SLCO1B1/ CYP3A4 associated with adverse reactions to statins

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 11, no. 6, pp. 934-952, Nov-Dec 2023. DOI: https://doi.org/10.56499/jppres23.1686_11.6.934 Review SLCO1B1 and CYP3A4 allelic variants associated with pharmacokinetic interactions and adverse reactions induced by simvastatin and atorvastatin used in Peru: Clinical implications [Variantes alélicas de SLCO1B1 y CYP3A4 asociadas a interacciones farmacocinéticas y reacciones adversas inducidas por simvastatina y atorvastatina usadas … Continue reading SLCO1B1/ CYP3A4 associated with adverse reactions to statins

J. Pharm. Pharmacogn. Res., vol. 11, no. 6, pp. 934-952, Nov-Dec 2023.

DOI: https://doi.org/10.56499/jppres23.1686_11.6.934

Review

SLCO1B1 and CYP3A4 allelic variants associated with pharmacokinetic interactions and adverse reactions induced by simvastatin and atorvastatin used in Peru: Clinical implications

[Variantes alélicas de SLCO1B1 y CYP3A4 asociadas a interacciones farmacocinéticas y reacciones adversas inducidas por simvastatina y atorvastatina usadas en el Perú: Implicaciones clínicas]

Angel T. Alvarado1*, Ana María Muñoz2, Roberto O. Ybañez-Julca3, Mario Pineda-Pérez4, Nesquen Tasayco-Yataco5, María R. Bendezú6, Jorge A. García6, Felipe Surco-Laos6, Haydee Chávez6, Doris Laos-Anchante6, Aura Molina-Cabrera6, Carmela Ferreyra-Paredes6, Nelly Vega-Ramos6, Patricia Castillo-Romero6, Javier Chávez-Espinoza6, Juan Panay-Centeno6, Eliades Yarasca-Carlos7

1International Research Unit in Molecular Pharmacology and Genomic Medicine (UNIPHARMAGEM), VRI San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

2Institute of Food Science and Nutrition, ICAN, San Ignacio de Loyola University, La Molina 15024, Lima, Peru.

3Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13006, Trujillo, Peru.

4Pharmacy and Biochemistry, Faculty of Health Sciences, Scientific University of the South, UCSUR, 15067, Lima, Peru.

5Human Medicine, Norbert Wiener University, 15046, Lima, Peru.

6Faculty of Pharmacy and Biochemistry, San Luis Gonzaga National University of Ica, 11004, Ica, Peru.

7Biological Sciences Faculty, San Luis Gonzaga National University of Ica, 11001, Ica, Peru.

*E-mail: angel.alvaradoy@usil.pe

Abstract

Context: Statins reduce the risk of stroke and prevent cardiac events in people with atherosclerosis and diabetes mellitus; and could affect the proliferation, migration, and survival of cancer cells.

Aims: To review the most up-to-date and available scientific evidence on the allelic variants of SLCO1B1 and CYP3A4 associated with pharmacokinetic interactions and adverse reactions induced by simvastatin and atorvastatin used in Peru, and their clinical implications.

Methods: The bibliographic search was carried out in the PubMed/Medline, Google Scholar and Science Direct databases. The keywords were: “statin”, “atorvastatin”, “simvastatin” in combination with “pharmacokinetics”, “pharmacogenetics”, “CYP3A4”, “SLCO1B1” or “drug interactions” considering the eligibility criteria defined by the PRISMA-2020 international statement.

Results: Scientific evidence indicates a significant association between SLCO1B1 rs4149056 c.521T>C (521CC and 521TC) and increased plasma levels, area under the plasma concentration curve (AUC) and maximum plasma concentration (Cmax) of simvastatin, compared to wild-type SLCO1B1*1/*1 521TT (p<0.05). SLCO1B1 521C is not associated with atorvastatin (p>0.05). Patients with SLCO1B1 521CC had a significantly higher risk of myopathy and rhabdomyolysis induced by simvastatin compared to TT (p<0.05). An association was also found between CYP3A4*1/*22/CYP3A4*3/*22 and increased pharmacokinetic parameters of simvastatin compared to CYP3A4*1/*1 (p< 0.05).

Conclusions: Based on the review of the published scientific evidence, it is concluded that individuals carrying the allelic variants SLCO1B1 (c.521T>C), CYP3A4*1/*22 and CYP3A4*3/*22 could be associated with an increase in the pharmacokinetic parameters and with an increased risk of myopathy and rhabdomyolysis induced by simvastatin, and not by atorvastatin.

Keywords: adverse reactions; atorvastatin; CYP3A4; pharmacokinetic interactions; SLCO1B1; simvastatin.

jppres_pdf_free

Resumen

Contexto: Las estatinas reducen el riesgo accidente cerebrovascular y previene los eventos cardíacos en personas con aterosclerosis y diabetes mellitus; y podría afectar la proliferación, migración y supervivencia de las células cancerosas.

Objetivos: Revisar la evidencia científica más actualizada y disponible sobre las variantes alélicas de SLCO1B1 y CYP3A4 asociadas a interacciones farmacocinéticas y reacciones adversas inducidas por la simvastatina y atorvastatina usadas en el Perú, y sus implicaciones clínicas.

Métodos: Se realizó la búsqueda bibliográfica en bases de datos PubMed/Medline, Google Scholar and Science Direct databases. Las palabras clave fueron: “estatina”, “atorvastatina”, “simvastatina” en combinación con “farmacocinética”, “farmacogenética”, “CYP3A4”, “SLCO1B1” o “interacciones con fármacos” teniendo en cuenta los criterios de elegibilidad definidos por la declaración internacional PRISMA-2020.

Resultados: La evidencia científica indica asociación significativa entre SLCO1B1 rs4149056 c.521T>C (521CC y 521TC) y el aumento de los niveles plasmáticos, del área bajo la curva de concentraciones plasmáticas (AUC) y concentración plasmática máxima (Cmax) de simvastatina, respecto al wild-type SLCO1B1*1/*1 521TT (p<0.05). SLCO1B1 521C no está asociado con atorvastatina (p>0.05). Los pacientes con SLCO1B1 521CC presentaron mayor riesgo significativo de miopatía y rabdomiólisis inducida por simvastatina frente a TT (p< 0.05). También se encontró asociación entre CYP3A4*1/*22/CYP3A4*3/*22 y aumento de los parámetros farmacocinéticos de simvastatina en comparación con CYP3A4*1/*1 (p < 0.05).

Conclusiones: Basado en la revisión de la evidencia científica publicada se concluye que los individuos portadores de las variantes alélicas SLCO1B1 (c.521T>C), CYP3A4*1/*22 y CYP3A4*3/*22 podrían estar asociados a un incremento de los parámetros farmacocinéticos y con un mayor riesgo de miopatía y rabdomiólisis inducida por simvastatina, y no por atorvastatina.

Palabras Clave: atorvastatina; CYP3A4; interacciones farmacocinéticas; reacción adversa; SLCO1B1; simvastatina.

jppres_pdf_free
Citation Format: Alvarado AT, Muñoz AM, Ybañez RO, Pineda M, Tasayco N, Bendezú G, García JA, Surco F, Chávez H, Laos D, Molina A, Ferreyra C, Vega N, Castillo P, Chávez J, Panay J, Yarasca E (2023) SLCO1B1 and CYP3A4 allelic variants associated with pharmacokinetic interactions and adverse reactions induced by simvastatin and atorvastatin used in Peru: Clinical implications. J Pharm Pharmacogn Res 11(6): 934–952. https://doi.org/10.56499/jppres23.1686_11.6.934
References

Ahangari N, Doosti M, Ghayour Mobarhan M, Sahebkar A, Ferns GA, Pasdar A (2020) Personalised medicine in hypercholesterolaemia: the role of pharmacogenetics in statin therapy. Ann Med 52(8): 462–470. https://doi.org/10.1080/07853890.2020.1800074

Alvarado A, García G, Morales A, Paredes G, Mora M, Muñoz AM, Pariona R, Bendezú MR, Chávez H, García JÁ, Laos-Anchante D, Loja-Herrera B, Bolarte-Arteaga M, Pineda M (2022b) Phenytoin concentration in people with epilepsy: A comparative study in serum and saliva. Pharmacia 69(3): 809–814. https://doi.org/10.3897/pharmacia.69.e87168

Alvarado AT, Cotuá J, Delgado M, Morales A, Muñoz AM, Li C, Bendezú MR, García JÁ, Laos-Anchante D, Surco-Laos F, Loja B, Bolarte-Arteaga M, Pineda-Pérez M (2022a) Serum concentrations of valproic acid in people with epilepsy: Clinical implication. J Pharm Pharmacogn Res 10(6): 1117–1125. https://doi.org/10.56499/jppres22.1500_10.6.1117

Alvarado AT, Muñoz AM, Bendezú M, García JA, Palomino-Jhong JJ, Ochoa-Pachas G, Chonn-Chang A, Sullon-Dextre L, Loja-Herrera B, Pineda-Perez M (2021a) In vitro biopharmaceutical equivalence of 5-mg glibenclamide tablets in simulated intestinal fluid without enzymes. Dissolution Technol 28(1): 1–12. https://doi.org/10.14227/DT280121PGC2

Alvarado AT, Muñoz AM, Bendezú MR, Palomino-Jhong JJ, García JA, Alvarado CA, Alvarado EA, Ochoa-Pachas G, Pineda-Pérez M, Bolarte M (2021b) In vitro biopharmaceutical equivalence of carbamazepine sodium tablets available in Lima, Peru. Dissolution Technol 28(2): 1–10. https://dx.doi.org/10.14227/DT280221PGC2

Alvarado AT, Muñoz AM, Loja B, Miyasato JM, García JÁ, Cerro RA, Quiñones LA, Varela NM (2019) Study of the allelic variants CYP2C9*2 and CYP2C9*3 in samples of the Peruvian mestizo population. Biomédica 39(3): 601–610. http://dx.doi.org/10.7705/biomedica.4636

Alvarado AT, Paredes G, García G, Morales A, Muñoz AM, Saravia M, Losno R, Bendezú MR, Chávez H, García JÁ, Pineda M, Sullón-Dextre L (2022c) Serum monitoring of carbamazepine in patients with epilepsy and clinical implications. Pharmacia 69(2): 401–406. http://dx.doi.org/10.3897/pharmacia.69.e82425

Alvarado AT, Saravia M, Losno R, Pariona R, Muñoz AM, Ybañez-Julca R, Loja B, Bendezú MR, García JÁ, Laos-Anchante D, Chávez H, Aguilar P, Pineda M (2023) CYP2D6 and CYP2C19 genes associated with tricontinental and Latin American ancestry of Peruvians. Drug Metab Bioanal Lett 16(1): 14–26. https://doi.org/10.2174/1872312815666221213151140

Alvarado AT, Ybañez-Julca R, Muñoz AM, Tejada-Bechi C, Cerro R, Quiñones LA, Varela N, Alvarado CA, Alvarado E, Bendezú MR, García JÁ (2021c) Frequency of CYP2D6*3 and *4 and metabolizer phenotypes in three mestizo Peruvian populations. Pharmacia 68(4): 891–898. http://dx.doi.org/10.3897/pharmacia.68.e75165

Apellániz-Ruiz M, Inglada-Pérez L, Naranjo MEG, Sánchez L, Mancikova V, Currás-Freixes M, de Cubas AA, Comino-Méndez I, Triki S, Rebai A, Rasool M, Moya G, Grazina M, Opocher G, Cascón A, Taboada-Echalar P, Ingelman-Sundberg M, Carracedo A, Robledo M, Llerena A, Rodríguez-Antona C (2015b) High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenomics J 15: 288–292. https://doi.org/10.1038/tpj.2014.67

Apellániz-Ruiz M, Lee MY, Sanchez L, Gutierrez-Gutierrez G, Calvo I, Garcia-Estevez L, Sereno M, García-Donás J, Castelo B, Guerra E, Leandro-García LJ, Cascón A, Johansson I, Robledo M, Ingelman-Sundberg M, Rodríguez-Antona C (2015a) Whole-exome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy. Clin Cancer Res 21(2): 322–328. https://doi.org/10.1158/1078-0432.CCR-14-1758

Arguedas JA (2002) Actualización en farmacoterapia: La Farmacología de las estatinas: Primera Parte. Rev Costarric Cardiol 4(1): 13–21.

Bartra M, Losno García R, Valderrama-Wong M, Muñoz Jáuregui AM, Bendezú Acevedo M, García Ceccarelli J, Surco Laos F, Basurto Ayala P, Pineda-Pérez M, Alvarado AT (2021) Interacciones farmacocinéticas de la azitromicina e implicación clínica. Rev Cub Med Mil 50(3): e02101284.

Cai T, Abel L, Langford O, Monaghan G, Aronson JK, Stevens RJ, Lay-Flurrie S, Koshiaris C, McManus RJ, Hobbs FDR, Sheppard JP (2021) Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and dose-response meta-analyses. BMJ 374: n1537. https://doi.org/10.1136/bmj.n1537

Catalán J, Garay J, Romero F, Miranda C, Roco A, Quiñones L, Saavedra I (2011) Metabolismo de los antipsicóticos: enzimas y genes relacionados.  Rev Farmacol Chile 4(1): 15–20.

Choi HY, Bae KS, Cho SH, Ghim JL, Choe S, Jung JA, Jin SJ, Kim HS, Lim HS (2015) Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet Genomics 25(12): 595–608. https://doi.org/10.1097/FPC.0000000000000176

Choi MK, Shin HJ, Choi YL, Deng JW, Shin JG, Song IS (2011) Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors. Xenobiotica 41(1): 24–34. https://doi.org/10.3109/00498254.2010.523736

Cooper-DeHoff RM, Niemi M, Ramsey LB, Luzum JA, Tarkiainen EK, Straka RJ, Gong L, Tuteja S, Wilke RA, Wadelius M, Larson EA, Roden DM, Klein TE, Yee SW, Krauss RM, Turner RM, Palaniappan L, Gaedigk A, Giacomini KM, Caudle KE, Voora D (2022) The clinical pharmacogenetics implementation consortium guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and Statin-Associated Musculoskeletal Symptoms. Clin Pharmacol Ther 111(5): 1007–1021. https://doi.org/10.1002/cpt.2557

Courlet P, Decosterd LA, Alves Saldanha S, Cavassini M, Stader F, Stoeckle M, Buclin T, Marzolini C, Csajka C, Guidi M, Swiss HIV Cohort Study (2020) Influence of drug-drug interactions on the pharmacokinetics of atorvastatin and its major active metabolite ortho-OH-atorvastatin in aging people living with HIV. Clin Pharmacokinet 59: 1037–1048. https://doi.org/10.1007/s40262-020-00876-0

Dagli-Hernandez C, Zhou Y, Lauschke VM, Genvigir FDV, Hirata TDC, Hirata MH, Hirata RDC (2022) Pharmacogenomics of statins: Lipid response and other outcomes in Brazilian cohorts. Pharmacol Rep 74: 47–66. https://doi.org/10.1007/s43440-021-00319-y

Díaz Rodríguez N, Serrano Cumplido A, Fierro González D, Rodríguez Arroyo LA, García-Norro FJ, de Abajo Olea S, López Rodríguez I, Panisello Royo JM, Minguez Villar JC, Palomo del Arco J, Chacartegui RC, Fuster VP, Verdes-Montenegro JC (2012) Pitavastatin: A new alternative in the treatment of dyslipidemia. [Spanish]. Clin Invest Arterioscl 24(1): 30–39. https://doi.org/10.1016/j.arteri.2011.10.005

Du Y, Wang S, Chen Z, Sun S, Zhao Z, Li X (2018) Association of SLCO1B1 polymorphisms and atorvastatin safety and efficacy: A meta-analysis. Curr Pharm Des 24(34): 4044–4050. https://doi.org/10.2174/1381612825666181219163534

Echaniz-Laguna A, Mohr M, Tranchant C (2010) Neuromuscular symptoms and elevated creatine kinase after statin withdrawal. N Engl J Med 362: 564–565. https://doi.org/10.1056/NEJMc0908215

Elalem EG, Jelani M, Khedr A, Ahmad A, Alaama TY, Alaama MN, Al-Kreathy HM, Damanhouri ZA (2022) Association of cytochromes P450 3A4*22 and 3A5*3 genotypes and polymorphism with response to simvastatin in hypercholesterolemia patients. PLoS One 17(7): e0260824. https://doi.org/10.1371/journal.pone.0260824

Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH (2013) CYP3A4*22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 14(1): 47–62. https://doi.org/10.2217/pgs.12.187

Fernandes Silva L, Ravi R, Vangipurapu J, Oravilahti A, Laakso M (2022) Effects of SLCO1B1 Genetic variant on metabolite profile in participants on simvastatin treatment. Metabolites 12(12): 1159. https://doi.org/10.3390/metabo12121159

Ghim JL, Phuong N, Kim MJ, Kim EJ, Song GS, Ahn S, Shin JG, Kim EY (2019) Pharmacokinetics of fixed-dose combination of atorvastatin and metformin compared with individual tablets. Drug Des Devel Ther 13: 1623–1632. https://doi.org/10.2147/DDDT.S193254

Guan ZW, Wu KR, Li R, Yin Y, Li XL, Zhang SF, Li Y (2019) Pharmacogenetics of statins treatment: Efficacy and safety. J Clin Pharm Ther 44(6): 858–867. https://doi.org/10.1111/jcpt.13025

Hirota T, Fujita Y, Ieiri I (2020) An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 16(9): 809–822. https://doi.org/10.1080/17425255.2020.1801634

Hirota T, Ieiri I (2015) Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 11(9): 1435-1447. https://doi.org/10.1517/17425255.2015.1056149

Holbrook A, Wright M, Sung M, Ribic C, Baker S (2011) Statin-associated rhabdomyolysis: is there a dose-response relationship? Can J Cardiol 27(2): 146–151. https://doi.org/10.1016/j.cjca.2010.12.024

Hou Q, Li S, Li L, Li Y, Sun X, Tian H (2015) Association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk: A meta-analysis of case-control studies. Medicine 94(37): e1268. https://doi.org/10.1097/MD.0000000000001268

Hronová K, Šíma M, Světlík S, Matoušková O, Slanař O (2014) Pharmacogenetics and immunosuppressive drugs. Expert Rev Clin Pharmacol 7(6): 821–835. https://doi.org/10.1586/17512433.2014.966811

Huang WC, Lin TW, Chiou KR, Cheng CC, Kuo FY, Chiang CH, Yang JS, Lin KL, Hsiao SH, Yeh TC, Mar GY, Hsiao HC, Lin SL, Chiou CW, Liu CP (2013) The effect of intensified low density lipoprotein cholesterol reduction on recurrent myocardial infarction and cardiovascular mortality. Acta Cardiol Sin 29(5): 404–412. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804789/

Inoue K, Inazawa J, Nakagawa H, Shimada T, Yamazaki H, Guengerich FP, Abe T (1992) Assignment of the human cytochrome P-450 nifedipine oxidase gene (CYP3A4) to chromosome 7 at band q22.1 by fluorescence in situ hybridization. Jpn J Hum Genet 37: 133–138. https://doi.org/10.1007/BF01899734

Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U (2000) Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 28(11): 1369–1378. https://pubmed.ncbi.nlm.nih.gov/11038166/

Jessurun NT, Drent M, Wijnen PA, Harmsze AM, van Puijenbroek EP, Bekers O, Bast A (2021) Role of drug–gene interactions and pharmacogenetics in simvastatin‑associated pulmonary toxicity. Drug Saf 44: 1179–1191. https://doi.org/10.1007/s40264-021-01105-8

Jiang F, Choi JY, Lee JH, Ryu S, Park ZW, Lee JG, Na HS, Lee SY, Oh WY, Chung MW, Choi SE (2017) The influences of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of simvastatin, in relation to CYP3A4 inhibition. Pharmacogenomics 18(5): 459–469. https://doi.org/10.2217/pgs-2016-0199

Joy TR, Hegele RA (2009) Narrative review: Statin-related myopathy. Ann Intern Med 150: 858–868. https://doi.org/10.7326/0003-4819-150-12-200906160-00009

Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P (2012) Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): Influence of protein expression on drug-drug interactions. J Med Chem 55(10): 4740–4763. https://doi.org/10.1021/jm300212s

Kearney AS, Crawford LF, Mehta SC, Radebaugh GW (1993) The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm Res 10: 1461–1465. https://doi.org/10.1023/a:1018923325359

Kim JR, Jung JA, Kim S, Huh W, Ghim JL, Shin JG, Ko JW (2019) Effect of cilostazol on the pharmacokinetics of simvastatin in healthy subjects. Biomed Res Int 2019: 1365180. https://doi.org/10.1155/2019/1365180

Kim KA, Park PW, Lee OJ, Kang DK, Park JY (2007) Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol 47(1): 87–93. https://doi.org/10.1177/0091270006295063

Kitzmiller JP, Luzum JA, Baldassarre D, Krauss RM, Medina MW (2014) CYP3A4*22 and CYP3A5*3 are associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics study cohort. Pharmacogenet Genomics 24(10): 486–491. https://doi.org/10.1097/FPC.0000000000000079

Kuypers DR (2018) What do we know about tacrolimus pharmacogenetics in transplant recipients? Pharmacogenomics 19(7): 593–597. https://doi.org/10.2217/pgs-2018-0035

Linskey DW, English JD, Perry DA, Ochs-Balcom HM, Ma C, Isackson PJ, Vladutiu GD, Luzum JA (2020) Association of SLCO1B1 c.521T>C (rs4149056) with discontinuation of atorvastatin due to statin-associated muscle symptoms. Pharmacogenet Genomics 30(9): 208–211. https://doi.org/10.1097/FPC.0000000000000412

Lu B, Sun L, Seraydarian M, Hoffmann TJ, Medina MW, Risch N, Iribarren C, Krauss RM, Oni-Orisan A (2021) Effect of SLCO1B1 T521C on statin-related myotoxicity with use of lovastatin and atorvastatin. Clin Pharmacol Ther 110(3): 733–740. https://doi.org/10.1002/cpt.2337

Luzum JA, Theusch E, Taylor KD, Wang A, Sadee W, Binkley PF, Krauss RM, Medina MW, Kitzmiller JP (2015) Individual and combined associations of genetic variants in CYP3A4, CYP3A5, and SLCO1B1 with simvastatin and simvastatin acid plasma concentrations. J Cardiovasc Pharmacol 66(1): 80–85. https://doi.org/10.1097/FJC.0000000000000246

Maekawa K, Harakawa N, Yoshimura T, Kim SR, Fujimura Y, Aohara F, Sai K, Katori N, Tohkin M, Naito M, Hasegawa R, Okuda H, Sawada JI, Niwa T, Saito Y (2010) CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs. Drug Metab Dispos 38(12): 2100–2104. https://doi.org/10.1124/dmd.110.034140

Masson W (2019) Uso adecuado de las estatinas de alta intensidad. Rev Urug Cardiol 34: 349–359. https://doi.org/10.29277/cardio.34.3.24

Mykkänen AJH, Taskinen S, Neuvonen M, Paile-Hyvärinen M, Tarkiainen EK, Lilius T, Tapaninen T, Backman JT, Tornio A, Niemi M (2022) Genomewide association study of simvastatin pharmacokinetics. Clin Pharmacol Ther 112(3): 676–686. https://doi.org/10.1002/cpt.2674

Nieto I, Chengwin C, Atehortúa L, Sepúlveda L (2013) Las estatinas: Química, técnicas analíticas, biosíntesis y farmacocinética. Vitae 20(1): 49–63.

Olaya Ramírez F, Medina Arango A, Navas Lenis M, Tilano Acevedo A, Monsalve I, González Bustamente A, Rincón P (2011) Estudio farmacocinético de la asociación atorvastatina 40 mg + ezetimibe 10 mg tabletas. Arch Venez Farmacol Ter 30(1): 15–22.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372: n71. https://doi.org/10.1136/bmj.n71

Pedersen TR, Tobert JA (2004) Simvastatin: a review. Expert Opin Pharmacother 5(12): 2583–2596. https://doi.org/10.1517/14656566.5.12.2583

Peng C, Ding Y, Yi X, Shen Y, Dong Z, Cao L, Li Q, Ren H, He L, Zhou D, Chen X (2018) Polymorphisms in CYP450 genes and the therapeutic effect of atorvastatin on ischemic stroke: A retrospective cohort study in Chinese population. Clin Ther 40(3): 469–77.e2. https://doi.org/10.1016/j.clinthera.2018.02.002

Plant N (2007) The human cytochrome P450 sub-family: transcriptional regulation, inter-individual variation and interaction networks. Biochim Biophys Acta 1770(3): 478–488. https://doi.org/10.1016/j.bbagen.2006.09.024

Prueksaritanont T, Gorham LM, Ma B, Liu L, Yu X, Zhao JJ, Slaughter DE, Arison BH, Vyas KP (1997) In vitro metabolism of simvastatin in humans [SBT]identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 25(10): 1191–1199. https://pubmed.ncbi.nlm.nih.gov/9321523/

Prueksaritanont T, Subramanian R, Fang X, Ma B, Qiu Y, Lin JH, Pearson PG, Baillie TA (2002) Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos 30(5): 505–512. https://doi.org/10.1124/dmd.30.5.505

Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, Maxwell WD, McLeod HL, Krauss RM, Roden DM, Feng Q, Cooper-DeHoff RM, Gong L, Klein TE, Wadelius M, Niemi M (2014) The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 96(4): 423–428. https://doi.org/10.1038/clpt.2014.125

Robledo M, Torres I, Manrique RD, Duque M, Gallo JE (2019) Utilidad del gen SLCO1B1como marcador de interés en la farmacogenómica de las estatinas. Rev Colomb Cardiol 26(1): 24–30. https://doi.org/10.1016/j.rccar.2018.05.006

Rojas-Macetas A, Medalla-Garro G, Saravia M, Losno R, Valderrama-Wong M, Pariona R, Alvarado AT (2023) Potential polymorphic CYP1A2 and CYP2D6-mediated pharmacokinetic interactions between risperidone or olanzapine and selected drugs intended to treat COVID-19. Drug Metab Bioanal Lett 16(1): 6–13. https://doi.org/10.2174/1872312815666221125112724

Saiz-Rodríguez M, Almenara S, Navares-Gómez M, Ochoa D, Román M, Zubiaur P, Koller D, Santos M, Mejía G, Borobia AM, Rodríguez-Antona C, Abad-Santos F (2020) Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines 8(4): 94. https://doi.org/10.3390/biomedicines8040094

Shaghaghi Z, Alvandi M, Farzipour S, Dehbanpour MR, Nosrati S (2023) A review of effects of atorvastatin in cancer therapy. Med Oncol 40: 27. https://doi.org/10.1007/s12032-022-01892-9

Sirtori CR (2014) The pharmacology of statins. Pharmacol Res 88: 3–11. https://doi.org/10.1016/j.phrs.2014.03.002

Soria-Chacartegui P, Villapalos-García G, Zubiaur P, Abad-Santos F, Koller D (2021) Genetic polymorphisms associated with the pharmacokinetics, pharmacodynamics and adverse effects of olanzapine, aripiprazole and risperidone. Front Pharmacol 12: 711940. https://doi.org/10.3389/fphar.2021.711940

Stillemans G, Paquot A, Muccioli GG, Hoste E, Panin N, Åsberg A, Balligand JL, Haufroid V, Elens L (2022) Atorvastatin population pharmacokinetics in a real-life setting: Influence of genetic polymorphisms and association with clinical response. Clin Transl Sci 15(3): 667–679. https://doi.org/10.1111/cts.13185

Tanaka E (1998) Clinically important pharmacokinetic drug-drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther 23(6): 403–416. https://doi.org/10.1046/j.1365-2710.1998.00086.x

Taylor F, Huffman MD, Macedo AF, Moore THM, Burke M, Smith GD, Ward K, Ebrahim S, Gay HC (2013) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2013: CD004816. https://doi.org/10.1002/14651858.CD004816.pub5

Uçkun Z, Baskak B, Özdemir H, Özel-Kizil ET, Devrimci-Özgüven H, Süzen HS (2018) Genotype and allele frequency of CYP3A4 -392A>G in Turkish patients with major depressive disorder. Turk J Pharm Sci 15(2): 200–206. https://doi.org/10.4274/tjps.46320

Vanwong N, Tipnoppanon S, Na Nakorn C, Srisawasdi P, Rodcharoen P, Medhasi S, Chariyavilaskul P, Siwamogsatham S, Vorasettakarnkij Y, Sukasem C (2022) Association of drug-metabolizing enzyme and transporter gene polymorphisms and lipid-lowering response to statins in thai patients with dyslipidemia. Pharmacogenomics Pers Med 2022(15): 119–130. https://doi.org/10.2147/PGPM.S346093

Vickers S, Duncan CA, Vyas KP, Kari PH, Arison B, Prakash SR, Ramjit HG, Pitzenberger SM, Stokker G, Duggan DE (1990) In vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase. Drug Metab Dispos 18(4): 476–483. https://pubmed.ncbi.nlm.nih.gov/1976071/

Vildhede A, Karlgren M, Svedberg EK, Wisniewski JR, Lai Y, Norén A, Artursson P (2014) Hepatic uptake of atorvastatin: influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug Metab Dispos 42(7): 1210–1218. https://doi.org/10.1124/dmd.113.056309

Wagner JB, Abdel-Rahman S, Van Haandel L, Gaedigk A, Gaedigk R, Raghuveer G, Kauffman R, Leeder JS (2018) Impact of SLCO1B1 genotype on pediatric simvastatin acid pharmacokinetics. J Clin Pharmacol 58(6): 823–833. https://doi.org/10.1002/jcph.1080

Wang CW, Preclaro IAC, Lin WH, Chung WH (2022) An updated review of genetic associations with severe adverse drug reactions: translation and implementation of pharmacogenomic testing in clinical practice. Front Pharmacol 13: 886377. https://doi.org/10.3389/fphar.2022.886377

Westlind-Johnsson A, Hermann R, Huennemeyer A, Hauns B, Lahu G, Nassr N, Zech K, Ingelman-Sundberg M, von Richter O (2006) Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin Pharmacol Ther 79(4): 339–349. https://doi.org/10.1016/j.clpt.2005.11.015

Wilke RA, Ramsey LB, Johnson SG, Maxwell WD, McLeod HL, Voora D, Krauss RM, Roden DM, Feng Q, Cooper-Dehoff RM, Gong L, Klein TE, Wadelius M, Niemi M (2012) The Clinical Pharmacogenomics Implementation Consortium: CPIC Guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 92(1): 112–117. https://doi.org/10.1038/clpt.2012.57

Xiang Q, Chen SQ, Ma LY, Hu K, Zhang Z, Mu GY, Xie QF, Zhang XD, Cui YM (2018) Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharmacogenomics J 18: 721–729. https://doi.org/10.1038/s41397-018-0054-0

Zhang Q, Qu H, Chen Y, Luo X, Chen C, Xiao B, Ding X, Zhao P, Lu Y, Chen AF, Yu Y (2022) Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 Axis. Front Cell Dev Biol 10: 806081. https://doi.org/10.3389/fcell.2022.806081

Zhou Q, Ruan ZR, Jiang B, Yuan H, Zeng S (2013) Simvastatin pharmacokinetics in healthy Chinese subjects and its relations with CYP2C9, CYP3A5, ABCB1, ABCG2 and SLCO1B1 polymorphisms. Pharmazie 68(2): 124–128. https://pubmed.ncbi.nlm.nih.gov/23469684/

Zhou Q, Yu X, Shu C, Cai Y, Gong W, Wang X, Wang DM, Hu S (2011) Analysis of CYP3A4 genetic polymorphisms in Han Chinese. J Hum Genet 56: 415–422. https://doi.org/10.1038/jhg.2011.30

Zhou XY, Hu XX, Wang CC, Lu XR, Chen Z, Liu Q, Hu GX, Cai JP (2019) Enzymatic activities of CYP3A4 allelic variants on quinine 3-hydroxylation in vitro. Front Pharmacol 10: 591. https://doi.org/10.3389/fphar.2019.00591

© 2023 Journal of Pharmacy & Pharmacognosy Research

Alcohol gel and chlorhexidine in microbiota on hands
J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 184-192, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1733_12.1.184 Original Article Alcohol in gel is as effective as chlorhexidine in the reduction of microbiota on hands in hospital nurses [El alcohol en gel es tan eficaz como la clorhexidina en la reducción de la microbiota de las manos en enfermeras … Continue reading Alcohol gel and chlorhexidine in microbiota on hands
Piperine-HPMC 2910 solid dispersion freeze drying
J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 175-183, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1734_12.1.175 Original Article Enhancing the solubility and dissolution rate of piperine via preparation of piperine–hydroxypropyl methylcellulose 2910 solid dispersion system using freeze-drying method [Mejora de la solubilidad y la velocidad de disolución de la piperina mediante la preparación de un sistema de … Continue reading Piperine-HPMC 2910 solid dispersion freeze drying
Metabolomic of propolis in hypertension
J. Pharm. Pharmacogn. Res., vol. 12, no. 1, pp. 166-174, Jan-Feb 2024. DOI: https://doi.org/10.56499/jppres23.1705_12.1.166 Original Article Metabolomic study on the effect of Indonesian propolis in hypertensive rats [Estudio metabolómico del efecto del propóleo indonesio en ratas hipertensas] Ade Heri Mulyati1*, Henny Dwi Yanti1, Siti Warnasih1, Ahmad Sulaeman2, Mohamad Rafi3 1Department of Chemistry, Faculty of Mathematics … Continue reading Metabolomic of propolis in hypertension

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio