Rhomyrtus tomentosa and fibroblast growth factor expression


J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 800-813, Jul-Aug 2024. DOI: https://doi.org/10.56499/jppres23.1810_12.4.800 Original Article Role of Rhodomyrtus tomentosa (Aiton) Hassk. in regulating the expression of fibroblast growth factor family in the liver of rat in a breast cancer model [Papel de Rhodomyrtus tomentosa (Aiton) Hassk. en la regulación de la expresión de la … Continue reading Rhomyrtus tomentosa and fibroblast growth factor expression

J. Pharm. Pharmacogn. Res., vol. 12, no. 4, pp. 800-813, Jul-Aug 2024.

DOI: https://doi.org/10.56499/jppres23.1810_12.4.800

Original Article

Role of Rhodomyrtus tomentosa (Aiton) Hassk. in regulating the expression of fibroblast growth factor family in the liver of rat in a breast cancer model

[Papel de Rhodomyrtus tomentosa (Aiton) Hassk. en la regulación de la expresión de la familia del factor de crecimiento de fibroblastos en el hígado de rata en un modelo de cáncer de mama]

Putri Cahaya Situmorang1*, Syafruddin Ilyas1, Rony Abdi Syahpura2, Reka Mustika Sari3, Alexander Patera Nugraha4, Alek Ibrahim5, Cheryl Grace Pratiwi Rumahorbo1

1Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia.

2Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia.

3Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia.

4Department Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

5Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), West Java-Bogor, Indonesia.

*E-mail: putri.cahatya@usu.ac.id


Context: Cellular abnormalities in the ducts and breast tissue cause breast cancer to invade nearby tissues like the liver. The fibroblast growth factor (FGF) signals are sent to its receptor and regulate various cellular processes to maintain liver homeostasis. However, this condition has few and inefficient treatments. Breast cancer is characterized by the development of cellular abnormalities within the ducts and breast tissue, leading to the invasion of adjacent tissues, such as the liver.

Aims: To examine the impact of Rhodomyrtus tomentosa administration on the expression of the FGF family in cancer animal models, with a specific focus on the liver.

Methods: Cancer model rats were administered at dosages of 100, 200, and 300 mg/kg BW for 30 days. Liver tissue and blood serum samples were extracted from the rat. Liver tissue was stained for immunohistochemistry using FGF1, FGF15, FGF19, and FGF21, and blood samples were collected for ELISA analysis.

Results: The study found that DMBA in hepatocyte cells degrades parenchyma, making it hydrophilic and necrosating. Hepatocyte cell function improved with the greatest dose of R. tomentosa. The elevation was associated with an area around the portal vein where recently dividing hepatocytes form clusters.

Conclusions: The promise of R. tomentosa as a candidate for the development of hepatoprotective medicines in cancer treatment arises from its ability to influence the expression of crucial liver health markers, including FGF1, FGF15, FGF19, and FGF21.

Keywords: fibroblast growth factor 1; fibroblast growth factor 15; fibroblast growth factor 19; fibroblast growth factor 21; Rhodomyrtus tomentosa.

PDF Download


Contexto: Las anomalías celulares en los conductos y el tejido mamario hacen que el cáncer de mama invada tejidos cercanos como el hígado. Las señales del factor de crecimiento de fibroblastos (FGF) se envían a su receptor y regulan diversos procesos celulares para mantener la homeostasis hepática. Sin embargo, esta enfermedad tiene pocos e ineficaces tratamientos. El cáncer de mama se caracteriza por el desarrollo de anomalías celulares dentro de los conductos y el tejido mamario, que conducen a la invasión de tejidos adyacentes, como el hígado.

Objetivos: Examinar el impacto de la administración de Rhodomyrtus tomentosa sobre la expresión de la familia del FGF en modelos animales de cáncer, con especial atención al hígado.

Métodos: Se administraron dosis de 100, 200 y 300 mg/kg de peso corporal a ratas modelo de cáncer durante 30 días. Se extrajeron muestras de tejido hepático y suero sanguíneo de la rata. El tejido hepático se tiñó para inmunohistoquímica con FGF1, FGF15, FGF19 y FGF21, y se recogieron muestras de sangre para análisis ELISA.

Resultados: El estudio encontró que el DMBA en células de hepatocitos degrada el parénquima, haciéndolo hidrofílico y necrosante. La función de las células hepatocitarias mejoró con la mayor dosis de R. tomentosa. La elevación se asoció con un área alrededor de la vena porta donde los hepatocitos en división reciente forman grupos.

Conclusiones: La promesa de R. tomentosa como candidato para el desarrollo de medicamentos hepatoprotectores en el tratamiento del cáncer surge de su capacidad para influir en la expresión de marcadores cruciales para la salud hepática, incluyendo FGF1, FGF15, FGF19 y FGF21.

Palabras Clave: factor de crecimiento de fibroblastos 1; factor de crecimiento de fibroblastos 15; factor de crecimiento de fibroblastos 19; factor de crecimiento de fibroblastos 21; Rhodomyrtus tomentosa.

PDF Download


Citation Format: Situmorang PC, Ilyas S, Syahputra RA, Sari RM, Nugraha AP, Ibrahim A, Rumahorbo CGP (2024) Role of Rhodomyrtus tomentosa (Aiton) Hassk. in regulating the expression of fibroblast growth factor family in the liver of rat in a breast cancer model. J Pharm Pharmacogn Res 12(4): 800–813. https://doi.org/10.56499/jppres23.1810_12.4.800

Aksoy N, Vural H, Sabuncu T, Arslan O, Aksoy S (2005) Beneficial effects of vitamins C and E against oxidative stress in diabetic rats. Nutr Res 25(6): 625–630. https://doi.org/10.1016/j.nutres.2005.05.005

Dolegowska K, Marchelek-Mysliwiec M, Nowosiad-Magda M, Slawinski M, Dolegowska B (2019) FGF19 subfamily members: FGF19 and FGF21. J Physiol Biochem 75(2): 229–240. https://doi.org/10.1007/s13105-019-00675-7

Farooq M, Khan AW, Kim MS, Choi S (2021) The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration. Cells 10(11): 3242. https://doi.org/10.3390/cells10113242

Flippo KH, Potthoff MJ (2021) Metabolic messengers: FGF21. Nat Metab 3(3): 309–317. https://doi.org/10.1038/s42255-021-00354-2

Freitas SH, Dória RGS, Bueno RS, Rocha WB, Filho JRE, Moraes JRE, Vidane AS, Ambrósio CE (2017) Evaluation of potential changes in liver and lung tissue of rats in an ischemia-reperfusion injury model (modified pringle maneuver). PLoS One 12(6): e0178665. https://doi.org/10.1371/journal.pone.0178665

Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: A guide for clinicians. CMAJ. 172(3): 367–379. https://doi.org/10.1503/cmaj.1040752

Henriksson E, Andersen B (2020) FGF19 and FGF21 for the Treatment of NASH-two sides of the same coin? Differential and overlapping effects of FGF19 and FGF21 from mice to human. Front Endocrinol 11: 601349. https://doi.org/10.3389/fendo.2020.601349

Hutagaol JM, Bintang, Hidayat B (2021) Identification of highland peat vegetation in the Sub-district of Lintong Nihuta, Humbang Hasundutan Regency, North Sumatera, Indonesia. IOP Conf Ser: Earth Environ Sci 912: 012027 https://doi.org/10.1088/1755-1315/912/1/012027

Ilyas S, Murdela F, Hutahaean S, Situmorang PC (2019) The effect of haramounting leaf ethanol extract (Rhodomyrtus tomentosa (Aiton) Hassk.) on the number of leukocyte type and histology of mice pulmo (Mus musculus L.) exposed to electronic cigarette. Open Access Maced J Med Sci 7(11): 1750–1756. https://doi.org/10.3889/oamjms.2019.467

Irianti E, Ilyas S, Hutahaean S, Rosidah, Situmorang PC (2020) Placental histological on preeclamptic rats (Rattus norvegicus) after administration of nanoherbal haramonting (Rhodomyrtus tomentosa). Res J Pharm Tech 13(8): 3879–3882. https://doi.org/10.5958/0974-360X.2020.00686.1

Kim HJ, Kim SY, Shin SP, Yang YJ, Bang CS, Baik GH, Kim DJ, Ham YL, Choi EY, Suk KT (2020) Immunological measurement of aspartate/alanine aminotransferase in predicting liver fibrosis and inflammation. Korean J Intern Med 35(2): 320–330. https://doi.org/10.3904/kjim.2018.214

Kozlov AV, Grillari J (2022) Pathogenesis of multiple organ failure: The impact of systemic damage to plasma membranes. Front Med 9: 806462. https://doi.org/10.3389/fmed.2022.806462

Lee DY, Kim EH (2019) Therapeutic effects of amino acids in liver diseases: Current studies and future perspectives. J Cancer Prev 24(2): 72–78. https://doi.org/10.15430/JCP.2019.24.2.72

Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y (2015) The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 16(11): 26087–26124. https://doi.org/10.3390/ijms161125942

Liu HX, Tan HB, Qiu SX (2016) Antimicrobial acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. J Asian Nat Prod Res 18(6): 535–541. https://doi.org/10.1080/10286020.2015.1121997

Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4(8): 118–126. https://doi.org/10.4103/0973-7847.70902

Ma R, Feng Y, Lin S, Chen J, Lin H, Liang X, Zheng H, Cai X (2015) Mechanisms involved in breast cancer liver metastasis. J Transl Med 13: 64. https://doi.org/10.1186/s12967-015-0425-0

Manurung RD, Ilyas S, Hutahaean S, Rosidah R, Situmorang PC (2021) Diabetic wound healing in FGF expression by nano herbal of Rhodomyrtus tomentosa L. and Zanthoxylum acanthopodium fruits. Pak J Biol Sci 24(3): 401–408. https://doi.org/10.3923/pjbs.2021.401.408

Miller MA, Zachary JF (2017) Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. In: Pathologic Basis of Veterinary Disease (Sixth Edition), pp. 2–43.e19. https://doi.org/10.1016/B978-0-323-35775-3.00001-1

Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X (2020) FGF signaling pathway: A key regulator of stem cell pluripotency. Front Cell Dev Biol 8: 79. https://doi.org/10.3389/fcell.2020.00079

Na-Phatthalung P, Teles M, Voravuthikunchai SP, Tort L, Fierro-Castro C (2018) Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 44(2): 543–555. https://doi.org/10.1007/s10695-017-0452-2

Rumahorbo CGP, Situmorang PC, Zagoto ERMP, Nisfa L, Hasanah U (2023) Effects of micro-colloidal Rhodomyrtus tomentosa on MMP9, GLUT-1, and IL-1β expression in Rattus norvegicus cervical cancer. J Pharm Pharmacogn Res 11(3): 537–546. https://doi.org/10.56499/jppres23.1618_11.3.537

Simanullang RH, Situmorang PC, Ginting L, Tarigan ER, Syahputra RA, Chairunisa C, Maliki MF (2022) PDGF-β and IL-18 expressions on carcinoma cervical by Rhodomyrtus tomentosa. Pak J Biol Sci 25(11): 986–992. https://doi.org/10.3923/pjbs.2022.986.992

Situmorang PC, Simanullang RH, Syahputra RA, Hutahaean MM, Sembiring H, Nisfa L, Sari ER (2023) Histological analysis of TGFβ1 and VEGFR expression in cervical carcinoma treated with Rhodomyrtus tomentosa. Pharmacia 70(1): 217–223. https://doi.org/10.3897/pharmacia.70.e96811

Situmorang PC, Ilyas S, Siahaan DAS, Restuati M, Sari ER, Chairunisa C, Maliki MF (2022) Effect of Rhodomyrtus tomentosa Hassk. on HIF1α and VEGF expressions on hypertension placental. J Pharm Pharmacogn Res 10(6): 1076–1086. https://doi.org/10.56499/jppres22.1517_10.6.1076

Situmorang PC, Ilyas S, Hutahaean S, Rosidah R (2021) Histological changes in placental rat apoptosis via FasL and cytochrome c by the nano-herbal Zanthoxylum acanthopodium. Saudi J Bio Sci 28(5): 3060–3068. https://doi.org/10.1016/j.sjbs.2021.02.047

Tang SP, Mao XL, Chen YH, Yan LL, Ye LP, Li SW (2022) Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death. Front Immunol 13: 870239. https://doi.org/10.3389/fimmu.2022.870239

Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, Takikawa Y, Miyajima A (2013) FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 27(2): 169–181. https://doi.org/10.1101/gad.204776.112

Vuppalanchi R, Juluri R, Bell LN, Ghabril M, Kamendulis L, Klaunig JE, Saxena R, Agarwal D, Johnson MS, Chalasani N (2011) Oxidative stress in chronic liver disease: relationship between peripheral and hepatic measurements. Am J Med Sci 342(4): 314–317. https://doi.org/10.1097/MAJ.0b013e31821d9905

Wang Z, Li Z, Ye Y, Xie L, Li W (2016) Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxid Med Cell Longev 2016: 7891574. https://doi.org/10.1155/2016/7891574

Wang MJ, Chen F, Lau JTY, Hu YP (2017) Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis 8(5): e2805. https://doi.org/10.1038/cddis.2017.167

Xie Y, Yao J, Jin W, Ren L, Li X (2021) Induction and maturation of hepatocyte-like cells in vitro: Focus on technological advances and challenges. Front Cell Dev Biol 9: 765980. https://doi.org/10.3389/fcell.2021.765980

Yagi S, Hirata M, Miyachi Y, Uemoto S (2020) Liver regeneration after hepatectomy and partial liver transplantation. Int J Mol Sci 21(21): 8414. https://doi.org/10.3390/ijms21218414

Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3): 909–950. https://doi.org/10.1152/physrev.00026.2013

© 2024 Journal of Pharmacy & Pharmacognosy Research

Piceatannol-rich extract from Passiflora edulis and hyperpigmentation
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 900-910, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1717_12.5.900 Original Article Piceatannol-rich extract from Passiflora edulis Sims seeds attenuates morphological differentiation through the reduction of MITF mRNA expression and F-actin polymerization in UVB-induced hyperpigmented B16F10 cells [El extracto rico en piceatannol de las semillas de Passiflora edulis Sims atenúa la … Continue reading Piceatannol-rich extract from Passiflora edulis and hyperpigmentation
Immunostimulatory effect of a nature-derived capsule
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 892-899, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1751_12.5.892 Original Article Potential effects of Linh Loc Son hard capsule – a Vietnamese herbal combination in immunodeficiency induced by cyclophosphamide on mice [Efectos potenciales de la cápsula dura Linh Loc Son, una combinación de hierbas vietnamitas en la inmunodeficiencia inducida por … Continue reading Immunostimulatory effect of a nature-derived capsule
Epidermal growth factor receptor mutant inhibitors as NSCLC drugs
J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 881-891, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1740_12.5.881 Original Article Epidermal growth factor receptor mutant T790M-L858R-V948R inhibitor from Calophyllum inophyllum L. leaf as potential non-small cell lung cancer drugs [Inhibidor del receptor del factor de crecimiento epidérmico mutante T790M-L858R-V948R de la hoja de Calophyllum inophyllum L. como posible fármaco … Continue reading Epidermal growth factor receptor mutant inhibitors as NSCLC drugs

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio