Evaluating natural products and traditional medicine. Amsterdam: Elsevier, pp. 599-628. https://doi.org/10.1016/B978-0-12-813374-3.00016-8

Mustafa G, Majid M, Ghaffar A, Yameen M, Samad H, Mahrosh H (2020) Screening and molecular docking of selected phytochemicals against NS5B polymerase of hepatitis C virus. Pak J Pharm Sci 33: 2317–2322. https://doi.org/10.36721/PJPS.2020.33.5.SUP.2317-2322.1

Naglah AM, Askar AA, Hassan AS, Khatab TK, Al-Omar MA, Bhat MA (2020) Biological evaluation and molecular docking with in silico physicochemical pharmacokinetic and toxicity prediction of pyrazolo[15-a]pyrimidines. Molecules 25(6): 1431. https://doi.org/10.3390/molecules25061431

Nittinger E, Inhester T, Bietz S, Meyder A, Schomburg KT, Lange G, Klein R, Rarey M (2017) Large scale analysis of hydrogen bond interaction patterns in protein ligand interfaces. J Med Chem 60: 4245–4257. https://doi.org/10.1021/acs.jmedchem.7b00101

Nocchi SR, Ferreira LAO, Castro-Hoshino LV, Truiti MCT, Natali MRM, Mello JCP, Baesso ML, Dias FBP, Nakamura CV, Ueda-Nakamura T (2022) Development and evaluation of topical formulations that contain hydroethanolic extract from Schinus terebinthifolia against HSV-1 infection. Braz J Pharm Sci 58: e18637. https://doi.org/10.1590/s2175-97902020000318637

Nur S, Hanafi M, Setiawan H, Nursamsiar, Elya B (2023) In silico evaluation of the dermal antiaging activity of Molineria latifolia (Dryand. ex W.T. Aiton) Herb. Ex Kurz compounds. J Pharm Pharmacogn Res 11(2): 325–345. https://doi.org/10.56499/jppres23.1606_11.2.325

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: An open chemical toolbox. J Cheminformatics 3: 33. https://doi.org/10.1186/1758-2946-3-33

OECD (2002) Test No. 423: Acute Oral toxicity - Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4, Paris: OECD Publishing. https://doi.org/10.1787/9789264071001-en

Ojo A, Ojo AB, Okolie C, Nwakama MAC, Iyobhebhe M, Evbuomwan IO, Nwonuma CO, Maimako RF, Adegboyega AE, Taiwo OA, Alsharif KE, Batiha GES (2021) Deciphering the interactions of bioactive compounds in selected traditional medicinal plants against Alzheimer’s diseases via pharmacophore modeling, auto-QSAR, and molecular docking approaches. Molecules 26(7): 1996. https://doi.org/10.3390/molecules26071996

Oliveira ACS, Junior NJPB, Serejo APM, Costa IS, Neto ACO, Godinho JWLS, Kzam PM, Amaral FMM (2022) Plant species of popular use in pain management: A systematic review. Res Soc Dev 11: e22511225608. https://doi.org/10.33448/rsd-v11i2.25608

Oliveira MBS, Valentim IB, Rocha TS, Santos JC, Pires KSN, Tanabe ELL, Borbely KSC, Borbely AU, Goulart MOF (2020) Schinus terebenthifolius Raddi extracts: from sunscreen activity toward protection of the placenta to zika virus infection, new uses for a well-known medicinal plant. Ind Crops Prod 152: 112503. https://doi.org/10.1016/j.indcrop.2020.112503

Ortiz P, Cerna C, García A, Hobán C, Murga-Moreno CA, Cabrera M, Suárez-Rebaza LA, Gavidia-Valencia JG, Rodríguez-Soto JC, León-Vargas FR, Bardales-Grandez K, Jara-Herrera C, García-Navarro M, Cerdeña-del-Aguila C, de Albuquerque RDDG, Ganoza-Yupanqui ML (2023) Chemical composition and anthelmintic activity of the Peruvian endemic species Chuquiraga weberbaueri “amaro” on sheep fasciolosis. Rec Nat Prod  17(6): 1031–1045. http://doi.org/10.25135/rnp.414.2304.2751

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—A visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612. https://doi.org/10.1002/jcc.20084

Rehman S, Ijaz B, Fatima N, Muhammad SA, Riazuddin S (2016) Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: in vitro and in silico study. Biomed Pharmacother 83: 881–891. https://doi.org/10.1016/j.biopha.2016.08.002

Renantha RR, Liga AR, Tanugroho CB, Denovian LX, Az SL, Budiyanto Z, Parikesit AA (2022) Flavonoids as potential inhibitors of dengue virus 2 (DENV2) envelope protein. J Pharm Pharmacogn Res 10(4): 660-675. https://doi.org/10.56499/jppres22.1375_10.4.660

Riwu AG, Nugraha J, Purwanto DA, Triyono EA (2022) In silico analysis of anti-dengue activity of faloak (Sterculia quadrifida R. Br) stem bark compounds. J Pharm Pharmacogn Res 10(6): 1006-1014. https://doi.org/10.56499/jppres22.1445_10.6.1006

Robles ADM, Cevallos D, Gaoue OG, Fadiman MG, Hindle T (2020) Non-random medicinal plants selection in the Kichwa community of the Ecuadorian Amazon. J Ethnopharmacol 246: 112220. https://doi.org/10.1016/j.jep.2019.112220

Rolta R, Yadav R, Salaria D, Trivedi S, Imran M, Sourirajan A, Baumler DJ, Dev K (2021) In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of Covid-19: An approach to prevent virus assembly. J Biomol Struct Dyn 39: 7017–7034. https://doi.org/10.1080/07391102.2020.1804457

Ruiz RSG, Venegas CEA, Valdiviezo CJE, Ocaña VJP, Tadeo HMAV (2018) Características farmacognósticas y cuantificación espectrofotométrica de antocianinas totales del fruto de Prunus serotina subsp. capuli (Cav.) McVaugh (Rosaceae) “capulí.” Arnaldoa 25: 961–980. https://doi.org/10.22497/arnaldoa.253.25309

Ruiz-Reyes SG, Villarreal-La Torre VE, Silva-Correa CR, Sagastegui GWA, Cruzado-Razco JL, Gamarra-Sánchez CD, Venegas CEA, Miranda-Leyva M, Valdiviezo CJE, Armando CC (2021) Hepatoprotective activity of Cordia lutea Lam flower extracts against paracetamol‑induced hepatotoxicity in rats. Pharmacogn J 13: 309–316. https://doi.org/10.5530/pj.2021.13.40

Sharma RK, Micali M, Rana BK, Pellerito A, Singla RK (2021) Relevance of ayurveda. therapy of holistic application and classification of herbs. In Indian Herbal Medicines: Antioxidant and Antimicrobial Properties; Sharma RK, Micali M, Rana BK, Pellerito A, Singla RK, Eds.; SpringerBriefs in Molecular Science. Cham: Springer, pp. 1–29. https://doi.org/10.1007/978-3-030-80918-8_1

Shivanika C, Kumar D, Ragunathan V, Tiwari P, Sumitha A (2020) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 40(2): 585–611. https://doi.org/10.1080/07391102.2020.1815584

Soonwera M, Sittichok S (2020) Adulticidal activities of Cymbopogon citratus (Stapf.) and Eucalyptus globulus (Labill.) essential oils and of their synergistic combinations against Aedes aegypti (L.), Aedes albopictus (Skuse), and Musca domestica (L.). Environ Sci Pollut Res 27: 20201–20214. https://doi.org/10.1007/s11356-020-08529-2

Thanh LT, Andreadakis Z, Kumar A, Gómez RR, Tollefsen S, Saville M, Mayhew S (2020) The Covid-19 vaccine development landscape. Nat Rev Drug Discov 19: 305–306. https://doi.org/10.1038/d41573-020-00073-5

Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res 46: W363–W367. https://doi.org/10.1093/nar/gky473

Tida MMA, Nanjarisoa O, Rabearivony J, Ranarijaona HLT, Fenoradosoa TA (2020) Ethnobotanical survey of plant species used in traditional medicine in Bekaraoka region, northeastern Madagascar. Int J Adv Res Publ 4: 107–114.

Treml J, Gazdová M, Šmejkal K, Šudomová M, Kubatka P, Hassan STS (2020) Natural products derived chemicals: Breaking barriers to novel anti-HSV drug development. Viruses 12: 154. https://doi.org/10.3390/v12020154

Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M (2019) In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through Bioprospecting. BMC Complement Altern Med 19: 298. https://doi.org/10.1186/s12906-019-2695-1

Tseghai GB, Belay TG, Gebremariam AH (2019) Mosquito repellent finishing of cotton using pepper tree (Schinus molle) seed oil extract. J Text Sci Eng 9: 394.

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5: 93. https://doi.org/10.3390/medicines5030093

Tunnicliffe RB, Collins RF, Ruiz NHD, Sandri-Goldin RM, Golovanov AP (2018) The ICP27 homology domain of the human cytomegalovirus protein UL69 adopts a dimer of dimers structure. mBio 9: e01112-18. https://doi.org/10.1128/mBio.01112-18

Tunnicliffe RB, Hu WK, Wu MY, Levy C, Mould AP, McKenzie EA, Sandri-Goldin RM, Golovanov AP (2019) Molecular mechanism of SR protein kinase 1 inhibition by the herpes virus protein ICP27. mBio 10: e02551-19. https://doi.org/10.1128/mBio.02551-19

van de Sand L, Bormann M, Schmitz Y, Heilingloh CS, Witzke O, Krawczyk A (2021) Antiviral active compounds derived from natural sources against herpes simplex viruses. Viruses 13: 1386. https://doi.org/10.3390/v13071386

Wandscheer CB, Duque JE, da Silva MAN, Fukuyama Y, Wohlke JL, Adelmann J, Fontana JD (2004) Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicon 44: 829–835. https://doi.org/10.1016/j.toxicon.2004.07.009

Wang X, Hennig T, Whisnant AW, Erhard F, Prusty BK, Friedel CC, Forouzmand E, Hu W, Erber L, Chen Y, Sandri-Goldin RM, Dölken L, Shi Y (2020) Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27. Nat Commun 11: 293. https://doi.org/10.1038/s41467-019-14109-x

Wu H, Bock S, Snitko M, Berger T, Weidner T, Holloway S, Kanitz M, Diederich WE, Steuber H, Walter C, Hofmann D, Weißbrich B, Spannaus R, Acosta EG, Bartenschlager R, Engels B, Schirmeister T, Bodem J (2015) Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother 59: 1100–1109. https://doi.org/10.1128/AAC.03543-14

Yadav R, Selvaraj C, Aarthy M, Kumar P, Kumar A, Singh SK, Giri R (2021) Investigating into the molecular interactions of flavonoids targeting NS2B-NS3 protease from zika virus through in silico approaches. J Biomol Struct Dyn 39: 272–284. https://doi.org/10.1080/07391102.2019.1709546

Yan G, Lee CK, Lam LTM, Yan B, Chua YX, Lim AYN, Phang KF, Kew GS, Teng H, Ngai CH, Lin L, Foo RM, Pada S, Ng LC, Tambyah PA (2020) Covert COVID-19 and false-positive dengue serology in Singapore. Lancet Infect Dis 20: 536. https://doi.org/10.1016/S1473-3099(20)30158-4

Yasmin AR, Chia SL, Looi QH, Omar AR, Noordin MM, Ideris A (2020) Chapter 7 - Herbal extracts as antiviral agents. In Feed Additives; Florou-Paneri P, Christaki E, Giannenas I, Eds.; Academic Press, pp. 115–132. https://doi.org/10.1016/B978-0-12-814700-9.00007-8

Yousaf T, Rafique S, Wahid F, Rehman S, Nazir A, Rafique J, Aslam K, Shabir G., Shah SM (2018) Phytochemical profiling and antiviral activity of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against hepatitis C virus. Microb Pathog 118: 154–158. https://doi.org/10.1016/j.micpath.2018.03.030

Yuan F, Gao ZQ, Majerciak V, Bai L, Hu ML, Lin XX, Zheng ZM, Dong YH, Lan K (2018) The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathog 14: e1007232. https://doi.org/10.1371/journal.ppat.1007232

Zhou Z, Zhang J, Zhou E, Ren C, Wang J, Wang Y (2022) Small molecule NS5B RdRp non-nucleoside inhibitors for the treatment of HCV infection: A medicinal chemistry perspective. Eur J Med Chem 240: 114595. https://doi.org/10.1016/j.ejmech.2022.114595

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio