Propolis compounds as potential MMP1 and MMP2 in wound healing

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 264-285, Mar-Apr 2024. DOI: https://doi.org/10.56499/jppres23.1719_12.2.264 Original Article Activity of propolis compounds as potential MMP1 and MMP2 inhibitors by in silico studies in wound healing application [Actividad de compuestos de propóleos como inhibidores potenciales de MMP1 y MMP2 mediante estudios in silico sobre la cicatrización de heridas] … Continue reading Propolis compounds as potential MMP1 and MMP2 in wound healing

J. Pharm. Pharmacogn. Res., vol. 12, no. 2, pp. 264-285, Mar-Apr 2024.

DOI: https://doi.org/10.56499/jppres23.1719_12.2.264

Original Article

Activity of propolis compounds as potential MMP1 and MMP2 inhibitors by in silico studies in wound healing application

[Actividad de compuestos de propóleos como inhibidores potenciales de MMP1 y MMP2 mediante estudios in silico sobre la cicatrización de heridas]

Adzani Gaisani Arda1,2, Putri Hawa Syaifie1*, Donny Ramadhan1,3, Muhammad Miftah Jauhar1,4, Dwi Wahyu Nugroho1, Nofa Mardia Ningsih Kaswati1, Alfian Noviyanto1,5, Mega Safihtri6, Nurul Taufiqu Rochman7, Dimas Andrianto6, Etik Mardliyati8*

1Nano Center Indonesia, Jl. Raya PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia.

2Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary.

3Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, West Java, 16911, Indonesia.

4Biomedical Engineering, Graduate School of Universitas Gadjah Mada, Sleman 55281, Yogyakarta, Indonesia.

5Department of Mechanical Engineering, Mercu Buana University, Jakarta 11650, Indonesia.

6Department of Biochemistry, Bogor Agricultural University, Jl. Raya Dramaga IPB Campus Dramaga Bogor, Bogor, 16680, Indonesia.

7Research Center for Advanced Material, National Research and Innovation Agency (BRIN), PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia.

8Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong Science Center, West Java, 16911, Indonesia.

*E-mail: etik002@brin.go.id

Abstract

Context: Matrix metalloproteinases (MMPs) play a critical role in wound healing, with higher levels seen in chronic wounds, delaying healing. Since ancient times, propolis has been widely used for traditional wound healing. However, there is still limited research on MMP1 and MMP12.

Aims: To evaluate new candidates of propolis compounds for targeting MMP1 and MMP12 using in silico studies supported by experimental screening using LC-MS/MS quadrupole-time of flight (QTOF).

Methods: Compounds in propolis were screened using LC-MS/MS QTOF. The 3D structure of all compounds in propolis and protein targets was prepared in Autodock and Biovia Discovery Studio. The molecular docking of all compounds in propolis was carried out using Autodock on PyRx 0.9. Drug-likeness and ADMET analysis of selected compounds in propolis with the lowest affinity were observed. Lastly, molecular dynamic simulations of the best compounds in propolis were conducted using the GROMACS 2020 package.

Results: Eleven flavonoid and phenolic compounds were identified in propolis using LC-MS/MS QTOF analysis. Molecular docking simulations showed that licoflavone A and pinostrobin exhibited the lowest binding affinity to MMP1 and MMP12, respectively. Molecular dynamic simulations revealed that licoflavone A formed a more stabilized complex with MMP1, while pinostrobin formed a more stabilized complex with MMP12 than the native ligand.

Conclusions: This study revealed new candidates for MMP1 and MMP12 inhibitors from propolis compounds that can enhance wound healing. It is hoped that the evidence gathered in this study provides crucial new information in exploring new wound-healing medications.

Keywords: matrix metalloproteinases; molecular docking simulation; molecular dynamics simulation; propolis; wound healing.

jppres_pdf_free

Resumen

Contexto: Las metaloproteinasas de la matriz (MMP) desempeñan un papel fundamental en la cicatrización de las heridas, observándose niveles más elevados en las heridas crónicas, lo que retrasa la cicatrización. Desde la antigüedad, el propóleo se ha utilizado ampliamente para la cicatrización tradicional de heridas. Sin embargo, la investigación sobre las MMP1 y MMP12 sigue siendo limitada.

Objetivos: Evaluar nuevos candidatos de compuestos de propóleo para atacar MMP1 y MMP12 mediante estudios in silico apoyados por cribado experimental utilizando LC-MS/MS cuadrupolo-tiempo de vuelo (QTOF).

Métodos: Los compuestos del propóleo se analizaron mediante LC-MS/MS QTOF. La estructura 3D de todos los compuestos del propóleo y de las proteínas diana se preparó en Autodock y Biovia Discovery Studio. El acoplamiento molecular de todos los compuestos del propóleo se llevó a cabo utilizando Autodock en PyRx 0.9. Se observó la afinidad a fármacos y el análisis ADMET de los compuestos seleccionados en el propóleo con menor afinidad. Por último, se realizaron simulaciones de dinámica molecular de los mejores compuestos del propóleo con el paquete GROMACS 2020.

Resultados: Se identificaron once compuestos flavonoides y fenólicos en el propóleo mediante análisis LC-MS/MS QTOF. Las simulaciones de acoplamiento molecular mostraron que la licoflavona A y la pinostrobina presentaban la menor afinidad de unión con la MMP1 y la MMP12, respectivamente. Las simulaciones de dinámica molecular revelaron que la licoflavona A formaba un complejo más estabilizado con la MMP1, mientras que la pinostrobina formaba un complejo más estabilizado con la MMP12 que el ligando nativo.

Conclusiones: Este estudio reveló nuevos candidatos a inhibidores de MMP1 y MMP12 a partir de compuestos de propóleos que pueden mejorar la cicatrización de heridas. Se espera que las pruebas reunidas en este estudio aporten nueva información crucial para explorar nuevos medicamentos para la cicatrización de heridas.

Palabras Clave: cicatrización de heridas; metaloproteinasas de matriz; propóleo; simulación de acoplamiento molecular; simulación de dinámica molecular.

jppres_pdf_free
 
Citation Format: Arda GA, Syaifie PH, Ramadhan D, Jauhar MM, Nugroho DW, Kaswati NMN, Noviyanto A, Andrianto D, Rochman NT, Safithri M, Mardliyati E (2024) Activity of propolis compounds as potential MMP1 and MMP2 inhibitors by in silico studies in wound healing application. J Pharm Pharmacogn Res 12(2): 264–285. https://doi.org/10.56499/jppres23.1719_12.2.264
References

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2: 19–25. https://doi.org/10.1016/j.softx.2015.06.001

Adelusi TI, Oyedele A-QK, Boyenle ID, Ogunlana AT, Adeyemi RO, Ukachi CD, Idris MO, Olaoba OT, Adedotun IO, Kolawole OE, Xiaoxing Y, Abdul-Hammed M (2022) Molecular modeling in drug discovery. Inform Med Unlocked 29: 100880. https://doi.org/10.1016/j.imu.2022.100880

Afonso AM, Gonçalves J, Luís Â, Gallardo E, Duarte AP (2020) Evaluation of the in vitro wound-healing activity and phytochemical characterization of propolis and honey. Appl Sci 10: 1845. https://doi.org/10.3390/app10051845

Ali A, Bashmil YM, Cottrell JJ, Suleria HAR, Dunshea FR (2021) LC-MS/MS-QTOF screening and identification of phenolic compounds from Australian grown herbs and their antioxidant potential. Antioxidants 10: 1770. https://doi.org/10.3390/antiox10111770

Ali S, Hassan Md, Islam A, Ahmad F (2014) A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr Protein Pept Sci 15: 456–476. https://doi.org/10.2174/1389203715666140327114232

Ayuk SM, Abrahamse H, Houreld NN (2016) The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabet Res 2016: 2897656. https://doi.org/10.1155/2016/2897656

Belotti D, Paganoni P, Giavazzi R (1999) MMP inhibitors: Experimental and clinical studies. Int J Biol Markers 14: 232–238. https://doi.org/10.1177/172460089901400406

Bhargava P, Mahanta D, Kaul A, Ishida Y, Terao K, Wadhwa R, Kaul SC (2021) Experimental Evidence for therapeutic potentials of propolis. Nutrients 13: 2528. https://doi.org/10.3390/nu13082528

Bister V, Kolho K-L, Karikoski R, Westerholm-Ormio M, Savilahti E, Saarialho-Kere U (2005) Metalloelastase (MMP-12) is upregulated in the gut of pediatric patients with potential celiac disease and in type 1 diabetes. Scand J Gastroenterol 40: 1413–1422. https://doi.org/10.1080/00365520510023918

Bronowska AK (2011) Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. In Thermodynamics - Interaction Studies - Solids, Liquids and Gases. InTech. https://doi.org/10.5772/19447

Browner MF, Smith WW, Castelhano AL (1995) Crystal structures of matrilysin-inhibitor complexes. Biochemistry 34: 6602–6610. https://doi.org/10.1021/bi00020a004

Caban M, Owczarek K, Lewandowska U (2022) The role of metalloproteinases and their tissue inhibitors on ocular diseases: Focusing on potential mechanisms. Int J Mol Sci 23: 4256. https://doi.org/10.3390/ijms23084256

Campos JF, Santos UP dos, Rocha P dos S da, Damião MJ, Balestieri JBP, Cardoso CAL, Paredes-Gamero EJ, Estevinho LM, de Picoli Souza K, dos Santos EL (2015) Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evid Based Complement Alternat Med 2015: 296186. https://doi.org/10.1155/2015/296186

Carugo O, Pongor S (2001) A normalized root‐mean‐spuare distance for comparing protein three‐dimensional structures. Protein Sci 10: 1470–1473. https://doi.org/10.1110/ps.690101

Conceição M, Gushiken LFS, Aldana-Mejía JA, Tanimoto MH, Ferreira MVde S, Alves ACM, Miyashita MN, Bastos JK, Beserra FP, Pellizzon CH (2022) Histological, immunohistochemical and antioxidant analysis of skin wound healing influenced by the topical application of Brazilian red propolis. Antioxidants 11: 2188. https://doi.org/10.3390/antiox11112188

Cui N, Hu M, Khalil RA (2017) Biochemical and Biological Attributes of Matrix Metalloproteinases. In: Progress in Molecular Biology and Translational Science, 147: 1–73). https://doi.org/10.1016/bs.pmbts.2017.02.005

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7: 42717. https://doi.org/10.1038/srep42717

Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In: Hempel J, Williams C, Hong C (eds) Chemical Biology. Methods in Molecular Biology. New York, NY: Humana Press, vol. 1263: 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

De Vita S, Chini MG, Bifulco G, Lauro G (2021) Insights into the ligand binding to bromodomain-containing protein 9 (BRD9): A Guide to the selection of potential binders by computational methods. Molecules 26: 7192. https://doi.org/10.3390/molecules26237192

Ebrahimi KS, Ansari M, Hosseyni Moghaddam MS, Ebrahimi Z, Salehi Z, Shahlaei M, Moradi S (2021) In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study. Comp Biol Med 135: 104613. https://doi.org/10.1016/j.compbiomed.2021.104613

Elgamal AM, El Raey MA, Gaara A, Abdelfattah MAO, Sobeh M (2021) Phytochemical profiling and anti-aging activities of Euphorbia retusa extract: In silico and in vitro studies. Arab J Chem 14: 103159. https://doi.org/10.1016/j.arabjc.2021.103159

El-Guendouz S, Lyoussi B, Miguel MG (2019) Insight on propolis from Mediterranean countries: Chemical composition, biological activities and application fields. Chem Biodivers 16: e1900094. https://doi.org/10.1002/cbdv.201900094

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8593. https://doi.org/10.1063/1.470117

Fitria A, Hanifah S, Chabib L, Uno AM, Munawwarah H, Atsil N, Pohara HA, Weuanggi DA, Syukri Y (2021) Design and characterization of propolis extract loaded self-nano emulsifying drug delivery system as immunostimulant. Saudi Pharm J 29: 625–634. https://doi.org/10.1016/j.jsps.2021.04.024

Forma E, Bryś M (2021) Anticancer activity of propolis and its compounds. Nutrients 13: 2594. https://doi.org/10.3390/nu13082594

Genc Y, Dereli FTG, Saracoglu I, Akkol EK (2020) The inhibitory effects of isolated constituents from Plantago major subsp. major L. on collagenase, elastase and hyaluronidase enzymes: Potential wound healer. Saudi Pharm J 28: 101–106. https://doi.org/10.1016/j.jsps.2019.11.011

Glaab E (2016) Building a virtual ligand screening pipeline using free software: A survey. Brief Bioinform 17: 352–366. https://doi.org/10.1093/bib/bbv037

Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9: 244–253. https://doi.org/10.1038/nrmicro2537

Harisna AH, Nurdiansyah R, Syaifie PH, Nugroho DW, Saputro KE, Firdayani Prakoso CD, Rochman NT, Maulana NN, Noviyanto A, Mardliyati E (2021) In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochem Biophys Rep 26: 100969. https://doi.org/10.1016/j.bbrep.2021.100969

Heath EI, Grochow LB (2000) Clinical potential of matrix metalloprotease inhibitors in cancer therapy. Drugs 59: 1043–1055. https://doi.org/10.2165/00003495-200059050-00002

Henshaw FR, Bolton T, Nube V, Hood A, Veldhoen D, Pfrunder L, McKew GL, Macleod C, McLennan SV, Twigg SM (2014) Topical application of the bee hive protectant propolis is well tolerated and improves human diabetic foot ulcer healing in a prospective feasibility study. J Diabetes Complicat 28: 850–857. https://doi.org/10.1016/j.jdiacomp.2014.07.012

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18: 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H

Hozzein WN, Badr G, Al Ghamdi AA, Sayed A, Al-Waili NS, Garraud O (2015) Topical application of propolis enhances cutaneous wound healing by promoting TGF-beta/Smad-mediated collagen production in a streptozotocin-induced type I diabetic mouse model. Cell Physiol Biochem 37: 940–954. https://doi.org/10.1159/000430221

Huey R, Morris GM, Forli S (2012) Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. http://autodock.scripps.edu

Iyyam Pillai S, Palsamy P, Subramanian S, Kandaswamy M (2010) Wound healing properties of Indian propolis studied on excision wound-induced rats. Pharm Biol 48: 1198–1206. https://doi.org/10.3109/13880200903578754

Jauhar MM, Syaifie PH, Arda AG, Ramadhan D, Nugroho DW, Ningsih Kaswati NM, Noviyanto A, Rochman NT, Mardliyati E (2022) Evaluation of propolis activity as sucrose-dependent and sucrose-independent Streptococcus mutans inhibitors to treat dental caries using an in silico approach. J Appl Pharm Sci 13: 71–80. https://doi.org/10.7324/japs.2023.45365

Kandhwal M, Behl T, Singh S, Sharma N, Arora S, Bhatia S, Al-Harrasi A, Sachdeva M, Bungau S (2022) Role of matrix metalloproteinase in wound healing. Am J Transl Res 14: 4391–4405. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc9360851/

Karakaya S, Süntar I, Yakinci OF, Sytar O, Ceribasi S, Dursunoglu B, Ozbek H, Guvenalp Z (2020) In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. J Ethnopharmacol 262: 113207. https://doi.org/10.1016/j.jep.2020.113207

Kim DH, Auh J-H, Oh J, Hong S, Choi S, Shin EJ, Woo SO, Lim T-G, Byun S (2020) Propolis suppresses UV-induced photoaging in human skin through directly targeting phosphoinositide 3-kinase. Nutrients 12: 3790. https://doi.org/10.3390/nu12123790

Kumari P, Kumari M, Kashyap HK (2020) How pure and hydrated reline deep eutectic solvents affect the conformation and stability of lysozyme: Insights from atomistic molecular dynamics simulations. J Phys Chem B 124: 11919–11927. https://doi.org/10.1021/acs.jpcb.0c09873

Landén NX, Li D, Ståhle M (2016) Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol Life Sci 73: 3861–3885. https://doi.org/10.1007/s00018-016-2268-0

Laronha H, Caldeira J (2020) Structure and function of human matrix metalloproteinases. Cell 9: 1076. https://doi.org/10.3390/cells9051076

Leite SRdeA (2009) Inhibitors of human collagenase, MMP1. Eclet Quim 34: 87–102. https://doi.org/10.1590/S0100-46702009000400008

Likić VA, Gooley PR, Speed TP, Strehler EE (2005) A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics. Prot Sci 14: 2955–2963. https://doi.org/10.1110/ps.051681605

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23: 3–25. https://doi.org/10.1016/s0169-409x(00)00129-0

Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42: 623–628. https://doi.org/10.1134/S0026893308040195

Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweck S, Lehnert H (2002) Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 45: 1011–1016. https://doi.org/10.1007/s00125-002-0868-8

Mannino C, Nievo M, Machetti F, Papakyriakou A, Calderone V, Fragai M, Guarna A (2006) Synthesis of bicyclic molecular scaffolds (BTAa): An investigation towards new selective MMP-12 inhibitors. Bioorg Med Chem 14: 7392–7403. https://doi.org/10.1016/j.bmc.2006.07.028

Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One 10: e0119264. https://doi.org/10.1371/journal.pone.0119264

Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY (2008) Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP‐1 to TIMP‐1 is a predictor of wound healing. Diabet Med 25: 419–426. https://doi.org/10.1111/j.1464-5491.2008.02414.x

Ngoc Tuan N, Tran Ngoc Tu N, Tien Dung N (2021) Autologous platelet - rich plasma (PRP) therapy and changements of topical biological markers (EGF, VEGF and MMP12) of chronic wounds. Vietnam Med J 506: 32–44. https://doi.org/10.51298/vmj.v506i1-2.973

Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. J Comput Chem 25: 1656–1676. https://doi.org/10.1002/jcc.20090

Oryan A, Alemzadeh E, Moshiri A (2018) Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother 98: 469–483. https://doi.org/10.1016/j.biopha.2017.12.069

Pascali JP, Fais P, Vaiano F, Bertol E (2018) Application of HRAM screening and LC–MS/MS confirmation of active pharmaceutical ingredient in “natural” herbal supplements. Forensic Sci Int 286: e28–e31. https://doi.org/10.1016/j.forsciint.2018.03.014

Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58: 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Pirolli D, Sciandra F, Bozzi M, Giardina B, Brancaccio A, De Rosa MC (2014) Insights from molecular dynamics simulations: Structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS One 9: e103866. https://doi.org/10.1371/journal.pone.0103866

Pobiega K, Kraśniewska K, Derewiaka D, Gniewosz M (2019) Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J Food Sci Technol 56: 5386–5395. https://doi.org/10.1007/s13197-019-04009-9

Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA, Alvarez-Sánchez ME (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9: 1370. https://doi.org/10.3389/fonc.2019.01370

Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49: 35–43. https://doi.org/10.1159/000339613

Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O (2020) Biomedical properties of propolis on diverse chronic diseases and its potential applications and health benefits. Nutrients 13: 78. https://doi.org/10.3390/nu13010078

Rojczyk E, Klama-Baryła A, Łabuś W, Wilemska-Kucharzewska K, Kucharzewski M (2020) Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. J Ethnopharmacol 262: 113159. https://doi.org/10.1016/j.jep.2020.113159

Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55: 460–473. https://doi.org/10.1021/ci500588j

Santos LM, Fonseca MS, Sokolonski AR, Deegan KR, Araújo RPC, Umsza‐Guez MA, Barbosa JDV, Portela RD, Machado BAS (2020) Propolis: types, composition, biological activities, and veterinary product patent prospecting. J Sci Food Agric 100: 1369–1382. https://doi.org/10.1002/jsfa.10024

Scorza CA, Gonçalves VC, Scorza FA, Fiorini AC, de Almeida A-CG, Fonseca MCM, Finsterer J (2020) Propolis and coronavirus disease 2019 (COVID-19): Lessons from nature. Complement Ther Clin Pract 41: 101227. https://doi.org/10.1016/j.ctcp.2020.101227

Senol Deniz FS, Orhan IE, Duman H (2021) Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochem Lett 45: 171–183. https://doi.org/10.1016/j.phytol.2021.08.019

Syaifie PH, Harisna AH, Nasution MAF, Arda AG, Nugroho DW, Jauhar MM, Mardliyati E, Maulana NN, Rochman NT, Noviyanto A, Banegas-Luna AJ, Pérez-Sánchez H (2022a) Computational study of Asian propolis compounds as potential anti-type 2 diabetes mellitus agents by using inverse virtual screening with the DIA-DB Web Server, Tanimoto similarity analysis, and molecular dynamic simulation. Molecules 27: 3972. https://doi.org/10.3390/molecules27133972

Syaifie PH, Hemasita AW, Nugroho DW, Mardliyati E, Anshori I (2022b) In silico investigation of propolis compounds as potential neuroprotective agent. Biointerface Res Appl Chem 12: 8285–8306. https://doi.org/10.33263/BRIAC126.82858306

Touzani S, Embaslat W, Imtara H, Kmail A, Kadan S, Zaid H, ElArabi I, Badiaa L, Saad B (2019) In vitro evaluation of the potential use of propolis as a multitarget therapeutic product: Physicochemical properties, chemical composition, and immunomodulatory, antibacterial, and anticancer properties. BioMed Res Int 2019: 4836378. https://doi.org/10.1155/2019/4836378

van Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10: 255–262. https://doi.org/10.1007/BF00355047

Vilela PdGF, de Oliveira JR, de Barros PP, Leão MVP, de Oliveira LD, Jorge AOC (2015) In vitro effect of caffeic acid phenethyl ester on matrix metalloproteinases (MMP-1 and MMP-9) and their inhibitor (TIMP-1) in lipopolysaccharide-activated human monocytes. Arch Oral Biol 60: 1196–1202. https://doi.org/10.1016/j.archoralbio.2015.04.009

Wang X, Khalil RA (2018) Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol 81: 241–330. https://doi.org/10.1016/bs.apha.2017.08.002

Wilschefski SC, Baxter MR (2019) Inductively coupled plasma mass spectrometry: Introduction to analytical aspects. Clin Biochem Rev 40: 115–133.

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio