SRC-3 in prostate cancer and therapeutic targeting

Excerpt:


J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 994-1007, Sep-Oct 2024. DOI: https://doi.org/10.56499/jppres23.1916_12.5.994 Review The role of SRC-3 in prostate cancer progression and implications for therapeutic targeting: A systematic review [El papel de SRC-3 en la progresión del cáncer de próstata y las implicaciones para la orientación terapéutica: Una revisión sistemática] Suleiman Zakari1,2,3*, Wisdom … Continue reading SRC-3 in prostate cancer and therapeutic targeting

J. Pharm. Pharmacogn. Res., vol. 12, no. 5, pp. 994-1007, Sep-Oct 2024.

DOI: https://doi.org/10.56499/jppres23.1916_12.5.994

Review

The role of SRC-3 in prostate cancer progression and implications for therapeutic targeting: A systematic review

[El papel de SRC-3 en la progresión del cáncer de próstata y las implicaciones para la orientación terapéutica: Una revisión sistemática]

Suleiman Zakari1,2,3*, Wisdom D. Cleanclay1,2, Mercy Bella-Omunagbe1,2, Hajara Zakari4, Celestine O. Ogbu3, Daniel Ejim Uti3,5, Olubanke O. Ogunlana1,2*

1Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

2Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria.

3Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Benue State, Nigeria.

4Department of Biological Sciences, Faculty of Science, Federal University of Health Sciences Otukpo, Benue State, Nigeria.

5Department of Publications and Extension, Kampala International University, P.O. Box 20000, Uganda.

*E-mail: zakarisuleiman13@gmail.com; banke.ogunlana@covenantuniversity.edu.ng

Abstract

Context: Prostate cancer remains a significant global health concern, and understanding the molecular drivers of this disease is crucial for developing effective diagnostic and therapeutic strategies. Steroid receptor coactivator-3 (SRC-3), a member of the SRC family, has emerged as a key player in prostate cancer pathogenesis.

Aims: To examine the role of SRC-3 in prostate cancer, encompassing molecular mechanisms, clinical implications, and therapeutic opportunities.

Methods: A systematic literature search following PRISMA guidelines was conducted in PubMed, PMC, and other relevant databases to identify studies that investigate SRC-3 in prostate cancer.

Results: 785 articles were retrieved from databases using specific keywords and MeSH terms related to SRC-3 and Prostate Cancer. After removing 461 duplicates, 260 articles were excluded based on title and abstract review. Subsequently, a comprehensive screening by three researchers resulted in 47 relevant articles for this systematic review. Evidence suggests that SRC-3 expression correlates with prostate cancer aggressiveness, disease recurrence, and poor patient outcomes. Its potential as a diagnostic biomarker and therapeutic target if explored, offers insights into personalized medicine approaches.

Conclusions: SRC-3 plays a pivotal role in prostate cancer, influencing disease progression and clinical outcomes. Understanding the molecular intricacies of SRC-3 in prostate cancer offers new opportunities for precision medicine and innovative therapeutic approaches. This review provides a comprehensive overview of SRC-3's involvement in prostate cancer, emphasizing its clinical relevance and potential as a therapeutic target, ultimately contributing to improved patient care in the era of personalized oncology.

Keywords: androgen receptor; signaling; prostate cancer; SRC-3; therapeutics.

PDF Download

Resumen

Contexto: El cáncer de próstata sigue siendo un importante problema de salud mundial, y la comprensión de los impulsores moleculares de esta enfermedad es crucial para el desarrollo de estrategias diagnósticas y terapéuticas eficaces. El coactivador del receptor de esteroides 3 (SRC-3), miembro de la familia SRC, se ha revelado como un agente clave en la patogénesis del cáncer de próstata.

Objetivos: Examinar el papel de SRC-3 en el cáncer de próstata, abarcando mecanismos moleculares, implicaciones clínicas y oportunidades terapéuticas.

Métodos: Se realizó una búsqueda bibliográfica sistemática siguiendo las directrices PRISMA en PubMed, PMC y otras bases de datos relevantes para identificar estudios que investiguen SRC-3 en cáncer de próstata.

Resultados: Se recuperaron 785 artículos de bases de datos utilizando palabras clave específicas y términos MeSH relacionados con SRC-3 y cáncer de próstata. Tras eliminar 461 duplicados, se excluyeron 260 artículos basándose en la revisión del título y el resumen. Posteriormente, un cribado exhaustivo realizado por tres investigadores dio como resultado 47 artículos relevantes para esta revisión sistemática. Las pruebas sugieren que la expresión de SRC-3 se correlaciona con la agresividad del cáncer de próstata, la recurrencia de la enfermedad y los malos resultados de los pacientes. Su potencial como biomarcador de diagnóstico y diana terapéutica, si se explora, ofrece ideas sobre enfoques de medicina personalizada.

Conclusiones: SRC-3 desempeña un papel fundamental en el cáncer de próstata, influyendo en la progresión de la enfermedad y en los resultados clínicos. La comprensión de los entresijos moleculares de SRC-3 en el cáncer de próstata ofrece nuevas oportunidades para la medicina de precisión y los enfoques terapéuticos innovadores. Esta revisión ofrece una visión global de la implicación de SRC-3 en el cáncer de próstata, destacando su relevancia clínica y su potencial como diana terapéutica, contribuyendo en última instancia a mejorar la atención al paciente en la era de la oncología personalizada.

Palabras Clave: cáncer de próstata; receptor de andrógenos; señalización; SRC-3; terapéutica.

PDF Download
 
Citation Format: Zakari S, Cleanclay WD, Omunagbe MB, Zakari H, Ogbu CO, Uti DE, Ogunlana OO (2024) The role of SRC-3 in prostate cancer progression and implications for therapeutic targeting: A systematic review. J Pharm Pharmacogn Res 12(5): 994–1007. https://doi.org/10.56499/jppres23.1916_12.5.994
References

ACS (2023) Key Statistics for Prostate Cancer. Prostate Cancer Facts. https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html

Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM (2021) Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. J Biol Chem 296: 100240. https://doi.org/10.1074/jbc.REV120.012411

Axlund SD, Lambert JR, Nordeen SK (2010) HOXC8 inhibits androgen receptor signaling in human prostate cancer cells by inhibiting SRC-3 recruitment to direct androgen target genes. Molr Cancer Res 8(12): 1643–1655. https://doi.org/10.1158/1541-7786.mcr-10-0111

Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH (2020) The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 197: 105506. https://doi.org/10.1016/j.jsbmb.2019.105506

Bernasocchi T, Theurillat JPP (2022) SPOP-mutant prostate cancer: Translating fundamental biology into patient care. Cancer Lett 529: 11–18. https://doi.org/10.1016/j.canlet.2021.12.024

Blundon MA, Dasgupta S (2019) Metabolic dysregulation controls endocrine therapy–resistant cancer recurrence and metastasis. Endocrinology 160(8): 1811–1820. https://doi.org/10.1210/en.2019-00097

Chen HK, Su PJ, Wang YL, Chang KC, Su YL, Chang PH, Kuan FC, Hsieh CH, Kuo YC, Sheng TW, Chang CF, Yu SM, Huang WK, Lin YC, Tsan DL, Yu KJ, Lin PH, Chen HY, Chang YH, Pang ST, Chuang CK, Lai EC (2023) Long-term use and risk of major adverse cardiac events: Comparing enzalutamide and abiraterone in chemotherapy-naïve patients with metastatic castration-resistant prostate cancer. Int J Cancer 152(6): 1191–1201. https://doi.org/10.1002/ijc.34348

Chen J, Wang H, Jia L, He J, Li Y, Liu H, Wu R, Qiu Y, Zhan Y, Yuan Z, Cao Y, Li W, Xu K, Yin P (2021) Bufalin targets the SRC-3/MIF pathway in chemoresistant cells to regulate M2 macrophage polarization in colorectal cancer. Cancer Lett 513: 63–74. https://doi.org/10.1016/j.canlet.2021.05.008

Cleanclay, WD, Zakari, S, Adigun, TO, Ayeni, TO, Nnaji, PO, Nnenna, AD, Azeez, B, Adewale, A, Gbadebo, M, Agbetuyi-Tayo, P, Emetere, ME, Ogunlana, OO (2023) Cancer biology and therapeutics: Navigating recent advances and charting future directions. Trop J Nat Prod Res 7(12): 5377–5402. https://doi.org/10.26538/tjnpr/v7i12.4

Crona D, Whang Y (2017) Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers 9(12): 67. https://doi.org/10.3390/cancers9060067

Dahiya UR, Heemers HV (2022) Analyzing the androgen receptor interactome in prostate cancer: Implications for therapeutic intervention. Cells 11(6): 936. https://doi.org/10.3390/cells11060936

Dasgupta S, Putluri N, Long W, Zhang B, Wang J, Kaushik AK, Arnold JM, Bhowmik SK, Stashi E, Brennan CA, Rajapakshe K, Coarfa C, Mitsiades N, Ittmann MM, Chinnaiyan AM, Sreekumar A, O'Malley BW (2015) Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis. J Clin Invest 125(3): 1174–1188. https://doi.org/10.1172/JCI76029

Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ (2003) P300 in prostate cancer proliferation and progression. Cancer Res 63(22): 7638–7640. https://pubmed.ncbi.nlm.nih.gov/14633682/

Fujita K, Nonomura N (2019) Role of androgen receptor in prostate cancer: A review. World J Mens Health 37(3): 288. https://doi.org/10.5534/wjmh.180040

Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, Zimmermann M, Bond R, Shou J, Li C, Blattner M, Lonard DM, Demichelis F, Coarfa C, Rubin MA, Zhou P, O'Malley BW, Mitsiades N (2013) Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A 110(17): 6997–7002. https://doi.org/10.1073/pnas.1304502110

Gilad Y, Eliaz Y, Yu Y, Dean AM, Han SJ, Qin L, O'Malley BW, Lonard DM (2021) A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells. Commun Biol 4(1): 399. https://doi.org/10.1038/s42003-021-01929-1

Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN (2001) Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer 85(12): 1928–1936. https://doi.org/10.1054/bjoc.2001.2179

Gong J, Zhu J, Goodman OB Jr, Pestell RG, Schlegel PN, Nanus DM, Shen R (2006) Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Oncogene 25(14): 2011–2021. https://doi.org/10.1038/sj.onc.1209231

He C, Shan N, Xu P, Ge H, Yuan Y, Liu Y, Zhang P, Wen L, Zhang F, Xiong L, Peng C, Qi H, Tong C, Baker PN (2019) Hypoxia-induced downregulation of SRC-3 suppresses trophoblastic invasion and migration through inhibition of the AKT/mTOR pathway: Implications for the pathogenesis of preeclampsia. Sci Rep 9(1): 10349. https://doi.org/10.1038/s41598-019-46699-3

Iheagwam FN, Iheagwam OT, Odiba JK, Ogunlana OO, Chinedu SN (2022) Cancer and glucose metabolism: A review on Warburg mechanisms. Trop J Nat Prod Res 6(5): 661–667.

Kiliti AJ, Sharif GM, Martin MB, Wellstein A, Riegel AT (2023) AIB1/SRC-3/NCOA3 function in estrogen receptor alpha positive breast cancer. Front Endocrinol 14: 1250218. https://doi.org/10.3389/fendo.2023.1250218

Kishore C, Zi X (2023) Wnt signaling and therapeutic resistance in castration-resistant prostate cancer. Curr Pharmacol Rep 9(5): 261–274. https://doi.org/10.1007/s40495-023-00333-z

Li L, Deng CX, Chen Q (2021) SRC-3, a steroid receptor coactivator: implication in cancer. Int J Mol Sci 22(9): 4760. https://doi.org/10.3390/ijms22094760

Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356(2): 156–164. https://doi.org/10.1016/j.canlet.2014.04.001

Ma G, Ren Y, Wang K, He J (2011) SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Int J Biol Sci 7(5): 664–672. https://doi.org/10.7150/ijbs.7.664

Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O'Malley BW, DeMayo FJ, Lydon JP (2022) Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. Front Reprod Health 4: 1033581. https://doi.org/10.3389/frph.2022.1033581

Mohler ML, Sikdar A, Ponnusamy S, Hwang DJ, He Y, Miller DD, Narayanan R (2021) An overview of next-generation androgen receptor-targeted therapeutics in development for the treatment of prostate cancer. Int J Mol Sci 22(4): 2124. https://doi.org/10.3390/ijms22042124

Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95(5): 353–361. https://doi.org/10.1093/jnci/95.5.353

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372: n71. https://doi.org/10.1136/bmj.n71

Qin L, Chen J, Lu D, Jain P, Yu Y, Cardenas D, Peng X, Yu X, Xu J, Wang J, O'Malley BW, Lonard DM (2021) Development of improved SRC-3 inhibitors as breast cancer therapeutic agents. Endocr Relat Cancer 28(10): 657–670. https://doi.org/10.1530/erc-20-0402

Qin L, Chung YM, Berk M, Naelitz B, Zhu Z, Klein E, Chakraborty AA, Sharifi N (2022) Hypoxia-reoxygenation couples 3βHSD1 enzyme and cofactor upregulation to facilitate androgen biosynthesis and hormone therapy resistance in prostate cancer. Cancer Res 82(13): 2417–2430. https://doi.org/10.1158/0008-5472.can-21-4256

Rotimi SO, Rotimi OA, Salhia B (2021) A review of cancer genetics and genomics studies in Africa. Front Oncol 10: 606400. https://doi.org/10.3389/fonc.2020.606400

Sawant Dessai A, Kalhotra P, Novickis AT, Dasgupta S (2023) Regulation of tumor metabolism by post translational modifications on metabolic enzymes. Cancer Gene Ther 30(4): 548–558. https://doi.org/10.1038/s41417-022-00521-x

Shrestha A (2022) The regulation of steroid receptor co-activator-3 activity by p38MAPK-MK2 Signaling Pathway. Doctoral thesis. UiT The Arctic University of Norway.

Song X, Chen J, Zhao M, Zhang C, Yu Y, Lonard DM, Chow DC, Palzkill T, Xu J, O'Malley BW, Wang J (2016) Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc Natl Acad Sci U S A 113(18): 4970–4975. https://doi.org/10.1073/pnas.1604274113

Szwarc MM, Kommagani R, Lessey BA, Lydon JP (2014) The p160/steroid receptor coactivator family: Potent arbiters of uterine physiology and dysfunction. Biol Reprod 91(5): 122. https://doi.org/10.1095/biolreprod.114.125021

Takayama K (2018) The Biological Role of Androgen Receptor in Prostate Cancer Progression. In Estrada M (ed.), Advances in Testosterone Action. IntechOpen. https://doi.org/10.5772/intechopen.76360

Tang Z, Xu Z, Zhu X, Zhang J (2021) New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Comm 41(1): 16–36. https://doi.org/10.1002/cac2.12112

Tanizaki Y, Bao L, Shi B, Shi YB (2021) A role of endogenous histone acetyltransferase steroid hormone receptor coactivator 3 in thyroid hormone signaling during xenopus intestinal metamorphosis. Thyroid 31(4): 692–702. https://doi.org/10.1089/thy.2020.0410

Tien JC, Liu Z, Liao L, Wang F, Xu Y, Wu YL, Zhou N, Ittmann M, Xu J (2013) The steroid receptor coactivator-3 is required for the development of castration-resistant prostate cancer. Cancer Res 73(13): 3997–4008. https://doi.org/10.1158/0008-5472.CAN-12-3929

Wang Y, Luo X, Wu N, Liao Q, Wang J (2023) SRC-3/TRAF4 facilitates ovarian cancer development by activating the PI3K/AKT signaling pathway. Med Oncol 40(2): 76. https://doi.org/10.1007/s12032-022-01944-0

Wang Z, Jiang Q, Dong C (2020) Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med 17(1): 44–59. https://doi.org/10.20892/j.issn.2095-3941.2019.0210

Watters RJ, Verdelis K, Lucas PC, Jiang S, Chen Y, Lu F, Martin BM, Lukashova L, Pecar G, Morales-Restrepo A, Hankins M, Zhu L, Mittwede P, Hartmaier RJ, Alexander PG, Tseng GC, Weiss KR, Galson DL, Lee AV, Lee B, Oesterreich S (2021) A novel mouse model for SNP in steroid receptor co-activator-1 reveals role in bone density and breast cancer metastasis. Endocrinology 162(8): bqab094. https://doi.org/10.1210/endocr/bqab094

Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17(9): 1681–1692. https://doi.org/10.1210/me.2003-0116

Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, Wang YL, Wang XS, Niu HT (2015) Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat 38(3): 117–122. https://doi.org/10.1159/000375435

Yao L, Wang L, Cao ZG, Hu X, Shao ZM (2019) High expression of metabolic enzyme PFKFB4 is associated with poor prognosis of operable breast cancer. Cancer Cell Int 19: 165. https://doi.org/10.1186/s12935-019-0882-2

Yoo HC, Yu YC, Sung Y, Han JM (2020) Glutamine reliance in cell metabolism. Exp Mol Med 52(9): 1496–1516. https://doi.org/10.1038/s12276-020-00504-8

Zakari S, Bella-Omunagbe M, Ogunlana OO (2023) PROTOCOL: The Role of SRC-3 in Prostate Cancer Progression and Implications for Therapeutic Targeting: A Systematic Review. PROSPERO International Prospective Register of Systematic Reviews. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=471034

Zakari S, Ekenwaneze CC, Amadi EC, Abuhamdia A, Ogunlana OO (2024) Unveiling the latest insights into androgen receptors in prostate cancer. Int J Med Biochem 7(2): 101–113. https://doi.org/10.14744/ijmb.2024.93585

Zhou HJ, Yan J, Luo W, Ayala G, Lin SH, Erdem H, Ittmann M, Tsai SY, Tsai MJ (2005) SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res 65(17): 7976–7983. https://doi.org/10.1158/0008-5472.CAN-04-4076

© 2024 Journal of Pharmacy & Pharmacognosy Research

Anti-dormant mycobacterial of marine-derived fungi
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 16-26, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1953_13.1.16 Original Article Activity of ethyl acetate extracts of marine-derived fungi against active and hypoxia-induced dormant Mycobacterium [Actividad de extractos de acetato de etilo de hongos de origen marino contra Mycobacterium latente activa e inducida por hipoxia] Muhammad Azhari1, Atik Pereztia Litanjuasari1, … Continue reading Anti-dormant mycobacterial of marine-derived fungi
Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
J. Pharm. Pharmacogn. Res., vol. 13, no. 1, pp. 1-15, Jan-Feb 2025. DOI: https://doi.org/10.56499/jppres24.1967_13.1.1 Original Article In silico study of RNA polymerase inhibitor drugs for Rift Valley fever virus using RdRp protein as the target [Estudio in silico de fármacos inhibidores de la ARN polimerasa para el virus de la fiebre del valle del Rift … Continue reading Rift Valley fever virus RdRp inhibition by RNA polymerase inhibitors
Probable interaction between levothyroxine and Thymus vulgaris
J. Pharm. Pharmacogn. Res., vol. 12, no. 6, pp. 1196-1198, Nov-Dec 2024. DOI: https://doi.org/10.56499/jppres24.2008_12.6.1196 Case Report Probable interaction between levothyroxine sodium and thyme (Thymus vulgaris), about a case report [Interacción probable entre levotiroxina sódica y tomillo (Thymus vulgaris), sobre un reporte de caso] Nassima Elyebdri1,2*, Sihem Baba Ahmed1, Nessrine Abourejal1, Lotfi Loudjedi3, Assia Bououden3, Nour … Continue reading Probable interaction between levothyroxine and Thymus vulgaris

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ♥ by AVAGAX Studio