Tag Archives: antioxidant

Moringa oleifera regulates some sickle cell genes

J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 837-846, September-October 2022.

DOI: https://doi.org/10.56499/jppres22.1389_10.5.837

Original Article

Moringa oleifera extract regulates the expression of some sickle cell related genes in normal Wistar rats

[Extracto de Moringa oleifera regula la expresión de algunos genes relacionados con la anemia falciforme en ratas Wistar normales]

Mojisola C. Cyril-Olutayo1*, Idowu O. Omotuyi2

1Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria.

2Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria.

*E-mail: mojiolutayo@oauife.edu.ng


Context: In the current study, we employed gene-regulatory based approach to underscore the putative mechanism of how components of Moringa oleifera (MO) ethanol extract exert its antisickling effects.

Aims: To evaluate the relationship between mRNA expression profiles of some sickle cell related genes in normal rats.

Methods: Normal Wistar rats were administered with MO at 50 and 100 mg/kg body weight and the positive control group administered with folic acid for 14 days. The bone marrow and kidneys were harvested, followed by RT-PCR to assess the expression of Gardos channel [kccn1, kccn4], antioxidant [CAT, G6PD], and progression of meiosis [p21, p27] genes. Hematological parameters were also analyzed.

Results: A downregulation of the Gardos channel genes (KCNN-4 and KCNN-1) was observed on MO intervention at 100 mg/kg while folic acid showed no significant expression. Significantly (p<0.05), MO intervention increased antioxidant system in sickle cell anemia scenario due to the expression pattern of antioxidant genes analyzed in this study and caused changes in hematological parameters such as PCV, HBC, MCH relative to the control groups.

Conclusions: The study concluded that the administration of the ethanol extract of Moringa oleifera leaf increased blood production, has high antioxidant properties and reduced the expression of the Gardos channel pathway. These are important factors in the management of sickle cell disease and MO could be a candidate of interest in drug development.

Keywords: antioxidant; antisickling; Gardos’ channel; gene expression; Moringa oleifera.



Contexto: En el estudio actual, empleamos un enfoque basado en la regulación de genes para subrayar el mecanismo putativo de cómo los componentes del extracto de etanol de Moringa oleifera (MO) ejercen sus efectos antidrepanocíticas.

Objetivos: Evaluar la relación entre los perfiles de expresión de ARNm de algunos genes relacionados con la anemia falciforme en ratas normales.

Métodos: A ratas Wistar normales se les administró extracto de MO a 50 y 100 mg/kg de peso corporal y al grupo control positivo se le administró ácido fólico durante 14 días. Se recolectaron la médula ósea y los riñones, seguidos de RT-PCR para evaluar la expresión de los genes del canal de Gardos [kccn1, kccn4], antioxidantes [CAT, G6PD] y progresión de la meiosis [p21, p27]. También se analizaron parámetros hematológicos.

Resultados: Se observó una regulación a la baja de los genes del canal Gardos (KCNN-4 y KCNN-1) con la intervención de MO a 100 mg/kg, mientras que el ácido fólico no mostró una expresión significativa. Significativamente (p<0,05), la intervención de MO aumentó el sistema antioxidante en el escenario de anemia de células falciformes debido al patrón de expresión de los genes antioxidantes analizados en este estudio y provocó cambios en los parámetros hematológicos como PCV, HBC, MCH en relación con los grupos de control.

Conclusiones: El estudio concluyó que la administración del extracto etanólico de hoja de Moringa oleifera incrementó la producción de sangre, tiene altas propiedades antioxidantes y redujo la expresión de la vía del canal de Gardos. Estos son factores importantes en el manejo de la enfermedad de células falciformes y MO podría ser un candidato de interés en el desarrollo de fármacos.

Palabras Clave: antidrepanocítica; antioxidante; canal de Gardos; expresión génica; Moringa oleifera.


Citation Format: Cyril-Olutayo MC, Omotuyi IO (2022) Moringa oleifera extract regulates the expression of some sickle cell related genes in normal Wistar rats. J Pharm Pharmacogn Res 10(5): 837–846.https://doi.org/10.56499/jppres22.1389_10.5.837

Adejumo OE, Kolapo AL, Akintomiwa AO (2012) Moringa oleifera Lam. (Moringaceae) grown in Nigeria: In vitro antisickling activity on deoxygenated erythrocyte cells. J Pharm Bioallied Sci 4(2): 118-122.

Agoreyo FO, Nwanze N (2010) Plasma sodium and potassium changes in sickle cell patients. Int J Genet Mol Biol 2(2): 14-19.

Al Balushi H, Dufu K, Rees DC, Brewin JN, Hannemann A, Oksenberg D, Lu DC-Y, Gibson JS (2019) The effect of the antisickling compound GBT 1118 on the permeability of red blood cells from patients with sickle cell anemia. Physiol Rep 7(6): e14027.

Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132(1): 108-113.

Ashafa AO, Orekoya LO, Yakubu MT (2012) Toxicity profile of ethanolic extract of Azadirachta indica stem bark in male Wistar rats. Asian Pac J Trop Biomed 2: 811-817

Aziz MA, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R (2018) Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. J Ethnobiol Ethnomed 14(1): 2.

Belcher JD, Beckman JD, Balla G, Balla J, Vercellotti G (2010) Heme degradation and vascular injury. Antioxid Redox Signal 12(2): 233-248

Brown FC, Conway A J, Cerruti L, Collinge JE, McLean C, Wiley JS, Curtis DJ (2015) Activation of the erythroid K-Cl cotransporter Kcc1 enhances sickle cell disease pathology in a humanized mouse model. Blood 126(26): 2863-2870.

Brugnara C (2018) Sickle cell dehydration: Pathophysiology and therapeutic applications. Clin Hemorheol Microcirc 68(2-3): 187–204.

Brugnara C, Bunn HF, Tosteson DC (1986) Regulation of erythrocyte cation and water content in sickle cell anemia. Science 232(4748): 388-390.

Brugnara C, de Franceschi L, Alper SL (1993) Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J Clin Invest 92(1): 520-526.

Casadevall N (1995) Cellular mechanism of resistance to erythropoietin. Nephrol Dial Transplant 10: 27-30.

Cernaro V, Coppolino G, Visconti L, Rivoli L, Lacquaniti A, Santoro D, Buemi A, Loddo S, Buemi M (2019) Erythropoiesis and chronic kidney disease–related anemia: From physiology to new therapeutic advancements. Med Res Rev 39(2): 427-460.

Chirico EN, Pialoux V (2012) Review role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life 64(1):72-80.

Cho CS, Kato GJ, Yang SH, Bae SW, Lee JS, Gladwin MT, Rhee SG (2010) Hydroxyurea-induced expression of glutathione peroxidase 1 in red blood cells of individuals with sickle cell anemia. Antioxid Redox Signal 13: 1–11

Crable SC, Hammond SM, Papes R, Rettig RK, Zhou GP, Gallagher PG, Joiner CH, Anderson KP (2005) Multiple isoforms of the KC1 cotransporter are expressed in sickle and normal erythroid cells. Exp Hematol 33: 624-631.

Cyril-Olutayo MC, Agbedahunsi JM, Akinola NO (2018) In vitro evaluation of Moringa oleifera leaf extracts used in managing sickle cell patients in South West Nigeria. Nig J Pharm Res 14(1): 69-79.

Dolznig H, Bartunek P, Nasmyth K, Mullner EW, Beug H (1995) Terminal differentiation of normal chicken erythroid progenitors: Shortening of G~ 1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth Differ 6(11): 1341-1352.

Eaton WA, Hofrichter J (1990) Sickle cell hemoglobin polymerization. Adv Protein Chem 40: 63-279.

Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL (2013) Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp 73: e50166.

Gallagher PG (2017) Disorders of erythrocyte hydration. Blood 130(25): 2699-2708.

Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85(2): 423-493.

Ghafari S, Tavakoli Z, Shirooyeh P, Meybodi RN, Behmanesh E, Mokaberinejad R, Tansaz M, Fahimi S (2018) The herbal medicine proposed by Iranian Traditional Medicine (Persian Medicine) for treatment of primary dysmenorrhea: A review. Tradit Integr Med 3(1): 30-42.

Glader BE, Sullivan DW (1979) Erythrocyte disorders leading to potassium loss and cellular dehydration. Prog Clin Biol Res 30: 503-513.

Glogowska E, Gallagher PG (2015) Disorders of erythrocyte volume homeostasis. Int J Lab Haematol 37: 85-91.

Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A (2003) The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Proc Natl Acad Sci USA 100: 7366-7371.

Iuchi Y (2012) Anemia Caused by Oxidative Stress. In Anemia, Dr. Donald Silverberg (Ed.) InTech, Available from: http://www.intechopen.com/books/anemia/anemia-caused-by-oxidative-stress.

Joiner CH (1993) Cation transport and volume regulation in sickle red blood cells. Am J Physiol 264(2 Pt 1): C251-C270.

Kennedy JN, Dioka CE, Ifeanyichukwu M, Augustine I (2015) Cytokine expression in homozygous sickle cell anaemia. J Krishna Inst Med Sci Univ 4(1): 34-37.

Kimmons J, Gillespie C, Seymour J, Serdula M, Blanck HM (2009) Fruit and vegetable intake among adolescents and adults in the United States: percentage meeting individualized recommendations. Medscape J Med 11(1): 26.

Lew VL, Etzion Z, Bookchin RM (2002) Dehydration response of sickle cells to sickling-induced Ca (++) permeabilization. Blood 99: 2578–2585.

Lew VL, Ortiz OE, Bookchin RM (1997) Stochastic nature and red cell population distribution of the sickling-induced Ca2+ permeability. J Clin Invest99: 2727–2735.

Maher AD, Kuchel PW (2003) The Gardos channel: a review of the Ca2+-activated K+ channel in human erythrocytes. Int J Biochem Cell Biol 35(8): 1182-1197.

Manganelli G, Fico A, Martini G, Filosa S (2010) Discussion on pharmacogenetic interaction in G6PD deficiency and methods to identify potential hemolytic drugs. Cardiovasc Hematol Disord Drug Targets10: 143-150.

Morris CR, Morris SM Jr, Hagar W, Warmerdam JV, Claster S, Kepka-Lenhart D, Machado L, Kuypers FA, Vichinsky EP (2003) Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease? Am J Respir Crit Care Med 168:63-69.

Nnodim Jk, Udujih BU, Nwaokoro JC, Uche U, Onah C (2015) Alterations of homocysteine in sickle cell anaemia. J Med Biol Sci Res 1(4): 44-46

Olmos G, Muñoz‐Félix JM, Mora I, Müller AG, Ruiz‐Torres MP, López‐Novoa JM, Rodríguez‐Puyol D (2018) Impaired erythropoietin synthesis in chronic kidney disease is caused by alterations in extracellular matrix composition. J Cell Mol Med 22(1): 302-314.

Olsson MG, Centlow M, Rutardóttir S, Stenfors I, Larsson J, Hosseini-Maaf B, Olsson ML, Hansson SR, Åkerström B (2010) Increased levels of cell-free hemoglobin, oxidation markers, and the antioxidative heme scavenger α1-microglobulin in preeclampsia. Free Rad Biol Med 48(2): 284-291.

Pankaj PP, Varma MC (2013) Potential role of Spirulina platensis in maintaining blood parameters in alloxan induced diabetic mice. Int J Pharm Pharmaceut Sci 5: 450-456.

Peralta IN, Cogoi L, Filip R, Anesini C (2013) Prevention of hydrogen peroxide‐induced red blood cells lysis by Ilex paraguariensis aqueous extract: participation of phenolic and xanthine compounds. Phytother Res 27(2): 192-198.

Prasartkaew S, Bunyaratvej A, Fucharoen S (1988) Oxidative stress and antioxidant enzymes in hemoglobin H disease. BDOAS 23(5A): 193–198.

Price EA, Schrier SL (2008) Anemia in the elderly: introduction. Semin Hematol 45(4): 207-209.

Randle SJ, Nelson DE, Patel SP, Laman H (2015) Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol 237(2): 263-272.

Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9): 785.

Roth EF (1981) Ph dependency of potassium efflux from sickled red-cells. Am J Hematol 11: 19.

Sherr CJ, Sicinski P (2018) The D-type cyclins: a historical perspective. In: Hinds PW, Brown NE (eds.), D-type Cyclins and Cancer. Cham: Springer; pp. 1–26.

Stocks J, Offerman EL, Modell CB, Dormandy TL (1972) The susceptibility to autoxidation of human red cell lipids in health and disease. Br J Haematol 23(6):713-724.

Townes TM, McCune SL (1999) Anti-sickling hemoglobin. U.S. Patent No. 5,877,288. Washington, DC: U.S. Patent and Trademark Office.

Weiss SJ (1980) The role of superoxide destruction of erythrocyte targets by human neutrophils. J Biol Chem 255: 9912–9917.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Syzygium polyanthum bioactive compounds in polycystic ovary syndrome

J. Pharm. Pharmacogn. Res., vol. 10, no. 4, pp. 725-736, July-August 2022.

DOI: https://doi.org/10.56499/jppres22.1408_10.4.725

Original Article

Anti-inflammatory and antioxidant potential of Syzygium polyanthum (Wight) Walp. bioactive compounds in polycystic ovary syndrome: An in silico study

[Potencial anti-inflamatorio y antioxidante de compuestos bioactivos de Syzygium polyanthum (Wight) Walp. en el síndrome de ovario poliquístico: Un estudio in silico]

Renny Aditya1,4, Budi Santoso2*, Widjiati Widjiati3

1Doctoral Program of Medical Science, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia.

2Department of Obstetrics and Gynecology, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia.

3Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Airlangga, Surabaya, Indonesia.

4Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia.

*E-mail: budi.santoso@fk.unair.ac.id


Context: Polycystic ovary syndrome (PCOS) is significantly associated with inflammation and oxidative stress. Syzygium polyanthum is a plant rich in pharmacological properties. Aims: To evaluate the anti-inflammation and antioxidant potential of S. polyanthum bioactive compounds using in silico approach.

Methods: The S. polyanthum was extracted using the ultrasound-assisted extraction (UAE) method, and the bioactive compounds were screened using Liquid Chromatography–High Resolution Mass Spectrometry (LC-HRMS) analysis. This study predicted the biological activity of S. polyanthum compounds using PASS Online server. Before docking, we analyzed the protein-protein interactions (PPIs) network of TNFα, NF-kB, SOD, and KEAP1. The molecular docking was done using Autodock Vina in PyRx software and visualized using Discovery Studio. Probability to be active (Pa) was determined.

Results: The bioactive compounds found in S. polyanthum and used in this study were deoxyphomalone, NCGC00169066-01, and phloretin with retention times [min] of 0.886, 0.907, and 8.323, respectively. The predicted biological activity of compounds and controls were anti-inflammatory, immunosuppressant, TNF expression inhibitor, immunomodulatory and HIF1α expression inhibitor (Pa>0.5 for all S. polyanthum compounds and Pa<0.5 for SPD304, MG-132, and MDF). Based on PPIs network analysis, TNFα, NF-kB, SOD, and KEAP1 are associated. The molecular docking analysis showed that deoxyphomalone, NCGC00169066-01, and phloretin had inhibition potential against TNFα and NF-kB, and activation potential against SOD, due to several residues involved in the interaction of compounds-protein was the same as the interaction of inhibitor (SPD-304 and MG-132) and activator (gallic acid) control against the protein. The residues may have the same inhibition or activation mechanism as the control. However, S. polyanthum bioactive compounds may still have inhibition potential against KEAP1 through Ala548 residue that is also involved in the interaction of DMF-KEAP1.

Conclusions: The bioactive compounds of S. polyanthum showed anti-inflammation and antioxidant potential, which may have a good effect in the treatment of PCOS, yet still need to be confirmed in vitro or in vivo research.

Keywords: antioxidant; inflammation; molecular docking; polycystic ovary syndrome; Syzygium polyanthum.


Contexto: El síndrome de ovario poliquístico (SOP) está significativamente asociado con la inflamación y el estrés oxidativo. Syzygium polyanthum es una planta rica en propiedades farmacológicas. Objetivos: Evaluar el potencial anti-inflamatorio y antioxidante de los compuestos bioactivos de S. polyanthum utilizando un enfoque in silico.

Métodos: S. polyanthum se extrajo mediante el método de extracción asistida por ultrasonido (UAE), y los compuestos bioactivos se seleccionaron mediante análisis de cromatografía líquida-espectrometría de masas de alta resolución (LC-HRMS). Este estudio predijo la actividad biológica de los compuestos de S. polyanthum utilizando el servidor PASS Online. Antes del acoplamiento, analizamos la red de interacciones proteína-proteína (PPI) de TNFα, NF-kB, SOD y KEAP1. El acoplamiento molecular se realizó con Autodock Vina en el software PyRx y se visualizó con Discovery Studio. Se determinó la probabilidad de estar activo (Pa).

Resultados: Los compuestos bioactivos encontrados en S. polyanthum y utilizados en este estudio fueron desoxifomalona, ​​NCGC00169066-01 y floretina con tiempos de retención [min] de 0,886; 0,907 y 8,323, respectivamente. La actividad biológica predicha de los compuestos y controles fue anti-inflamatoria, inmunosupresora, inhibidora de la expresión de TNF, inmunomoduladora e inhibidora de la expresión de HIF1α (Pa>0,5 para todos los compuestos de S. polyanthum y Pa<0,5 para SPD304, MG-132 y MDF). Según el análisis de red de PPI, se asocian TNFα, NF-kB, SOD y KEAP1. El análisis de acoplamiento molecular mostró que la desoxifomalona, ​​NCGC00169066-01 y la floretina tenían potencial de inhibición contra TNFα y NF-kB, y potencial de activación contra SOD, debido a que varios residuos involucrados en la interacción de compuestos-proteína eran los mismos que la interacción del inhibidor (SPD-304 y MG-132) y activador (ácido gálico) controlan contra la proteína. Los residuos pueden tener el mismo mecanismo de inhibición o activación que el control. Sin embargo, los compuestos bioactivos de S. polyanthum aún pueden tener un potencial de inhibición contra KEAP1 a través del residuo Ala548 que también está involucrado en la interacción de DMF-KEAP1.

Conclusiones: Los compuestos bioactivos de S. polyanthum mostraron potencial anti-inflamatorio y antioxidante, lo que puede tener un buen efecto en el tratamiento del SOP, pero aún debe confirmarse en investigaciones in vitro o in vivo.

Palabras Clave: acoplamiento molecular; antioxidante; inflamación; síndrome de ovario poliquistico; Syzygium polyanthum.

Citation Format: Aditya R; Santoso B; Widjiati W (2022) Anti-inflammatory and antioxidant potential of Syzygium polyanthum (Wight) Walp. bioactive compounds in polycystic ovary syndrome: An in silico study. J Pharm Pharmacogn Res 10(4): 725–736. https://doi.org/10.56499/jppres22.1408_10.4.725

Amini L, Tehranian N, Movahedin M, Tehrani FR, Ziaee S (2015) Antioxidants and management of polycystic ovary syndrome in Iran: A systematic review of clinical trials.  Iran J Reprod Med 13(1): 1-8.

Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS (2016) Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016: 5276130.

Gao L, Gu Y, Yin X (2016) High serum tumor necrosis factor-alpha levels in women with polycystic ovary syndrome: a meta-analysis. PloS One 11(10): e0164021

González F (2012) Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 77(4): 300-305.

Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L (2019) Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA reductase inhibitory activity. Heliyon 5(4): e01485.

He Z, Wang Y, Zhuan L, Li Y, Tang ZO, Wu Z, Ma Y (2021) MIF-mediated NF-κB signaling pathway regulates the pathogenesis of polycystic ovary syndrome in rats. Cytokine 146: 155632.

Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Garcia Rudaz C, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA (2017) An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm Res Paediatr 88: 371-395.

Ismail A, Ahmad WANW (2019) Syzygium polyanthum (Wight) Walp: A potential phytomedicine. Pharmacogn J 11(2): 429-438.

Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12(1): 49-62.

Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS, Gloriozova TA, Filimonov DA, Sastry NG, Poroikov VV (2018) CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One 13(1): e0191838.

Li M, Huang W, Jie F, Wang M, Zhong Y, Chen Q, Lu B (2019) Discovery of Keap1− Nrf2 small− molecule inhibitors from phytochemicals based on molecular docking. Food Chem Toxicol 133: 110758.

Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2: 17023.

Ma B, Lucas B, Capacci A, Lin EYS, Jones JH, Dechantsreiter M, Richter K (2020) Design, synthesis and identification of novel, orally bioavailable non-covalent Nrf2 activators. Bioorg Med Chem Lett 30(4): 126852.

Mascret A, Mouhsine H, Attia G, Cabrera D, Benchekroun M, Gizzi P, Zerrouki C, Fourati N, Zagury JF, Veitía MS, Port M (2021) New contributions to the drug profile of TNFα inhibitor SPD304: Affinity, selectivity and ADMET considerations. Eur J Pharmacol 907: 174285.

Mohammadi M (2019) Oxidative stress and polycystic ovary syndrome: a brief review. Int J Prev Med 10: 86.

Nafisah W, Pinanti HN, Christina YI, Rifa’i M, Djati MS (2021) Computational biological activity and pharmacological properties analysis for anti-cancer Cyperus rotundus bioactive compounds. AIP Conf Proc 2353: 030118.

Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4): 518-528.

Pandey PK, Ahmed B, Khan HA, Bala M, Prasad J (2019) In silico molecular docking and comparative in-vitro analysis of ethyl 3, 4, 5-trihydroxybenzoate and its derivative isolated from Hippophae rhamnoides leaves as free radical scavenger and anti-inflammatory compound. Pharmacogn Mag 15(64): 313.

Prabhu YD, Borthakur A, Subeka AG, Vellingiri B, Gopalakrishnan AV (2021) Increased pro-inflammatory cytokines in ovary and effect of γ-linolenic acid on adipose tissue inflammation in a polycystic ovary syndrome model. J of Reprod Immunol 146: 103345.

Rani R, Hajam YA, Kumar R, Bhat RA, Rai S, Rather MA (2022) A landscape analysis of the potential role of polyphenols for the treatment of polycystic ovarian syndrome  (PCOS). Phytomedicine Plus 2(1): 100161.

Regidor PA, Mueller A, Sailer M, Gonzalez Santos F, Rizo JM, Moreno Egea F (2020) Chronic inflammation in PCOS: The potential benefits of specialized pro-resolving lipid mediators (SPMs) in the improvement of the resolutive response. Int J Mol Sci 22(1): 384.

Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37(5): 467-520.

Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, Meczekalski B (2021) Chronic low grade inflammation in pathogenesis of pcos. Int J Mol Sci 22(7): 3789.

Sever MJ, Janež A, Dolžan V (2019) Interplay between oxidative stress and chronic inflammation in PCOS: The role of genetic variability in PCOS risk and treatment responses. In (Ed.), Polycystic Ovarian Syndrome. IntechOpen. https://doi.org/10.5772/ intechopen.88698.

Shao Y, Cheng Z, Li X, Chernaya V, Wang H, Yang XF (2014) Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction-a novel mechanism for maintaining vascular function. J Hematol Oncol 7(1): 80.

Sulaiman MA, Al-Farsi YM, Al-Khaduri MM, Saleh J, Waly MI (2018) Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int J Womens Health 10: 763-771.

Suzuki K, Tominaga T, Ruhee RT, Ma S (2020) Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress. Antioxidants 9(5): 401.

Tosatti JAG, Sóter MO, Ferreira CN, Silva IFO, Cândido AL, Sousa MO, Reis FM, Gomes KB (2020) The hallmark of pro-and anti-inflammatory cytokine ratios in women with polycystic ovary syndrome. Cytokine 134: 155187.

Uçkan K, Demir H, Turan K, Sarıkaya E, Demir C (2022) Role of oxidative stress in obese and nonobese PCOS patients. Int J Clin Pract 2022: 4579831.

Victor VM, Rovira-Llopis S, Bañuls C, Diaz-Morales N, Martinez de Marañon A, Rios-Navarro C, Alvarez A, Gomez M, Rocha M, Hernández-Mijares A (2016) Insulin resistance in PCOS patients enhances oxidative stress and leukocyte adhesion: Role of myeloperoxidase. PLoS One 11(3): e0151960.

Wang Y, Chen Y, Zhang X, Lu Y, Chen H (2020) New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Food 75: 104248

Witchel SF, Oberfield SE, Peña AS (2019) Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc 3(8): 1545-1573.

Zhang W, Xu W, Chen W, Zhou Q (2018) Interplay of autophagy inducer rapamycin and proteasome inhibitor MG132 in reduction of foam cell formation and inflammatory cytokine expression. Cell Transplant 27(8): 1235-1248.

Zuo T, Zhu M, Xu W (2016) Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev 2016: 8589318.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Phytochemical and antioxidant analysis of Ecuadorian’s Malva

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 551-561, May-June 2022.

DOI: https://doi.org/10.56499/jppres22.1342_10.3.551

Original Article

Phytochemical composition and antioxidant capacity of the aqueous extracts of Malva sylvestris L. and Malva pseudolavatera Webb & Berthel.

[Composición fitoquímica y capacidad antioxidante de los extractos acuosos de Malva sylvestris L. y Malva pseudolavatera Webb & Berthel.]

Glenda M. Sarmiento Tomala1*, Yamilet I. Gutiérrez Gaitén2, René Delgado Hernández3, Zoraida del C. Burbano Gómez1, Pilar A. Soledispa Cañarte1, Nicole D. Jaramillo Sarmiento4, Leonardo A. Vargas Prias5

1Faculty of Chemical Sciences “Salvador Allende”. University of Guayaquil. Guayaquil, Ecuador

2Department of Pharmacy. Institute of Pharmacy and Food. University of Havana. Havana, Cuba.

3Center for Research and Biological Evaluations. Institute of Pharmacy and Food. University of Havana. Havana, Cuba.

4Ecuadorian Consortium of Telecommunications S.A (CONECEL). Ecuador.

5National Telecommunications Corporation, Public Company. Ecuador.

*E-mail: glenda.sarmientot@ug.edu.ec


Context: Malva spp. have been widely used in the world as traditional remedies. In Ecuadorian markers Malva sylvestris and Malva pseudolavatera are the species most commercialized. However, the scientific information about M. pseudolavatera is little.

Aims: To determine the chemical composition and antioxidant capacity of the aqueous extracts of the leaves of both species.

Methods: Aqueous extracts were partitioned with butanol and the fractions obtained were analyzed by GC/MS. Total extracts were evaluated as antioxidants using FRAP, DPPH and ABTS assays.

Results: Differences in the chemical composition were found between the extracts. Both extracts showed the presence of polysaccharides, phenolic acids and fatty acids, but in M. sylvestris were identified polyols, which there was not observed in M. pseudolavatera. The aqueous extracts showed free radical scavenging and ferric reducing power capacities in vitro assays, being M. sylvestris the most promissory antioxidant, possibly due to the presence of polyols in the extract. In the present research were reported 39 phytochemical compounds by first time for the specie M. pseudolavatera.

Conclusions: Aqueous extracts of the leaves of M. sylvestris and M. pseudolavatera showed antioxidant capacity associated with the presence of phenolic acids, polysaccharides and flavonoids in the extracts.

Keywords: antioxidant; gas chromatography; Malva pseudolavatera; Malva sylvestris; phytochemicals.

This image has an empty alt attribute; its file name is jppres_pdf_free.png


Contexto: Las especies de Malva son muy empleadas mundialmente como remedios tradicionales. En los mercados ecuatorianos se comercializa mayoritariamente las especies Malva sylvestris y Malva pseudolavatera, sin embargo, sobre esta última especie la información científica es escasa.

Objetivos: Determinar la composición química y capacidad antioxidante de los extractos acuosos de las hojas de ambas especies.

Métodos: Los extractos acuosos fueron particionados con butanol para posterior análisis por CG/EM. La capacidad antioxidante de los extractos totales fue evaluada mediante los ensayos de FRAP, DPPH y ABTS.

Resultados: Se encontraron diferencias en la composición química de los extractos. En ambas especies se observó la presencia de polisácaridos, ácidos fenólicos y ácidos grasos; sin embargo, en M. sylvestris se identificaron polioles que no fueron observados en M. pseudolavatera. Los extractos acuosos mostraron capacidad secuestradora de radicales y poder reductor del hierro en los ensayos in vitro realizados. M. sylvestris resultó ser la especie más promisoria como antioxidante, probablemente asociado a la presencia de polioles. En el estudio se reportaron, por primera vez, 39 compuestos químicos para la especie M. pseudolavatera.

Conclusiones: Los extractos acuosos de las hojas de M. sylvestris y M. pseudolavatera mostraron capacidad antioxidante asociada con la presencia de ácidos fenólicos, polisacáridos y flavonoides en los extractos.

Palabras Clave: antioxidante; cromatografía de gases; fitoquímica; Malva pseudolavatera; Malva sylvestris.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Citation Format: Sarmiento GM, Gutiérrez YI, Delgado R, Burbano ZC, Soledispa PA, Jaramillo ND, Vargas LA (2022) Phytochemical composition and antioxidant capacity of the aqueous extracts of Malva sylvestris L. and Malva pseudolavatera Webb & Berthel. J Pharm Pharmacogn Res 10(3): 551–561. https://doi.org/10.56499/jppres22.1342_10.3.551

Acosta ME, Ladio AH, Vignale ND (2017) Plantas medicinales comercializadas en la ciudad de San Salvador de Jujuy (Argentina) y su calidad botánica. Bol Latinoam Caribe Plantas Med y Aromát 16(1): 34-52.

Azab A (2017) Malva: Food, medicine and chemistry. Eur Chem Bull 6(7): 295-320.

Bandara AR, Rapior S, Mortimer PE, Kakumyan P, Hyde KD, Xu J (2019) A review of the polysaccharide, protein and selected nutrient content of Auricularia, and their potential pharmacological value. Mycosphere J 10(1): 579-607.

Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1): 70-76.

Bernardini S, Tiezzi A, Laghezza V, Ovidi E (2018) Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res 32(16): 1926-1950.

Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1): 25-30.

Bussmann RW, Sharon D (2016) Plantas medicinales de los Andes y la Amazonía-La flora mágica y medicinal del Norte del Perú. Centro William L. Brown – Jardin Botánico de Missouri. Perú: GRAFICART SRL., pp. 292.

Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in antioxidant-rich US foods. J Food Compos Anal 24: 1043-1048.

Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4): 412-422.

Li Y, Kong D, Fu Y, Sussman MR, Wu H (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148: 80-89.

Miranda M, Cuéllar A (2000) Manual de prácticas de laboratorio. Farmacognosia y productos naturales. La Habana: Ciencia y Técnica.

Miranda M, Sarmiento GM, Chóez IA, Guitiérrez YI, Delgado R, Carrilo G (2020) Pharmacognostic, chemical and mucolytic activity study of Malva pseudolavatera Webb & Berthel. and Malva sylvestris L. (Malvaceae) leaf extracts, grown in Ecuador. Biodiversitas 21(10): 4755-4763.

Paloschi de Oliveira L, Bovini MG, da Costa Bortoluzzi RL, Boff MIC, Boff P (2019) Species of Malva L. (Malvaceae) cultivated in the western of Santa Catarina state and conformity with species marketed as medicinal plants in southern Brazil. J Agric Sci 11: 171-180.

Patra JK, Shukla AC, Das G (Eds.) (2020) Advances in Pharmaceutical Biotechnology: Recent Progress and Future Applications. doi:10.1007/978-981-15-2195-9.

Rashmi HB, Negi PS (2020) Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res Int 136: 109298.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231-1237.

Rivera-Mondragón A, Ortíz OO, Bijttebier S, Vlietinck A, Apers S, Pieters L, Caballero-George C (2017) Selection of chemical markers for the quality control of medicinal plants of the genus Cecropia. Pharm Biol 55(1): 1500-1512.

Sarmiento GM, Miranda M, Chóez IA, Gutiérrez YI, Delgado R, Carrillo G (2020b) Pharmacognostic, chemical and mucolytic activity study of Malva pseudolavatera Webb & Berthel. and Malva sylvestris L. (Malvaceae) leaf extracts, grown in Ecuador. Biodiversitas 21(10): 4755-4763.

Sarmiento GM, Miranda M, Gutiérrez YI, Delgado R (2020c) Chemical study, antioxidant capacity, and hypoglycemic activity of Malva pseudolavatera Webb & Berthel and Malva sylvestris L. (Malvaceae), grown in Ecuador. Trop J Nat Prod Res 4(12): 1064-1071.

Sarmiento GM, Santos E, Miranda M, Pacheco R, Scull R, Gutiérrez Y, Delgado R (2020a) Molecular barcode and morphology analysis of Malva pseudolavatera Webb & Berthel and Malva sylvestris L. from Ecuador. Biodiversitas 21(8): 3554-3561.

Sharifi‐Rad J, Melgar‐Lalanne G, Hernández‐Álvarez AJ, Taheri Y, Shaheen S, Kregiel D, Martins N. (2020) Malva species: Insights on its chemical composition towards pharmacological applications. Phytother Res 34(3): 546-567.

Taylor JLS, Rabe T, McGaw LJ, Jäger AK, Van Staden J (2001) Towards the scientific validation of traditional medicinal plants. Plant Growth Regul 34(1): 23-37.

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6): 1578-1583.

Tinitana F, Rios M, Romero-Benavides JC, de la Cruz Rot M, Pardo-de-Santayana M (2016) Medicinal plants sold at traditional markets in southern Ecuador. J Ethnobiol Ethnomed 12: 29.

Tsai CE, Lin LH (2019) DPPH scavenging capacity of extracts from Camellia seed dregs using polyol compounds as solvents. Heliyon 5(8): e02315.

Villanueva-Solis I, Arreguín-Sánchez ML, Quiroz-García DL, Fernández-Nava R (2020) Medicinal plants sold in the 8 july market and a traditional market, both located in the center of Actopan, Hidalgo, Mexico. Polibotánica 50: 209-243.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Evaluación farmacognóstica y antioxidante de zarzaparrilla

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 387-396, May-June 2022.

DOI: https://doi.org/10.56499/jppres21.1303_10.3.387

Original Article

Estudio farmacognóstico y capacidad antioxidante de la especie Smilax purhampuy Ruiz que crece en Ecuador

[Pharmacognostic study and antioxidant capacity of the Smilax purhampuy Ruiz species that grows in Ecuador]

Pilar A. Soledispa Cañarte1*, Raisa Mangas Marín2, Viviana García Mir3, Migdalia Miranda Martínez4†, Carolina F. Matute Jimbo1, Arlu I. Tello Mayorga1

1Departamento de Farmacia. Facultad de Ciencias Químicas. Universidad de Guayaquil. Ciudadela Universitaria “Salvador Allende”. Ave. Kennedy S/N y Av. Delta. Guayaquil, Ecuador.

2Departamento de Farmacia, Instituto de Farmacia y Alimentos, Universidad de La Habana, La Coronela, La Lisa, Habana 13600, Cuba.

3Universidad Técnica de Machala. Av. Panamericana Km 5 1/2 Vía a Pasaje. Machala. Ecuador.

4Departamento de Ciencias Químicas y Ambientales. Facultad de Ciencias Naturales y Matemáticas. Escuela Superior Politécnica del Litoral, ESPOL. Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863. Guayaquil, Ecuador.

*E-mail: pilar.soledispac@ug.edu.ec


Context: Smilax purhampuy Ruiz (sarsaparilla) is traditionally used to treat various ailments such as sudorific, diuretic, purifying, hypoglycemic, arthritis, dermatological infections, intestinal, stomach and prostate inflammations, vaginitis and viral diseases. However, the investigations that justify the use of this species are scarce.

Aims: To evaluate pharmacognostically and chemically leaves and rhizomes of sarsaparilla, and their antioxidant capacity.

Methods: The pharmacognostic analysis of both plant organs was carried out from the determination of their physicochemical parameters, the phytochemical screening, the quantification of phenols and total flavonoids and the evaluation of the antioxidant capacity by three in vitro methods (FRAP, DPPH and ABTS).

Results: The leaves and rhizomes of the species showed a similar chemical composition, although some metabolites seem to be found at different concentrations. Although the two organs studied presented antioxidant activity, it was higher in the leaves, which could be associated with the higher content of phenols and flavonoids.

Conclusions: The results obtained made it possible to report the quality parameters for the first time and suggest the chemical composition of both organs, showing some differences between them. The evaluation of the antioxidant capacity demonstrated the potential of the species to be used as a natural remedy.

Keywords: antioxidant; leaves; phenolic compounds; rhizomes; sarsaparilla.


Contexto: Smilax purhampuy Ruiz (zarzaparrilla) se usa tradicionalmente para tratar diversas dolencias como sudorífica, diurético, depurativa, hipoglucemiante, artritis, infecciones dermatológicas, inflamaciones intestinales, estomacales y de la próstata, vaginitis y enfermedades virales. Sin embargo, las investigaciones que justifiquen el empleo de esta especie son escasas.

Objetivos: Evaluar farmacognóstica y químicamente las hojas y rizomas de zarzaparrilla y su capacidad antioxidante.

Métodos: Se realizó el análisis farmacognóstico de ambos órganos vegetales a partir de la determinación de sus parámetros fisicoquímicos, el tamizaje fitoquímico, la cuantificación de fenoles y flavonoides totales y la evaluación de la capacidad antioxidante por tres métodos in vitro (FRAP, DPPH y ABTS).

Resultados: Las hojas y rizomas de la especie mostraron una composición química similar, aunque algunos metabolitos parecen encontrarse a diferentes concentraciones. Aunque los dos órganos estudiados presentaron actividad antioxidante, fue superior en las hojas, lo que pudiera asociarse al mayor contenido de fenoles y flavonoides.

Conclusiones: Los resultados obtenidos permitieron informar por primera vez los parámetros de calidad y sugerir la composición química de ambos órganos evidenciándose algunas diferencias entre ellos. La evaluación de la capacidad antioxidante demostró las potencialidades de la especie para ser utilizada como remedio natural.

Palabras Clave: diabetes mellitus; hiperglucemantioxidante; compuestos fenólicos; hojas; rizomas; zarzaparrilla.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Soledispa PA, Mangas R, García V, Miranda M, Matute CF, Tello AI (2022) Estudio farmacognóstico y capacidad antioxidante de la especie Smilax purhampuy Ruiz que crece en Ecuador. [Pharmacognostic study and antioxidant capacity of the Smilax purhampuy Ruiz species that grows in Ecuador]. J Pharm Pharmacogn Res 10(3): 387–396. https://doi.org/10.56499/jppres21.1303_10.3.387

Alvarez S, Hermosilla R, Piña R (2016) Tamizaje fitoquímico de extractos en diclorometano, etanol y agua de Smilax havanensis Jacq. (raíz de China). Rev Granma Ciencia 20: 1–10.

Ao C, Higa T, Khanh TD, Upadhyay A., Tawata S (2011) Antioxidant phenolic compounds from Smilax sebeana Miq. LWT-Food Sci Technol 44: 1681–1686.

Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73: 239–244.

Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239: 70–76.

Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25–30.

Cáceres A, Cruz SM, Martínez V, Gaitán I, Santizo A, Gattuso S, Gattuso M (2012) Ethnobotanical, pharmacognostical, pharmacological and phytochemical studies on Smilax domingensis in Guatemala. Rev Bras Farmacogn 22: 239–248.

Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10: 178–182.

Chen T, Li JX, Xu Q, Komatsu K (1999) A new flavanone isolated from rizhoma Smilacis glabrae, and the structural requirements of its derivatives for preventing immunological hepatocyte damage. Plant Med 65: 56–59.

Cheng YB, Zhang DM, Yu SS (2004) Chemical constituents of Smilax perfoliata. Acta Bot Sin 46: 618–620.

Chlopicka J, Pasko P, Gorinstein S, Jedryas A, Zagrodzki P (2012) Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT – Food Sci Technol 46: 548–555.

Commission Chinese Pharmacopoeia (2015) Pharmacopoeia of the People’s Republic of China. Peking: Chinese Medical Science and Technology Press.

Delgado G, Mesías D (2016) Identificación de los metabolitos secundarios de la raíz de zarzaparrilla (Smilax aspera), para la elaboración de una bebida (Bachelor’s thesis, Riobamba: Universidad Nacional de Chimborazo).

González Yaque J, Monan M, Cuéllar A, Armas TD, Gómez E, Dopico E (2017) Pharmacognostic and phytochemical studies of Smilax domingensis Willd. in Cuba. Am J Plant Sci 8: 1462–1470.

Gupta MP (1995) 270 plantas medicinales iberamericanas, 1a ed. Santa Fé de Bogotá, Colombia: CYTED-SECAB.

Hamid AA, Aiyelaagbe OO, Negi AS, Luqman S, Kaneez F, Bhukya B, Kumar BS (2017) Triterpenoids from the aerial parts of Smilax kraussiana as antitumor agents. Chem Nat Compd 53: 1192–1195.

Huang AC, Wilde A, Ebmeyer J, Skouroumounis GK, Taylor DK (2013) Examination of the phenolic profile and antioxidant activity of the leaves of the Australian native plant Smilax glyciphylla. J Nat Prod 76: 1930–1936.

Huft MJ (1994) Smilacaceae. In: Devidse G, Sousa M, Chater AO (eds), Flora Mesoamericana. Universidad Nacional Autónoma de México, México: Missouri Botanical Garden and The National History Museum, London, pp. 20–25.

Hunyadi A (2019) The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 39: 2505–2533.

Jeong CH, Jeong HR, Kwak JH, Kim JH, Choi GN, Kim DO, Lee U, Heo HJ (2013) Phenolic composition and in vitro antioxidant activities of Smilax china root. J Food Biochem 37: 98–107.

Jiang J, Xu Q (2003) Immunomodulatory activity of the aqueous extract from rhizome of Smilax glabra in the later phase of adjuvant-induced arthritis in rats. J Ethnopharmacol 85: 53–59.

Jiménez AE (2014) Determinación de componentes y capacidad antioxidante mediante GC/MS del extracto de zarzaparrilla (Smilax domingensis Willd) y elaboración de bebida de zarzaparrilla nutracéutica (Tesis, Universidad de Guayaquil. Facultad de Ingeniería Química).

JR Global del Perú S.A.C. (2011) Ficha Técnica-Zarzaparrilla. Available at http://www.inkaplus.com/media/web/ pdf/ Zarzaparrilla.pdf (accessed on 16 July 2021).

Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2002) Plant Systematics: A Phylogenetic Approach. 2nd edn. Sinauer Associates Inc., Sunderland, Massachusetts.

Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48: 412–422.

Khaligh P, Salehi P, Farimani MM, Ali-Asgari S, Esmaeili MA, Ebrahimi SN (2016) Bioactive compounds from Smilax excelsa L. J Iran Chem Soc 13: 1055–1059.

Laitonjam WS, Kongbrailatpam BD (2010) Studies on the chemical constituents and antioxidant activities of extracts from the roots of Smilax lanceaefolia Roxb. Nat Prod Res 24: 1168–1176.

Lou Z-C (1980) General Control Methods for Vegetable Drugs. Comparative Study of Methods Included in Thirteen Pharmacopoeias: A Proposals on Their Internacional Unification. Ginebra: WHO/PHARM/80.502.

Lü JM, Lin PH, Yao Q, Chen Ch (2010) Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med 14: 840–860.

MacDonald-Wicks LK, Wood LG, Garg ML (2016) Methodology for the determination of biological antioxidant capacity in vitro: A review. J Sci Food Agric 86: 2046–2056.

MacVean AL (2016) Diversidad, distribución e importancia Económica de Smilax (Smilacaceae) de Guatemala. In: Cano E (ed), Biodiversidad de Guatemala Vol 1. Guatemala: Universidad del Valle de Guatemala, pp. 163–173.

Marston A, Hostettmann K (2006) Developments in the application of counter-current chromatography to plant analysis. J Chromatogr A 1112: 181–194.

Memnune S, Hilal Y, Neva G, Bulent C, Zeynep E, Sezai E (2009) Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak J Pharm Sci 22: 102–106.

MINSALUD – Ministerio de Salud y Deportes. La Paz – Bolivia (2005) Norma para Medicamentos Naturales, Tradicionales y Homeopáticos. Serie Regulación Farmacéutica.

MINSAP (1992a). Norma Ramal de Salud Pública (NRSP) 309: “Droga Cruda. Métodos de ensayos”, La Habana, Cuba, pp. 1–7.

MINSAP (1992b). Norma Ramal de Salud Pública. (NSRP) 312: “Extractos fluidos y tinturas. Métodos de Ensayos”, La Habana, Cuba, pp. 1–5.

Miranda M, Cuéllar A (2001) Farmacognosia y productos naturales. 2da Edición, La Habana. Cuba: Editorial Félix Varela. pp. 135-145, 261–280.

Morais MI, Pinto MEA, Araújo SG, Castro AHF, Duarte-Almeida JM, Rosa LH, Rosa CA, Johann S, Rodrigues dos Santos Lima LA (2014) Antioxidant and antifungal activities of Smilax campestris Griseb. (Smilacaceae). Nat Prod Res 28: 1275–1279.

Ocampo RA (1994) Domesticación de plantas medicinales en Centro América. Colección Diversidad Biológica y Desarrollo Sustentable I. Especies Nativas. Informe Técnico 245. Proyecto Conservación para el Desarrollo Sostenible en América Central (Proyecto Olafo). Turrialba: CATIE.

Pourmorad F, Hosseinimehr S, Shahabimajd N (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol 5: 1142–1145.

Qadir A, Aqil M, Ali A, Ahmad FJ, Ahmad S, Arif M, Khan N (2020) GC-MS analysis of the methanolic extracts of Smilax china and Salix alba and their antioxidant activity. Turk J Chem 44: 352–363.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231–1237.

Rivas Pava MDP, Muñoz Lara DG, Ruiz Camayo MA, Fernández Trujillo LF, Muñoz Castro FA, Pérez Muñoz N (2017) Colección Mastozoológica del Museo de Historia Natural de la Universidad del Cauca. Universidad del Cauca. Juego de datos de registros: https://doi.org/10.15472/ciasei accessed via GBIF.org

Rugna A, Polo J, Evelson P, Gurni AA, Llesuy S, Wagner ML (2003) Antioxidant activity in rhizomes from Smilax campestris Griseb. Smilacaceae. Mol Med Chem 1: 21–25.

Salas-Coronado R, Hernández-Carlos B, Llaguno-Guilberto J, Santos-Sánchez NF (2017) Phenolic compounds in genus Smilax (Sarsaparilla) (Capítulo 9). In: In: Marcos Soto-Hernández, Mariana Palma-Tenango, Maria del Rosario Garcia-Mateos (eds), Phenolic Compounds—Natural Sources, Importance and Applications. IntechOpen, pp. 233-260.

Sun TT, Zhang DW, Han Y, Dong FY, Wang W (2012) Smilasides M and N, two new phenylpropanoid glycosides from Smilax riparia. J Asian Nat Prod Res 14(2), 165–170.

Téllez O (1996) Fascículo 11. Smilacaceae Vent. Flora del Valle de Tehuacán-Cuicatlán, Instituto de Biología, Universidad Nacional Autónoma de México, México D.F.

WHO – World Health Organization (1998) Quality control methods for medicinal plant materials. https://apps.who.int/iris/handle/10665/41986 (accessed Jul 7, 2021).

Xu J, Li X, Zhang P, Li ZL, Wang Y (2005) Antiinflammatory constituents from the roots of Smilax bockii Warb. Arch Pharm Res 4: 395–399.

Zhang CL, Feng SX, Wang Q, Wang P, Xu J, Chen T (2014) Flavonoids and phenolic compounds from Smilax scobinicaulis. Chem Nat Compd 50: 254–257.

Zubair M, Rizwan K, Rashid U, Saeed R, Saeed AA, Rasool N, Riaz M (2017) GC/MS profiling, in vitro antioxidant, antimicrobial and haemolytic activities of Smilax macrophylla leaves. Arab J Chem 10: S1460–S1468.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Volume 9, Suppl. 1 (MICPS 2021)

J Pharm Pharmacogn Res 9(Suppl. 1), (October) 2021

1st Makassar International Conference on Pharmaceutical Sciences

(MICPS 2021)

Empowering Natural Product in Drugs Discovery and Development

Faculty of Pharmacy Universitas Muslim Indonesia

Makassar, Indonesia

September 25-26, 2021

Conference Proceedings  [1.3 Mb]
Editing, design and realization: Gabino Garrido, Marisela Valdés, Xavier Garrido, Muammar Fawwaz, Aktsar Roskiana Ahmad
Editorial Scientific Council: Muammar Fawwaz, Aktsar Roskiana Ahmad, A. Emelda, Nurmaya Effendi

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Cytoprotective activity of Adelia ricinella

J Pharm Pharmacogn Res 9(6): 892-904, 2021.

Original article

Cytoprotective activity of extracts from Adelia ricinella L. aerial parts

[Actividad citoprotectora de extractos de las partes aéreas de Adelia ricinella L.]

Clara A. Berenguer-Rivas1, Onel Fong Lores2, Julio C. Escalona-Arranz1, Jorge de la Vega-Acosta2, Diana J. Arro-Díaz2, Frenkel Guisado-Bourzac3, Gabriel Llauradó-Maury4, Humberto J. Morris-Quevedo4*

1Department of Pharmacy, Faculty of Natural and Exact Sciences, Universidad de Oriente, Santiago de Cuba 5, CP 90500, Cuba.

2 Center of Toxicology and Biomedicine (TOXIMED), Medical University of Santiago de Cuba, Santiago de Cuba 4, CP 90400, Cuba.

3Laboratory of Genetic and Applied Genomics. School of Marine Sciences. Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

4Center of Studies for Industrial Biotechnology (CEBI), Universidad de Oriente, Santiago de Cuba 5, CP 90500, Cuba.

*E-mail: jquevedo@uo.edu.cu


Context: Several factors can affect the erythrocyte cell membrane integrity targeting important hematological alterations that can be avoided by the cytoprotective effect offered by some plant extracts.

Aims: To evaluate the cytoprotective activity of Adelia ricinella L. extracts on red blood cells (RBCs) membrane after hypotonic and oxidative treatments.

Methods: Total phenols and flavonoid contents were spectrophotometrically determined in three extracts: AR1 (ethanol 95%), AR2 (ethanol 50%), and AR3 (aqueous extract). Luteolin and apigenin were quantified using HPLC-DAD techniques. Hypotonic erythrocyte membrane stabilizing activity of plant extracts, their antioxidant protective effect on H2O2-induced cell damage, and cytotoxicity on Vero cells were explored. Control cells were treated with sodium diclofenac or ascorbic acid.

Results: AR2 extract showed the highest values of total phenols/flavonoids, as well as, for luteolin and apigenin with 207.5 and 1.86 µg/mL respectively. The extracts did not exert spontaneous hemolysis following the INVITOX protocol, presumably by the protective effect of high flavonoid content. A concentration-dependent pattern was observed on the hypotonic erythrocyte membrane stabilizing assay, in which both ethanol extracts but mainly AR1 (IC50 = 16.46 µg/mL) showed a significant activity with lower IC50 values than diclofenac-control group. On the other hand, AR2 (IC50 = 17.49 µg/mL) displayed the most potent cytoprotective effect on RBCs after H2O2-induced cell damage. Adelia ricinella extracts were not cytotoxic to mammalian Vero cells (IC50 > 256 μg/mL).

Conclusions: The study suggests that Adelia ricinella extracts can promote erythrocyte cytoprotection by protecting both membrane layers, thus preventing potential hematological alterations induced by oxidizing damage and probably, in inflammation-related diseases.

Keywords: Adelia ricinella; antioxidant; cytoprotection; flavonoids; red blood cells.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: Varios factores afectan la integridad de la membrana eritrocitiaria, provocando alteraciones hematológicas, que pueden evitarse mediante el efecto citoprotector de extractos vegetales.

Objetivos: Evaluar la actividad citoprotectora de extractos de Adelia ricinella L. sobre la membrana eritrocitaria luego de tratamientos hipotónicos y oxidativos.

Métodos: El contenido de fenoles y flavonoides totales se determinó espectrofotométricamente en tres extractos: AR1 (etanol 95%), AR2 (etanol 50%) y AR3 (acuoso); la luteolina y apigenina se estimaron mediante HPLC-DAD. Se evaluó el efecto estabilizador de los extractos en membranas sometidas a tratamiento hipotónico, la actividad antioxidante ante el daño inducido por H2O2, y la citotoxicidad en células Vero. El diclofenaco de sodio y el ácido ascórbico se emplearon como controles.

Resultados: AR2 mostró valores superiores de fenoles totales/flavonoides, y de luteolina y apigenina con 207,5 y 1,86 µg/mL, respectivamente. Los extractos no causaron hemólisis espontánea en el protocolo INVITOX, probablemente debido al efecto protector de los flavonoides. Se observó un comportamiento dependiente de la concentración en el ensayo de estabilización de la membrana en solución hipotónica, en el que ambos extractos etanólicos (principalmente AR1, IC50 = 16,46 µg/mL), evidenciaron una actividad significativa con valores de IC50 menores al control con diclofenaco. AR2 (IC50 = 17,49 µg/mL) mostró el efecto citoprotector más potente frente al daño inducido por H2O2. Los extractos no resultaron citotóxicos en células Vero (IC50 > 256 μg/mL).

Conclusiones: Los extractos de Adelia ricinella L. pueden promover la citoprotección eritrocitaria en ambas superficies, y así prevenir posibles alteraciones hematológicas inducidas por daño oxidativo y presumiblemente, por enfermedades inflamatorias.

Palabras Clave: Adelia ricinella; antioxidante; citoprotección; flavonoides; glóbulos rojos.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Berenguer CA, Fong O, Escalona JC, de la Vega J, Arro DJ, Guisado F, Llauradó G, Morris HJ (2021) Cytoprotective activity of extracts from Adelia ricinella L. aerial parts. J Pharm Pharmacogn Res 9(6): 892–904.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Pharmacological properties of Centaurea tougourensis

J Pharm Pharmacogn Res 9(6): 790-802, 2021.

Original article

In vitro assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea tougourensis Boiss. & Reut.

[Evaluación in vitro de las actividades antioxidantes, antiinflamatorias, neuroprotectoras y antimicrobianas de Centaurea tougourensis Boiss. & Reut.]

Mohamed Sabri Bensaad1,2, Saliha Dassamiour2*, Leila Hambaba2, Chawki Bensouici3, Hamada Haba4

1Laboratoire de Physio-Toxicologie, Pathologie Cellulaires et Moléculaires-Biomolécules (LPTPCMB), Département de Biologie des Organismes, Faculté des Sciences de la Nature et de la Vie, Université de Batna-2, Batna, Algeria.

2Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna-2, Batna, Algeria.

3Centre de Recherche en Biotechnologie, Ali Mendjli nouvelle ville UV 03, Constantine, Algeria.

4Laboratoire de Chimie et Chimie de l’Environnement (LCCE), Département de Chimie, Faculté des Sciences de la Matière, Université de Batna-1, Batna, Algeria.

*E-mail: s.dassamiour@univ-batna2.dz


Context: More than 500 Centaurea species compose the Asteraceae family, and most of the recent studies made on the species of this genus proved their pharmacological potential, especially to treat chronic illnesses.

Aims: To evaluate for the first time the antioxidant, anti-inflammatory, neuroprotective and anti-microbial properties of the n-butanol (n-BuOH) and ethyl acetate (EA) extracts of the aerial part of Centaurea tougourensis.

Methods: The antioxidant activity was determined by ABTS, galvinoxyl radical, phenanthroline, and reducing power assays, while the anti-inflammatory effects were assessed by heat-induced hemolysis and egg albumin denaturation assays. The neuroprotective activity was assessed against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and the anti-microbial activity by the agar disk diffusion method.

Results: Both extracts possess a great antioxidant capacity, but it was considered higher in the n-BuOH extract with respective IC50 values of 8.04 ± 0.21 μg/mL in ABTS assay and 4.25 ± 0.6 μg/mL in GOR assay, while the A0.50 values were 4.46 ± 0.55 μg/mL in phenanthroline assay and 11.16 ± 0.64 μg/mL in reducing power assay. The n-BuOH extract also showed a remarkable anti-inflammatory activity with an EC50 of 120.81 ± 0.2 μg/mL in egg albumin denaturation assay and 154.15 ± 0.14 μg/mL in heat-induced hemolysis assay. The neuroprotective activity of the n-BuOH extract was very strong in both AChE and BChE inhibitory assays with respective IC50 values of 9.8 ± 0.62 μg/mL and 173.53 ± 0.04 μg/mL. EA extract was more active on microbial strains.

Conclusions: These encouraging results showed once again the pharmacological potential of Centaurea species.

Keywords: anti-inflammatory; antimicrobial; antioxidant; Centaurea tougourensis; neuroprotective.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: Más de 500 especies de Centaurea componen la familia Asteraceae y la mayoría de los estudios de las especies de este género demostraron su potencial farmacológico, especialmente para el tratamiento de enfermedades crónicas.

Objetivos: Evaluar por primera vez las propiedades antioxidantes, antiinflamatorias, neuroprotectoras y antimicrobianas de los extractos de n-butanol (n-BuOH) y acetato de etilo (EA) de la parte aérea de Centaurea tougourensis.

Métodos: La actividad antioxidante se determinó mediante ensayos de ABTS, radical galvinoxilo, fenantrolina y poder reductor, mientras que los efectos antiinflamatorios se evaluaron mediante ensayos de hemólisis inducida por calor y desnaturalización de albúmina de huevo. La actividad neuroprotectora se evaluó frente a acetilcolinesterasa (AChE) y butirilcolinesterasa (BChE) y la actividad antimicrobiana mediante el método de difusión en disco de agar.

Resultados: Ambos extractos poseen un gran efecto antioxidante, pero se consideró más alto en el extracto de n-BuOH con valores de IC50 respectivos de 8,04 ± 0,21 μg/mL en el ensayo ABTS y 4,25 ± 0,6 μg/mL en el ensayo GOR, mientras que los valores de A0,50 fueron 4,46 ± 0,55 μg/mL en el ensayo de fenantrolina y 11,16 ± 0,64 μg/mL en el ensayo de potencia reductora. El extracto de n-BuOH mostró también una notable actividad antiinflamatoria con una CE50 de 120,81 ± 0,2 μg/mL en el ensayo de desnaturalización de albúmina de huevo y 154,15 ± 0,14 μg/mL en el ensayo de hemólisis inducida por calor. La neuroprotección del extracto de n-BuOH se manifestó mediante la actividad inhibidora sobre AChE y BChE, con valores de IC50 respectivos de 9,8 ± 0,62 μg/mL y 173,53 ± 0,04 μg mL. El extracto de EA fue más activo contra las cepas microbianas.

Conclusiones: Estos alentadores resultados demostraron una vez más el potencial farmacológico de la especie Centaurea.

Palabras Clave: anti-inflamatorio; antimicrobiano; antioxidante; Centaurea tougourensis; neuroprotector.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Bensaad MS, Dassamiour S, Hambaba L, Haba H (2021) In vitro assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea tougourensis Boiss. & Reut. J Pharm Pharmacogn Res 9(6): 790–802.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Gallic acid protects against cadmium toxicity

J Pharm Pharmacogn Res 9(5): 668-676, 2021.

Original article

Gallic acid protects against cadmium chloride-induced alterations in Wistar rats via the antioxidant defense mechanism

[El ácido gálico protege contra las alteraciones inducidas por el cloruro de cadmio en ratas Wistar a través del mecanismo de defensa antioxidante]

Oluwafemi Adeleke Ojo1,2*, Damilare Rotimi2, Ayomide Emmanuel Bright2, Omowumi Titilola Kayode3, Adebola Busola Ojo4, Omokolade Oluwaseyi Alejolowo1,2, Basiru Olaitan Ajiboye5,6, Olarewaju M Oluba1,2

1Landmark University SDG 03 (Good Health and Well Being Research Group), Nigeria.

2Department of Biochemistry, Landmark University, Omu-Aran, Nigeria.

3Biochemistry Unit, Department of Biological Sciences, Mountain Top University, Prayercity, Ogun State, Nigeria.

4Department of Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria.

5Department of Biochemistry, Federal University Oye Ekiti, Oye-Ekiti, Nigeria.

6Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Nigeria.

*E-mail: ojo.adeleke@lmu.edu.ng


Context: Cadmium has been considered as one of the most hazardous toxic compounds with harmfully effect on the health of organisms.

Aims: To evaluate the effects of gallic acid (GA) on the cadmium-induced liver and renal oxidative stress in Wistar rats.

Methods: Twenty Wistar rats were grouped into four (A–D) of five rats. Rats in Group A, B, C and D were administered distilled water, 5 mg/kg bw cadmium chloride (CdCl2), CdCl2 + GA concurrently and GA (20 mg/kg bw) respectively and administered for 14 days. Biochemical parameters such as antioxidant enzyme activities, urea, creatinine and myeloperoxidase activity were determined.

Results: In the urea, creatinine and MPO, there was a significant increase in the CdCl2 treated group. In the liver, the CdCl2 treated group reduced significantly the catalase activity and increased the reduced glutathione. The gallic acid group increased in the GSH level, SOD, and CAT activities and it also reduced significantly the MDA level. However, the co-administration of CdCl2 + GA had a considerably increase in the antioxidant enzymes. In the kidney, catalase activity and MDA level significantly decrease and increase respectively. The gallic acid also increases significantly the CAT and SOD activities while the MDA level was reduced. Co-administration of GA + CdCl2 had a substantial increase only in the SOD activity compared to the control.

Conclusions: This study indicates that gallic acid was able to protect the alteration induced by cadmium chloride in the rat kidney and liver.

Keywords: gallic acid; cadmium chloride; antioxidant; nephrotoxicity; hepatotoxicity.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: El cadmio ha sido considerado como uno de los compuestos tóxicos más peligrosos con efectos nocivos para la salud de los organismos.

Objetivos: Evaluar los efectos del ácido gálico (GA) sobre el estrés oxidativo renal y hepático inducido por cadmio en ratas Wistar.

Métodos: Se agruparon veinte ratas Wistar en cuatro (A–D) de cinco ratas. A las ratas de los grupos A, B, C y D se les administró agua destilada, 5 mg/kg de peso corporal de cloruro de cadmio (CdCl2), CdCl2 + GA al mismo tiempo y GA (20 mg/kg de peso corporal) respectivamente y durante 14 días. Se determinaron parámetros bioquímicos como actividad enzimática antioxidante, urea, creatinina y actividad mieloperoxidasa.

Resultados: En el grupo tratado con urea, creatinina y MPO, hubo un aumento significativo en el grupo tratado con CdCl2. En el hígado, el grupo tratado con CdCl2 redujo significativamente la actividad catalasa y aumentó el glutatión reducido. El grupo de ácido gálico aumentó en las actividades de nivel de GSH, SOD y CAT y también redujo significativamente el nivel de MDA. Sin embargo, la coadministración de CdCl2 + GA tuvo un aumento considerable de las enzimas antioxidantes. En el riñón, la actividad de la catalasa y el nivel de MDA disminuyen y aumentan significativamente, respectivamente. El ácido gálico también aumenta significativamente las actividades de CAT y SOD mientras que se redujo el nivel de MDA. La coadministración de GA + CdCl2 tuvo un aumento sustancial solo en la actividad de SOD en comparación con el control.

Conclusiones: Este estudio indica que el ácido gálico fue capaz de proteger la alteración inducida por el cloruro de cadmio en el riñón e hígado de rata.

Palabras Clave: ácido gálico; antioxidante; cloruro de cadmio; hepatotoxicidad; nefrotoxicidad.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ojo OA, Rotimi D, Bright AE, Kayode O, Ojo AB, Alejolowo O, Ajiboye BO, Oluba OM (2021) Gallic acid protects against cadmium chloride-induced alterations in Wistar rats via the antioxidant defense mechanism. J Pharm Pharmacogn Res 9(5): 668–676.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Metabolic effects of M. charantia foliage extract

J Pharm Pharmacogn Res 9(4): 537-548, 2021.

Original article

Antidiabetic, hypolipidemic, antioxidant and anti-inflammatory effects of Momordica charantia L. foliage extract

[Efectos antidiabéticos, hipolipemiantes, antioxidantes y anti-inflamatorios del extracto foliar de Momordica charantia L.]

Alicia Lagarto Parra1, Roberto Menéndez Soto-del Valle2, Janet Piloto Ferrer1, Pham Thi Nguyet Hang3, Nguyen Thi Phuong3, Addis Bellma1, Orestes Darío López4, Dunia Casanave Guarnaluce1, Carlos Rodríguez Ferrada1, Alejandro S. Padrón Yaquis1, Nicte González Alfonso1, Gilberto L. Pardo-Andreu5*

1Center for Pharmaceuticals Research and Development. Av. 26 # 1605 b/ Av. Boyeros and Puentes Grandes, Havana, Cuba

2Cuban Center for Neurosciences (CNEURO), Ave 25 # 15202. Cubanacán, Playa. PO 11600. La Habana

3National Institute of Medicinal Material. 3B Quang Trung Str, Hoan Kiem Dist, Hanoi, Viet Nam.

4Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Ambato, Ecuador.

5Center for Research and Biological Evaluations, Institute of Pharmaceutical and Foods Sciences, University of Havana (UH), Av. 23 # 2317 b/ 214 and 222, La Coronela, La Lisa, PO 13600 Havana, Cuba.

*E-mail: gpardo@ifal.uh.cu


Context: Momordica charantia (Cucurbitaceae) is extensively distributed in tropical areas, and it is traditionally used as antidiabetic. Nevertheless, few studies supporting the metabolic effects of its foliage extracts have been reported elsewhere.

Aims: To evaluate the effects of M. charantia foliage extract (MCh) on blood glucose and lipids levels in animal models of hyperglycemia. The anti-inflammatory and antioxidant properties together with the acute toxicity and genotoxic effects were also assessed.

Methods: An MCh powder was obtained by spray-drying techniques. The anti-hyperglycemic and hypolipidemic effects of MCh were evaluated in the glucose tolerance test and the alloxan-induced diabetes, respectively. The in vitro and ex vivo MCh antioxidant effects were assessed against the 2,2´-azinobis3-ethylbenzothiazoline-6-sulfonic acid (ABTS), peroxyl, and superoxide anion radicals. The MCh anti-inflammatory effects were also assessed together with its toxicological profile by means of the Acute Toxic Class Method, and the chromosome aberration assay.

Results: MCh administered orally diminished the glucose and lipids levels in normoglycemic healthy rats and alloxan-induced hyperglycemic mice. Strong in vitro free radical scavenging effects was demonstrated by MCh against ABTS, peroxyl, and superoxide anion radicals. The extract also improved the free radical scavenging ability of diabetic mice serum. Moreover, MCh reduced the weight of cotton-induced granulomas in mice, the exudate volume, and its leukocyte counts in carrageenan-induced pleurisy in rats. Very low MCh toxicity was also verified.

Conclusions: The hypoglycemic, hypolipidemic, anti-inflammatory, and antioxidant activities here observed make the spray-drayed powder from M. charantia foliage extract an interesting alternative for the correction of diabetes and its complications.

Keywords: antidiabetic; anti-inflammatory; antioxidant; foliage extract; toxicity; Momordica charantia.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: La Momordica charantia (Cucurbitaceae) se encuentra ampliamente distribuida en las áreas tropicales y se usa tradicionalmente como antidiabético. Sin embargo, pocos estudios sustentan los efectos metabólicos de sus extractos foliares.

Objetivos: Evaluar los efectos de un extracto foliar de M. charantia (MCh) sobre los niveles de glucosa y lípidos en modelos animales de hiperglicemia. También se evaluaron sus propiedades anti-inflamatorias y antioxidantes, así como su toxicidad aguda oral y efectos genotóxicos.

Métodos: Se obtuvo un polvo de MCh por técnicas de secado por aspersión. Sus efectos anti-hiperglicémicos e hipolipemiantes se evaluaron en modelos de tolerancia a la glucosa y de diabetes inducida por aloxano, respectivamente. Los efectos antioxidantes in vitro y ex vivo se evaluaron frente a los radicales 2,2´-azinobis3-ethylbenzotiazolina-6- ácido sulfónico, peroxilo, y el radical anión superóxido. Se evaluaron además los efectos anti-inflamatorios de MCh junto a su perfil toxicológico a través del Método de las Clases para la toxicidad aguda oral y el ensayo de aberración cromosómica.

Resultados: La administración oral de MCh disminuyó los niveles de glucosa y lípidos en ratas saludables normo-glicémicas y en ratones hiperglicémicos por acción del aloxano. Se demostró una potente actividad secuestradora de los radicales ABTS, peroxilo y superóxido, in vitro. El extracto también mejoró la actividad secuestradora de radicales libres del suero de ratones diabéticos. Además, el MCh redujo el peso de los granulomas inducidos por algodón en ratones, y en el modelo de pleuresía inducida por carragenina en ratas, redujo el volumen de exudado y su conteo de leucocitos. Se demostró una baja toxicidad para el MCh.

Conclusiones: Las actividades hipoglicémicas, hipolipemiantes, anti-inflamatorias y antioxidantes aquí observadas, hacen del extracto de M. charantia obtenido a partir de un secado por aspersión, una alternativa interesante para corregir la diabetes y sus complicaciones.

Palabras Clave: antidiabético; anti-inflamatorio; antioxidante; extracto foliar; toxicidad; Momordica charantia.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Lagarto A, Menéndez R, Piloto J, Thi P, Thi N, Bellma A, Dario O, Casanave D, Rodríguez C, Padron AS, González N, Pardo-Andreu G (2021) Antidiabetic, hypolipidemic, antioxidant and anti-inflammatory effects of Momordica charantia L. foliage extract. J Pharm Pharmacogn Res 9(4): 537–548.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Anti-aging activity of Muntingia calabura

J. Pharm. Pharmacogn. Res., vol. 9, no. 4, pp. 409-421, July-August 2021.

Original article

In vitro anti-aging activity of Muntingia calabura L. fruit extract and its fractions

[Actividad anti-envejecimiento in vitro del extracto del fruto de Muntingia calabura L. y sus fracciones]

Syamsu Nur1*, Aprilia Angreiny Angelina1, Muhammad Aswad2, Risfah Yulianty2, Asril Burhan1, Nursamsiar1

1Department of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi, Makassar, 90242, Indonesia.

2Pharmacy Faculty, Hasanuddin University, Makassar, 90242, Indonesia.

*E-mail: syamsu.nur@stifa.ac.id


Context: Premature aging usually occurred due to free radicals reducing the skins’ physiological functions. Muntingia calabura, a plant containing rich antioxidants, has the potential to overcome this problem.

Aims: To evaluate the antioxidant capacity of M. calabura in inhibiting the premature aging process, to be potentially developed into an antiaging active ingredient.

Methods: The samples were extracted using ethanol 96%, and processed into n-hexane, ethyl acetate, and ethanol fractions, respectively. Total phenolic content was determined, followed by the evaluation of antioxidant capacity through DPPH, FRAP, and ABTS assay. Further, anti-elastase was conducted using human neutrophil elastase as a skin degradation enzyme, followed by an anti-collagenase test. Finally, normal cell proliferation was also evaluated via the MTT method measuring cell viability on HDFa cells.

Results: As the results, ethanol extract, ethyl acetate fraction, and ethanol fraction showed a strong antioxidant effect, having great capacity reducing DPPH, ABTS radicals, and also iron reduction, in contrast to n-hexane fraction that exhibited only weak activity. The antioxidant trend capacities were found directly correlated to total phenolic contents. Furthermore, the ethyl acetate fraction was found to have optimum activity in inhibiting elastase and collagenase enzymes, showing a similar impact on cell viability.

Conclusions: The ethyl acetate fraction from M. calabura exhibits the prospect for further development to support its effectiveness as an active ingredient in antiaging cosmetics.

Keywords: antiaging; antioxidant; cell viability; cosmetic; Muntingia calabura L.

This image has an empty alt attribute; its file name is jppres_pdf_free.png


Contexto: El envejecimiento prematuro generalmente se produce debido a que los radicales libres reducen las funciones fisiológicas de la piel. Muntingia calabura, una planta que contiene ricos antioxidantes tiene el potencial de superar este problema.

Objetivos: Evaluar la capacidad antioxidante de M. calabura para inhibir el proceso de envejecimiento prematuro, para convertirse potencialmente en un ingrediente activo antienvejecimiento.

Métodos: Las muestras se extrajeron con etanol al 96% y se procesaron en fracciones de n-hexano, acetato de etilo y etanol, respectivamente. Se determinó el contenido fenólico total, seguido de la evaluación de la capacidad antioxidante mediante el ensayo DPPH, FRAP y ABTS. Además, la evaluación anti-elastasa se llevó a cabo utilizando elastasa de neutrófilos humanos como enzima de degradación de la piel, seguida de una prueba anti-colagenasa. Finalmente, también se evaluó la proliferación celular normal mediante el método MTT que mide la viabilidad celular en células HDFa.

Resultados: El extracto de etanol, las fracciones de acetato de etilo y de etanol mostraron un fuerte efecto antioxidante, teniendo gran capacidad reductora de radicales DPPH, ABTS y también reducción de hierro, en contraste con la fracción n-hexano que exhibió solo actividad débil. Las capacidades de tendencia antioxidante se correlacionaron directamente con el contenido total de fenoles. Además, se encontró que la fracción de acetato de etilo tiene una actividad óptima para inhibir las enzimas elastasa y colagenasa, mostrando un impacto similar en la viabilidad celular.

Conclusiones: La fracción de acetato de etilo de M. calabura presenta la posibilidad de un mayor desarrollo para respaldar su eficacia como ingrediente activo en cosméticos antienvejecimiento

Palabras Clave: clave: anti-envejecimiento; antioxidante; cosmético; Muntingia calabura L.; viabilidad celular.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Nur S, Angelina AA, Aswad M, Yulianti R, Burhan A, Nursamsiar N (2021) In vitro anti-aging activity of Muntingia calabura L. fruit extract and its fractions. J Pharm Pharmacogn Res 9(4): 409–421.

Abdul Karim A, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, Abdullah NA (2014) Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Alternat Med 14: 381.

Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoǧlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12(7): 1496–1547.

Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: Interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47(4): 236–242.

Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200.

Brás NF, Gonçalves R, Mateus N, Fernandes, PA, Ramos MJ, De Freitas V (2010) Inhibition of pancreatic elastase by polyphenolic compounds. J Agric Food Chem 19: 10668–10676.

Cox SE, Stushnoff C, Sampson DA (2003) Relationship of fruit color and light exposure to lycopene content and antioxidant properties of tomato. Can J Plant Sci 83: 913–919.

Farage MA, Miller KW, Elsner P, Maibach HI (2008) Intrinsic and extrinsic factors in skin ageing: A review. Int J Cos Sci 30(2): 87–95.

Floegel A, Chung S J, Von Ruesten A, Yang M, Chung CE, Song WO, Koo SI, Pischon T, Chun OK (2011) Antioxidant intake from diet and supplements and elevated serum C-reactive protein and plasma homocysteine concentrations in US adults: A cross-sectional study. Pub Health Nut 14(11): 2055–2064.

Freshney RI (2011) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications: Sixth Edition. New York: Wiley Online Library, pp 187–206.

Garg C, Khurana P, Garg M (2017) Molecular mechanisms of skin photoaging and plant inhibitors. Int J Green Pharm 11(2): S217–S232.

Ghimeray AK, Jung US, Lee HY, Kim YH, Ryu EK, Chang MS (2015) In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract. Clin Cosmet Investig Dermatol 16(8): 389–396.

Giampieri F, Alvarez-Suarez JM, Mazzoni L, Forbes-Hernandez TY, Gasparrini M, González-Paramás AM, Santos-Buelga C, Quiles JL, Bompadre S, Mezzetti B, Battino M (2014) Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality. Molecules 19(6): 7798–7816.

González MC, Bernal DG, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodríguez-Lozano FJ (2017) Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J 50(9): 875-884.

Gordon MH (1990) The Mechanism of Antioxidant Action in Vitro. In Food Antioxidants. United Kingdom: Springer, pp 1–18.

Halliwell B, Gutteridge JMC (2015) Free Radicals in Biology and Medicine. In: Free Radicals in Biology and Medicine. USA: Pergamon Press, pp 331–334.

Helfrich YR, Sachs DL, Voorhees JJ (2008) Overview of skin aging and photoaging. Dermatol Nurs 20(3): 177–183.

Hodzic Z, Pasalic H, Memisevic A, Srabovic M, Saletovic M, Poljakovic M (2009) The influence of total phenols content on antioxidant capacity in the whole grain extracts. Eur J Sci Res 28(3): 471–477.

Huang WY, Cai YZ, Corke H, Sun M (2010) Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in Hong Kong. J Food Compos Anal 23(6): 510–517.

Hwang E, Park SY, Yin CS, Kim HT, Kim YM, Yi TH (2017) Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 41(1): 69–77.

Hwang KA, Yi BR, Choi KC (2011) Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alteration. Lab Animal Res 27(1): 1–8.

Jenkins G (2002) Molecular mechanisms of skin ageing. In Mechanisms of Ageing and Development. New York: Elsevier, pp 801–810.

Landau M (2007) Exogenous factors in skin aging. Curr Probl Dermatol 35: 1–13.

Lee HJ, Lee JY, Song KC, Kim JH, Park JH, Chun KH, Hwang GS (2012) Protective effect of processed Panax ginseng, sun ginseng on UVB-irradiated human skin keratinocyte and human dermal fibroblast. J Ginseng Res 36(1): 68–77.

Makrantonaki E, Zouboulis CC (2007) Characteristics and pathomechanisms of endogenously aged skin. Dermatology 214: 352–360.

Mardhiyah S, Elya B, Noviani A (2020) Elastase activity inhibition by the most active fraction of star fruit (Averrhoa carambola L.) leaves from three West Java regions. Int J App Pharm 12(1): 101–106.

Mastuki SN, Faudzi SMM, Ismail N, Saad N (2019) Muntingia calabura: Chemical composition, bioactive component and traditional uses. In Wild Fruits: Composition, Nutritional Value and Products. Champ: Springer, pp 549–564.

Mistriyani, Riyanto S, Rohman A (2018) Antioxidant activities of rambutan (Nephelium lappaceum L) peel in vitro. Food Res 2(1): 119–123.

Nur S, Mubarak F, Jannah C, Winarni DA, Rahman DA, Hamdayani LA, Sami FJ (2019) Total phenolic and flavonoid compounds, antioxidant and toxicity profile of extract and fractions of paku atai tuber (Angiopteris ferox Copel). Food Res 3(6): 734–740.

Pandel R, Poljšak B, Godic A, Dahmane R (2013) Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol 2013: 930164.

Paşayeva L, Köngül Şafak E, Arıgün T, Fatullayev H, Tugay O (2020) In vitro antioxidant capacity and phytochemical characterization of Eryngium kotschyi Boiss. J Pharm Pharmacogn Res 8(1): 18–31.

Pereira GA, Arruda HS, de Morais DR, Eberlin MN, Pastore GM (2018) Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Res Int 108: 264–273.

Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17(6): 868.

Poljšak B, Dahmane RG, Godić A (2012) Intrinsic skin aging: The role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat 21(2): 33–36.

Pouillot A, Polla LL, Tacchini P, Neequaye A, Polla A, Polla B (2011) Natural Antioxidants and their Effects on the Skin. In Formulating, Packaging, and Marketing of Natural Cosmetic Products. Willey, pp 239–257.

Preethi K, Vijayalakshmi N, Shamna R, Sasikumar JM (2010) In vitro antioxidant activity of extracts from fruits of Muntingia calabura Linn. from India. Pharmacogn J 2(14): 11–18.

Rabeta MS, Nur Faraniza R (2013) Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora. Int Food Res J 20: 1691-1696.

Sahasrabudhe A, Deodhar M (2010) Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int J Bot 6(3): 299–303.

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299: 152–178.

Steinbrecher T, Hrenn A, Dormann KL, Merfort I, Labahn A (2008) Bornyl (3,4,5-trihydroxy)-cinnamate – An optimized human neutrophil elastase inhibitor designed by free energy calculations. Bioorg Med Chem 16(5): 2385–2390.

Thaman LA, Draelos ZD (2005) What Is Next in Skin Care Cosmetic Products. In Cosmetic Formulation of Skin Care Products. New York: Taylor and Fracis Group, pp 403-408.

Wootton-Beard PC, Ryan L (2011) A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J Funct Food 3(4): 329–334.

Xie C, Jin J, Lv X, Tao J, Wang R, Miao D (2015) Antiaging effect of transplanted amniotic membrane mesenchymal stem cells in a premature aging model of BMI-1 deficiency. Sci Rep 5: 13975.

Yahaya ES, Cordier W, Steenkamp PA, Steenkamp V (2020) Protective effect of Erythrina senegalensis sequential extracts against oxidative stress in SC-1 fibroblasts and THP-1 macrophages. J Pharm Pharmacogn Res 8(4): 247–259.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)