Tag Archives: COVID-19

Multi-epitope spike glycoprotein vaccine for SARS-CoV-2

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 445-458, May-June 2022.

Original Article

Development of a multi-epitope spike glycoprotein vaccine to combat SARS-CoV-2 using the bioinformatics approach

[Desarrollo de una vacuna de glicoproteína spike multiepítopo para combatir el SARS-CoV-2 utilizando el enfoque bioinformático]

Aamir Shehzad1, Christijogo Sumartono2, Jusak Nugraha3, Helen Susilowati4, Andi Yasmin Wijaya4, Hafiz Ishfaq Ahmad5, Muhammad Kashif6, Wiwiek Tyasningsih7, Fedik Abdul Rantam1,4*

1Virology and Immunology Laboratory, Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia.

2Anasthesiology and Reanimation Department, Dr. Soetomo Gerneral Hospital and Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Clinical Pathology Department, Dr. Soetomo Gerneral Hospital and Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

4Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.

5Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Punjab, Pakistan.

6Department of Biomedical Engineering, Science and Technology, Universitas Airlangga, Surabaya, Indonesia.

7Bacteriology and Mycology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.

*E-mail: fedik-a-r@fkh.unair.ac.id


Context: The current COVID-19 pandemic has significantly impacted health and socio-economic status worldwide. The only way to combat this situation is to develop an effective vaccine and immunize people around the globe.

Aims: To construct a multi-epitope spike glycoprotein-based vaccine from the SARS-CoV-2 Surabaya isolate using a bioinformatics approach.

Methods: The spike protein was submitted to IEDB, VaxiJen, AllerTOP, and ToxinPred webservers to predict antigenic, non-allergic, non-toxic, B- and T-cell epitopes. To develop a multi-epitope vaccine, an adjuvant cholera toxin B subunit was linked to B-cell and B-cell with T-cell through EAAAK and GPGPG linkers, respectively. The designed vaccine 3D structure development, refinement, and validation were done through PHYRE2, Galaxy Refine, and RAMPAGE webservers. Moreover, the Cluspro-2.0 webserver was used for the molecular docking of the vaccine designed with TLR3. The vaccine+TLR3 complex was docked with Surfactant protein A as a control to validate the docking results. Finally, immune-simulation and in silico cloning of the vaccine were carried out by C-ImmSim webserver and SnapGene software, respectively.

Results: A multi-epitopic vaccine containing B and T-cell was developed using 392 amino acids with a molecular weight of 40825.59 Da. The docking and immunogenicity results of the vaccine met all established parameters for constructing a quality vaccine. Furthermore, the optimized sequence of the vaccine was successfully cloned in expression vector pET 28 a (+) that yielded a colon of 2724 bp.

Conclusions: The vaccine’s immunogenicity demonstrates its effectiveness against SARS-CoV-2 infection. Further confirmatory testing may therefore be performed as soon as possible in the public interest.

Keywords: in silico; public health; SARS-CoV-2; spike protein; TLR3-receptor.


Contexto: La actual pandemia de COVID-19 ha afectado significativamente la salud y el estado socioeconómico en todo el mundo. La única forma de combatir esta situación es desarrollar una vacuna eficaz e inmunizar a las personas en todo el mundo.

Objetivos: Construir una vacuna basada en glicoproteína de pico de múltiples epítopos a partir del aislado SARS-CoV-2 Surabaya utilizando un enfoque bioinformático.

Métodos: La proteína de pico se envió a los servidores web IEDB, VaxiJen, AllerTOP y ToxinPred para predecir epítopos antigénicos, no alérgicos, no tóxicos, de células B y T. Para desarrollar una vacuna multiepítopo, se unió una subunidad B de la toxina del cólera adyuvante a la célula B y una célula B a una célula T a través de conectores EAAAK y GPGPG, respectivamente. El desarrollo, el refinamiento y la validación de la estructura 3D de la vacuna diseñada se realizaron a través de los servidores web PHYRE2, Galaxy Refine y RAMPAGE. Además, se utilizó el servidor web Cluspro-2.0 para el acoplamiento molecular de la vacuna diseñada con TLR3. El complejo vacuna + TLR3 se acopló con la proteína A del tensioactivo como control para validar los resultados del acoplamiento. Finalmente, la inmunosimulación y la clonación in silico de la vacuna se llevaron a cabo mediante el servidor web C-ImmSim y el software SnapGene, respectivamente.

Resultados: Se desarrolló una vacuna multiepitópica que contenía células B y T utilizando 392 aminoácidos con un peso molecular de 40825,59 Da. Los resultados de acoplamiento e inmunogenicidad de la vacuna cumplieron con todos los parámetros establecidos para construir una vacuna de calidad. Además, la secuencia optimizada de la vacuna se clonó con éxito en el vector de expresión pET 28 a (+) que produjo un colon de 2724 pb.

Conclusiones: La inmunogenicidad de la vacuna demuestra su eficacia contra la infección por SARS-CoV-2. Por lo tanto, se pueden realizar más pruebas de confirmación lo antes posible en interés público.

Palabras Clave: in silico; proteína de punta; receptor TLR3; salud pública; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Shehzad A, Sumartono C, Nugraha J, Susilowati H, Wijaya AY, Ahmad HI, Kashif M, Tyasningsih W, Rantam FA (2022) Development of a multi-epitope spike glycoprotein vaccine to combat SARS-CoV-2 using the bioinformatics approach. J Pharm Pharmacogn Res 10(3): 445–458.

Abraham Peele K, Srihansa T, Krupanidhi S, Ayyagari VS, Venkateswarulu TC (2021) Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study. J Biomol Struct Dyn 39(10): 3793–3801.

Ahmad B, Ashfaq UA, Rahman MU, Masoud MS, Yousaf MZ (2019) Conserved B and T cell epitopes prediction of Ebola virus glycoprotein for vaccine development: An immuno-informatics approach. Microb Pathog 132: 243–253.

Ahmad I, Ali SS, Zafar B, Hashmi HF, Shah I, Khan S, Suleman M, Khan M, Ullah S, Ali S, Khan J (2020) Development of multi-epitope subunit vaccine for protection against the norovirus’ infections based on computational vaccinology. J Biomol Struct Dyn 9: 1–12.

Ali M, Pandey RK, Khatoon N, Narula A, Mishra A, Prajapati VK (2017) Exploring dengue genome to construct a multi-epitope-based subunit vaccine by utilizing immunoinformatics approach to the battle against dengue infection. Sci Rep 7(1): 9232.

Amer H, Alqahtani AS, Alaklobi F, Altayeb J, Memish ZA (2018) Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): Revision of screening strategies urgently needed. Int J Infect Dis 71: 113–116.

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, De Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(W1): W597–W603.

Arumugam S, Varamballi P (2021) In-silico design of envelope-based multi-epitope vaccine candidate against Kyasanur forest disease virus. Sci Rep 11(1): 17118.

Ashfaq UA, Ahmed B (2016) De novo structural modeling and conserved epitopes prediction of Zika virus envelop protein for vaccine development. Viral Immunol 29(7): 436–443.

Baruah V, Bose S (2020) Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. J Med Virol 92(5): 495–500.

Chang KY, Yang JR (2013) Analysis and prediction of highly effective antiviral peptides based on random forests. PloS One 8(8): e70166.

Chukwudozie OS, Chukwuanukwu RC, Iroanya OO, Eze DM, Duru VC, Dele-Alimi TO, Kehinde BD, Bankole TT, Obi PC, Okinedo EU (2020) Attenuated subcomponent vaccine design targeting the SARS-CoV-2 nucleocapsid phosphoprotein RNA binding domain: In silico analysis. J Immunol Res 2020: 2837670.

Chukwudozie OS, Gray CM, Fagbayi TA, Chukwuanukwu RC, Oyebanji VO, Bankole TT, Adewole RA, Daniel EM (2021) Immuno-informatics design of a multimeric epitope peptide-based vaccine targeting SARS-CoV-2 spike glycoprotein. Plos One 16(3): e0248061.

Cockrell AS, Johnson JC, Moore IN, Liu DX, Bock KW, Douglas MG, Graham RL, Solomon J, Torzewski L, Bartos C, Hart R (2018) A spike-modified Middle East respiratory syndrome coronavirus (MERS-CoV) infectious clone elicits mild respiratory disease in infected rhesus macaques. Sci Rep 8(1): 10727.

Dar HA, Waheed Y, Najmi MH, Ismail S, Hetta HF, Ali A, Muhammad K (2020) Multiepitope subunit vaccine design against COVID-19 based on the spike protein of SARS-CoV-2: An in silico analysis. J Immunol Res 2020: 8893483.

Dimitrov I, Flower DR, Doytchinova I (2013) AllerTOP-a server for in silico prediction of allergens. BMC Bioinform 14(suppl. 6): S4.

Dong R, Chu Z, Yu F, Zha Y (2020) Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Front Immunol 11:1784.

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1): 4.

Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, pp. 571–607.

Geourjon C, Deleage G (1995) SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinform 11(6): 681–684.

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open-Source Drug Discovery Consortium, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PloS One 8(9): e73957.

Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE (2018) Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC Struct Biol 18(1): 7.

Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A (2018) Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis 18(8): e217-27.

Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6): 1895-1898.

Indriani R (2001) Antibody response and protection of inactivated-local isolate vaccine for infectious bronchitis in laying chicken. J IImTer Vet 6(2): 134–140.

Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1): W24–W29.

Jyotisha, Singh S, Qureshi IA (2020) Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 6: 1–17.

Kamens J (2015) The Addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res 43(D1): D1152–D1157.

Kathwate GH (2022) In silico design and characterization of multi-epitopes vaccine for SARS-CoV2 from its spike protein. Int J Pept Res Ther 28(1): 37.

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6): 845–858.

Khalil I, Omer I, Farh IZ, Mohamed HA, Elsharif HA, Mohamed AA, Awad-Elkareem MA, Salih MA (2018) Design of an epitope-based peptide vaccine against Cryptococcus neoformans. BioRxiv [Preprint]. doi: https://doi.org/10.1101/434779

Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40(W1): W294–W297.

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807): 215–220.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395: 565–574.

Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L (2021) SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front Immunol 12: 701501.

McCartney S, Vermi W, Gilfillan S, Cella M, Murphy TL, Schreiber RD, Murphy KM, Colonna M (2009) Distinct and complementary functions of MDA5 and TLR3 in poly (I: C)-mediated activation of mouse NK cells. J Exp Med 206(13): 2967–2976.

McKee AS, Munks MW, Marrack P (2007) How do adjuvants work? Important considerations for new generation adjuvants. Immunity 27(5): 687–690.

Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, Ali N, Zaib S, Khan A, Al-Harrasi A, Khan I (2021) Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J Infect Public Health 14(7): 938–946.

O’Hagan DT, De Gregorio E (2009) The path to a successful vaccine adjuvant– ‘the long and winding road’. Drug Discov Today 14(11-12): 541–551.

Oany AR, Ahmad SA, Hossain MU, Jyoti TP (2015) Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine. Adv Appl Bioinform Chem 8: 1–10.

Oany AR, Emran AA, Jyoti TP (2014) Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in-silico approach. Drug Des Devel Ther 8: 1139–1149.

Olvera A, Noguera-Julian M, Kilpelainen A, Romero-Martín L, Prado JG, Brander C (2020) SARS-CoV-2 consensus-sequence and matching overlapping peptides design for COVID19 immune studies and vaccine development. Vaccines 8(3): 444.

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1): 2144.

Phan AT, Goldrath AW, Glass CK (2017) Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 46(5): 714–729.

Poran A, Harjanto D, Malloy M, Arieta CM, Rothenberg DA, Lenkala D, van Buuren MM, Addona TA, Rooney MS, Srinivasan L, Gaynor RB (2020) Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Med 12(1): 70.

Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B (2020) Drug targets for corona virus: A systematic review. Indian J Pharmacol 52(1): 56–65.

Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G (2020) Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress 4(4): 66–75.

Reche PA, Fernandez-Caldas E, Flower DR, Fridkis-Hareli M, Hoshino Y (2014) Peptide-based immunotherapeutics and vaccines. J Immunol Res2014: 256784.

Sadat SM, Aghadadeghi MR, Yousefi M, Khodaei A, Larijani MS, Bahramali G (2021) Bioinformatics analysis of SARS-CoV-2 to approach an effective vaccine candidate against COVID-19. Mol Biotechnol 63(5): 389–409.

Safavi A, Kefayat A., Mahdevar E, Abiri A, Ghahremani F (2020) Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 38(48): 7612–7628.

Sarma P, Shekhar N, Prajapat M, Avti P, Kaur H, Kumar S, Singh S, Kumar H, Prakash A, Dhibar DP, Medhi B (2021) In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). J Biomol Struct Dyn 39(8): 2724–2732.

Shokeen K, Pandey S, Shah M, Kumar S (2020) Insight towards the effect of the multibasic cleavage site of SARS-CoV-2 spike protein on cellular proteases. BioRxiv [Preprint].doi:https://doi.org/10.1101/2020.04.25.061507.

Singh A, Thakur M, Sharma LK, Chandra K (2020) Designing a multi-epitope peptide-based vaccine against SARS-CoV-2. Sci Rep 10(1): 16219.

Srivastava S, Kamthania M, Kumar Pandey R, Kumar Saxena A, Saxena V, Kumar Singh S, Kumar Sharma R, Sharma N (2019) Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics. J Biomol Struct Dyn 37(16): 4345–4360.

Tahir Ul Qamar M, Rehman A, Tusleem K, Ashfaq UA, Qasim M, Zhu X, Fatima I, Shahid F, Chen LL (2020a) Designing of a next generation multi-epitope-based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PloS One 15(12): e0244176.

Tahir Ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N (2020b) Multiepitope-based subunit vaccine design and evaluation against respiratory syncytial virus using reverse vaccinology approach. Vaccines 8(2): 288.

Tahir Ul Qamar MT, Bari A, Adeel MM, Maryam A, Ashfaq UA, Du X, Muneer I, Ahmad HI, Wang J (2018) Peptide vaccine against chikungunya virus: Immuno-informatics combined with molecular docking approach. J Transl Med 16(1): 298.

Tahir Ul Qamar MT, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S (2019) Epitope‐based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: An immune-informatics study. J Transl Med 17(1): 362.

Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Virol J94(7): e00127-20.

Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4): 635–664.

WHO (2021) World Health Organization. https://covid19.who.int/ [Consulted September 27, 2021].

Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395(10225): 689–697.

Yang Z, Bogdan P, Nazarian S (2021) An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Sci Rep 11(1): 3238.

Zeng L, Li D, Tong W, Shi T, Ning B (2021) Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics. Biochem Pharmacol189: 114424.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798): 270–273.

Zhu X, Liu Q, Du L, Lu L, Jiang S (2013) Receptor-binding domain as a target for developing SARS vaccines. J Thorac Dis 5(Suppl 2): S142–S148.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

B-cell epitopes for the development of SARS-CoV-2 vaccine

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 429-444, May-June 2022.

Original Article

Molecular characterization and prediction of B-cell epitopes for the development of SARS-CoV-2 vaccine through bioinformatics approach

[Caracterización molecular y predicción de epítopos de células B para el desarrollo de una vacuna contra el SARS-CoV-2 mediante un enfoque bioinformático]

Aamir Shehzad1, Martia Rani Tacharina1, Suryo Kuncorojakti2 , Hafiz Ishfaq Ahmad3, Rofiqul A’la1, Andi Yasmin Wijaya4, Wiwiek Tyasningsih5, Fedik Abdul Rantam1,4*

1Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia.

2Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine Airlangga University, Surabaya, East Java, 60115, Indonesia.

3Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan.

4Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, 60115 Indonesia.

5Bacteriology and Mycology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60132, Indonesia.

*E-mail: fedik-a-r@fkh.unair.ac.id


Context: The SARS-CoV-2 virus is the cause of the COVID-19 pandemic, which is a severe public health crisis worldwide.Aims: To analyze the SARS-CoV-2 isolates of Surabaya and predict ORF1ab polyprotein epitopes through the bioinformatics approach for vaccine candidate development.

Methods: Three genomic sequences of Surabaya isolates were obtained from the GISAID, NCBI and PDB Gen-bank databases and MEGA-11 software were used to understand the transformations in the isolates. The IEDB and VaxiJen, AllerTop, and ToxinPred web servers were used to predict B-cell epitopes and analyze their antigenicity, non-allergenicity, non-toxicity, respectively. Moreover, these epitopes were linked by EAAAK for 3D modeling, refinement, and validation through Swiss-Model, Galaxy Refine, and RAMPAGE web tools.

Results: The Surabaya isolates, RSDS-RCVTD-UNAIR-49-A, 54-A, and 42-A, had 10, 20, and 16 mutations in nucleotides and depicted a phylogenetically close relationship to isolates of Egypt, Pakistan, and Bangladesh, respectively. A total of 71 sequential Orf1ab B-cell epitopes were predicted, and only three peptides were found to be antigenic,  non-allergenic, and non-toxic. These epitopes were linked with the EAAAK linker to develop a 3D refined and validated structure. This construct was docked with TLR-3 receptor by the Cluspro webserver and found a high affinity of ORF1ab+TLR3 due to 15 hydrogen bonds. The construct demonstrated good humoral and cellular immune responses in the C-ImmSim server, and cloning in the expression vector pET28a (+) yielded a colon of 846bp.

Conclusions: ORF1ab B-cell epitopes could be useful for developing effective vaccines to combat SARS-CoV-2 infection.

Keywords: bioinformatics; epitopes; ORF1ab polyproteins; public health; Indonesia; SARS-CoV-2.


Contexto: El virus SARS-CoV-2 es la causa de la pandemia de COVID-19, que es una grave crisis de salud pública a nivel mundial.Objetivos: Analizar los aislamientos de SARS-CoV-2 de Surabaya y predecir los epítopos de poliproteína ORF1ab mediante el enfoque bioinformático para el desarrollo de candidatos vacunales.

Métodos: Se obtuvieron tres secuencias genómicas de aislamientos de Surabaya de las bases de datos GISAID, NCBI and PDB  Gen-bank y el software MEGA-11 para comprender las transformaciones en los aislamientos. Se utilizaron los servidores web IEDB y VaxiJen, AllerTop y ToxinPred para predecir epítopos de células B y analizar su antigenicidad, no alergenicidad y no toxicidad, respectivamente. Además, EAAAK vinculó estos epítopos para el modelado, el refinamiento y la validación en 3D a través de las herramientas web Swiss-Model, Galaxy Refine y RAMPAGE.

Resultados: Los aislamientos de Surabaya, RSDS-RCVTD-UNAIR-49-A, 54-A y 42-A, tenían 10, 20 y 16 mutaciones en nucleótidos y mostraban una relación filogenéticamente cercana con los aislamientos de Egipto, Pakistán y Bangladesh, respectivamente. Se predijeron un total de 71 epítopos de células B Orf1ab secuenciales, y solo tres péptidos resultaron ser antigénicos, no alergénicos y no tóxicos. Estos epítopos se vincularon con el enlazador EAAAK para desarrollar una estructura 3D refinada y validada. Esta construcción fue acoplada con el receptor TLR-3 por el servidor web Cluspro y encontró una alta afinidad de ORF1ab+TLR3 debido a 15 enlaces de hidrógeno. La construcción demostró buenas respuestas inmunitarias celulares y humorales en el servidor C-ImmSim, y la clonación en el vector de expresión pET28a (+) produjo un colon de 846 pb.

Conclusiones: Los epítopos de células B ORF1ab podrían ser útiles para desarrollar vacunas efectivas para combatir la infección por SARS-CoV-2.

Palabras Clave: bioinformática; epítopos; poliproteínas ORF1ab; Indonesia; salud pública; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Shehzad A, Kuncorojakti S, Tacharina MR, Ahmad HI, A'la R, Wijaya AY, Tyasningsih W, Rantam FA (2022) Molecular characterization and prediction of B-cell epitopes for the development of SARS-CoV-2 vaccine through bioinformatics approach. J Pharm Pharmacogn Res 10(3): 429–444.

Abraham Peele K, Srihansa T, Krupanidhi S, Ayyagari V S, Venkateswarulu TC (2021) Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study.J Biomol Struct Dyn 39: 3793–3801.

Adianingsih OR, Kharisma VD (2019) Study of B cell epitope conserved region of the Zika virus envelope glycoprotein to develop multi-strain vaccine. J App Pharm Sci 9: 098–103.

Ansori AN, Kusala MK, Normalina I, Indrasari S, Alamudi MY, Nidom RV, Nidom CA (2020) Immunoinformatic investigation of three structural protein genes in Indonesian SARS-CoV-2 isolates. Sys Rev Pharm 11: 422–434.

Ansori AN, Nidom RV, Kusala MK, Indrasari S, Normalina I, Nidom AN, Nidom CA (2021) Viroinformatics investigation of B-cell epitope conserved region in SARS-CoV-2 lineage B. 1.1. 7 isolates originated from Indonesia to develop vaccine candidate against COVID-19. J Pharm Pharmacogn Res 9: 766–779.

Biswas A, Bhattacharjee U, Chakrabarti AK, Tewari DN, Banu H, Dutta S (2020) Emergence of novel coronavirus and COVID-19: Whether to stay or die out? Crit Rev Microbiol 46: 182–193.

Bond CW, Leibowitz JL, Robb JA (1979) Pathogenic murine coronaviruses II. Characterization of virus-specific proteins of murine coronaviruses JHMV and A59V. Virology 94: 371–384.

Cai J, Sun W, Huang J, Gamber M, Wu J, He G (2020) Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis 26: 1343–1345.

Callaway E (2020a) Making sense of coronavirus mutations. Nature 585: 174–177.

Callaway E (2020b) The coronavirus is mutating–does it matter? Nature 585: 174–178.

Castiglione F, Mantile F, De Berardinis P, Prisco A (2012) How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput Math Methods Med 2012: 842329.

Cevik M, Kuppalli K, Kindrachuk J, Peiris M (2020) Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 371: m3862.

Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY (2020a) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect  9(1): 221-236.

Chan JFW, Zhang AJ, Yuan S, Poon VKM, Chan CCS, Lee ACY, Yuen KY (2020b) Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis 71: 2428–2446.

Chukwudozie OS, Chukwuanukwu RC, Iroanya OO, Eze DM, Duru VC, Dele-Alimi TO, Okinedo EU (2020) Attenuated subcomponent vaccine design targeting the SARS-CoV-2 nucleocapsid phosphoprotein RNA binding domain: In silico analysis. J Immunol Res 2020: 2837670.

Cooper NR, Nemerow GR (1984) The role of antibody and complement in the control of viral infections. J Investig Dermatol 83: S121–S127.

Dandekar AA, Perlman S (2005) Immunopathogenesis of coronavirus infections: Implications for SARS. Nat Rev Immunol 5: 917–927.

Dhanda SK, Mahajan S, Paul S, Yan Z, Kim H, Jespersen MC, Peters B (2019) IEDB-AR: immune epitope database—analysis resource in 2019. Nucleic Acids Res 47: W502–W506.

Dong L, Tian J, He S, Zhu C, Wang J, Liu C, Yang J (2020) Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA 323: 1846-1848.

Duffy S (2018) Why are RNA virus mutation rates so damn high? PLoS Biol16: e3000003.

Emameh RZ, Nosrati H, Taheri RA (2020) Combination of biodata mining and computational modelling in identification and characterization of ORF1ab polyprotein of SARS-CoV-2 isolated from oronasopharynx of an Iranian patient. Biol Proced Online 22: 8.

Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, Stefani S (2020) Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med 46: 957–964.

Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ, Yennawar M, Lauring AS (2018) A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biology 16: e2006459.

Fritz M, Rosolen B, Krafft E, Becquart P, Elguero E, Vratskikh O, Denolly S, Boson B, Vanhomwegen J, Gouilh MA, Kodjo A, Chirouze C, Rosolen SG, Legros V, Leroy EM (2020) High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 11: 100192.

Gangaev A, Ketelaars SL, Isaeva OI, Patiwael S, Dopler A, Hoefakker K, De Biasi S, Gibellini L, Mussini C, Guaraldi G, Girardis M (2020a) Identification and characterization of an immunodominant SARS-CoV-2-specific CD8 T cell response. Res Sq [Preprint] DOI: 10.21203/rs.3.rs-33197/v2

Gangaev A, Ketelaars SL, Patiwael S, Dopler A, Isaeva OI, Hoefakker K, Kvistborg P (2020b) Profound CD8 T-cell responses towards SARS-CoV-2 OFR1ab in COVID-19 patients. Res Sq [Preprint] DOI: 10.21203/rs.3.rs-33197/v1

Gao T, Gao Y, Liu X, Nie Z, Sun H, Lin K, Wang S (2021) Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiol 21: 58.

Geourjon C, Deleage G (1995) SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11: 681–684.

Ghoshal B, Ghoshal B, Swift S, Tucker A (2021) Uncertainty estimation in SARS-CoV-2 B-cell epitope prediction for vaccine development. In: International Conference on Artificial Intelligence in Medicine. Springer, Cham, p. 361–366.

GISAD (2021) GISAID Database. Available from https://www.epicov.org/epi3/frontend#6d403 [Accessed July 27, 2021].

Graham RL, Sparks JS., Eckerle LD, Sims AC, Denison MR (2008) SARS coronavirus replicase proteins in pathogenesis. Virus Res 133: 88–100.

Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33: W526–W531.

Grubaugh ND, Hanage WP, Rasmussen AL (2020) Making sense of mutation: What D614G means for the COVID-19 pandemic remains unclear. Cell 182: 794–795.

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PloS One 8: e73957.

Hachim A, Kavian N, Cohen CA, Chin AW, Chu DK, Mok CK, Tsang OT, Yeung YC, Perera RA, Poon LL, Peiris JM (2020) ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nat Immunol 21: 1293–1301.

Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, Xia Y (2020) Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 9: 1123–1130.

Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK, Murray J, Thornburg N J (2020) Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. BioRxiv [Preprint] DOI: 10.1101/2020.03.02.972935

Hernández‐Huerta MT, Pérez‐Campos Mayoral L, Romero Díaz C, Martínez Cruz M, Mayoral‐Andrade G, Sanchez Navarro LM, Matias‐Cervantes CA (2021) Analysis of SARS‐CoV‐2 mutations in Mexico, Belize, and isolated regions of Guatemala and its implication in the diagnosis. Med Virol 93: 2099–2114.

Horiike T (2016) An introduction to molecular phylogenetic analysis. Rev Agri Sci 4: 36-45.

Hu J, He CL, Gao Q, Zhang GJ, Cao XX, Long QX, Huang AL (2020) The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity. BioRxiv [Preprint] DOI: 10.1101/2020.06.20.161323

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Cao B (2020a) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506.

Huang Y, Yang C, Xu XF, Xu W, Liu SW (2020b) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41: 1141–1149.

Kathwate GH (2022) In silico design and characterization of multi-epitopes vaccine for SARS-CoV2 from its spike proteins. Int J Pept Res Ther 28: 37.

Khailany RA, Safdar M, Ozaslan M (2020) Genomic characterization of a novel SARS-CoV-2. Gene Reports 19: 100682.

Khan MK, Zaman S, Chakraborty S, Chakravorty R, Alam MM, Bhuiyan TR, Seraj ZI (2014) In silico predicted mycobacterial epitope elicits in vitro T-cell responses. Mo.l Immunol 61: 16–22.

Khatoon N, Pandey RK, Prajapati VK (2017) Exploring leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7: 8285.

Kim JI (2020) New potential for healing the trauma of Maori from Brain Education. [Interview] Dr. Lily George, Director of Education, New Zealand Headquarters of ECO. IBREA Report 12: 3–7.

Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Montefiori DC (2020) Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell 182: 812–827.

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874.

Lau SY, Wang P, Mok BWY, Zhang AJ, Chu H, Lee ACY, Chen H (2020) Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. EmergMicrobes Infect 9: 837–842.

Lewis DM, Leibrand S, Leibrand H (2020) A test-based strategy for safely shortening quarantine for COVID-19. MedRxiv [Preprint] DOI:10.1101/2020.11.24.20238287

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Wu J (2020a) Coronavirus infections and immune responses. JMed Virol 92: 424–432.

Li J, Wang H, Mao L, Yu H, Yu X, Sun Z, Wang X (2020b) Rapid genomic characterization of SARS-CoV-2 viruses from clinical specimens using nanopore sequencing. Sci Rep 10: 17492.

Liu K, Pan X, Li L, Yu F, Zheng A, Du P, Han P, Meng Y, Zhang Y, Wu L, Chen Q (2021) Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 184(13): 3438–3451.

Mapleson D, Drou N, Swarbreck D (2015) RAMPART: A workflow management system for de novo genome assembly. Bioinformatics 31: 1824–1826.

Martin A, Nateqi J, Gruarin S, Munsch N, Abdarahmane I, Zobel M, Knapp B (2020) An artificial intelligence-based first-line defence against COVID-19: Digitally screening citizens for risks via a chatbot. Sci Rep 10: 19012.

Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7: 146–157.

Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, Khan I (2021) Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J Infect Public Health 14: 938–946.

Nemati AS, Tafrihi M, Sheikhi F, Tabari AR, Haditabar A (2021) Designing a new multi epitope-based vaccine against COVID-19 disease: An immunoinformatic study based on reverse vaccinology approach. Res Sq [Preprint] DOI: 10.21203/rs.3.rs-206270/v1

Oany AR, Emran AA, Jyoti TP (2014) Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Devel Ther 8: 1139.

Ozono S, Zhang Y, Ode H, Seng TT, Imai K, Miyoshi K, Tokunaga K (2021) Naturally mutated spike proteins of SARS-CoV-2 variants show differential levels of cell entry. Nat Commun 12:848.

Pandey RK, Bhatt TK, Prajapati VK (2018) Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci Rep 8: 1125.

Park WB, Kwon NJ, Choi SJ, Kang CK, Choe PG, Kim JY, Oh MD (2020) Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci 35: 10–14.

Rapin N, Lund O, Bernaschi M, Castiglione F (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PloS One 5: e9862.

Safavi A, Kefayat A, Mahdevar E, Abiri A, Ghahremani F (2020) Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 38: 7612–7628.

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

Sen Gupta PS, Biswal S, Singha D, Rana MK (2021) Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2. J Biomol Struct Dyn 39: 5327–5333.

Siegrist CA (2008) Vaccine Immunology. Vaccines. SaundersElsevier, p. 17–36.

Singh A, Thakur M, Sharma LK, Chandra K (2020) Designing a multi-epitope peptide based vaccine against SARS-CoV-2. Sci Rep 10: 16219.

Tahir ul Qamar M, Shahid F, Aslam S, Ashfaq UA, Aslam S, Fatima I, Chen LL (2020) Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect DisPoverty 9: 132.

Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030–11035.

Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir Res 178: 104792.

Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T (2020) DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front Pharmacol 11: 1161.

Voloch CM, da Silva Francisco Jr R, de Almeida LG, Cardoso CC, Brustolini OJ, Gerber AL, de Vasconcelos ATR (2021) Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. Virol J 95: e00119-21.

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369: 330–333.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46: W296–W303.

Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Bieniasz PD (2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 9: e61312.

Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69: 635–664.

WHO (2020a) World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. Available at: https://www. who.int/emergencies/diseases/novel-coronavirus-2019/technicalguidance/naming-the-coronavirus-disease-(covid-2019)-and-thevirus-that-causes-it. [Accessed 2 March, 2020].

WHO (2020b) World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 32. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200221-sitrep-32-covid-19.pdf [Accessed January 05, 2022].

WHO (2021) World Health Organization. Coronavirus disease. Available from https://covid19.who.int/ [Accessed August 27, 2021].

Yadav V, Rajput M, Diwakar RP, Kumar R (2020) An Overview on transmission of diseases in special reference to COVID-19 and potential Tar-gets to control this pandemic. J Adv Microbiol Res 4: 015.

Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q (2020) Progress and prospects on vaccine development against SARS-CoV-2. Vaccines 8: 153.

Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, Xia B, Ma X, Yang T, Yu F, Liu J (2021) The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A 118: e2024202118.

Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17: 259–260.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270–273.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382: 727–733.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Roselle flower for immunomodulatory adjuvant therapy in COVID-19

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 418-428, May-June 2022

Original Article

Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach

[Antocianina, ácido tartárico, ácido ascórbico de flor de Jamaica (Hibiscus sabdariffa L.) para la terapia adyuvante inmunomoduladora en la manifestación oral de la enfermedad por coronavirus-19: Un enfoque inmunoinformático]

Nastiti Faradilla Ramadhani1, Alexander Patera Nugraha1,2*, Desintya Rahmadhani3, Martining Shoffa Puspitaningrum3, Yuniar Rizqianti3, Viol Dhea Kharisma4, Tengku Natasha Eleena binti Tengku Ahmad Noor5, Rini Devijanti Ridwan6, Diah Savitri Ernawati7, Albertus Putera Nugraha8

1Graduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

2Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

4Graduate Student of Biology Science, Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia

5Military Dental Officer of Royal Medical and Dental Corps, Malaysian Armed Forces, Indonesia.

6Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

7Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

8Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

*E-mail: alexander.patera.nugraha@fkg.unair.ac.id


Context: Oral manifestations that arose from COVID-19 infection often causes morbidity and systemic drug administration is less effective. Roselle flower (Hibiscus sabdariffa) is one of the plants that is often used in infusion as it gives health benefits. Hence, H. sabdariffa may benefit from adjuvant therapy to treat oral manifestation due to COVID-19.

Aims: To investigate the potential of H. sabdariffa anthocyanins, tartaric acid, and ascorbic acid chemical compounds as antiviral, anti-inflammatory, antioxidant, and increasing tissue regeneration in oral manifestation due to COVID-19 infection in silico.

Methods: Chemical compounds consisted of anthocyanins, (+)-tartaric acid, and ascorbic acid beside target proteins consisted of ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR and MDA-ovalbumin were obtained from the database, ligand samples were selected through absorption, distribution, metabolism, excretion and toxicology analysis, then molecular docking simulations, identification of protein-ligand interactions, and 3D visualization were performed.

Results: Anthocyanins, tartaric acid, and ascorbic acid are the active compounds in H. sabdariffa, which act as antioxidants. The activity of anthocyanin compounds is higher than other compounds through value binding affinity, which is more negative and binds to specific domains of target proteins by forming weak binding interactions that play a role in biological responses. Anthocyanins have the most negative binding energy compared to tartaric-acid and ascorbic acid.

Conclusions: Anthocyanins act as antioxidants; this mechanism increases heat shock protein-70 (HSP70), which may play an important role in increasing wound regeneration of oral manifestation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as documented in silico.

Keywords: COVID-19; dentistry; Hibiscus sabdariffa; infectious disease; medicine.


Contexto: Las manifestaciones orales derivadas de la infección por COVID-19 suelen causar morbilidad y la administración sistémica de fármacos es menos efectiva. La flor de Jamaica (Hibiscus sabdariffa) es una de las plantas que se suele utilizar en infusión ya que aporta beneficios para la salud. Por lo tanto, H. sabdariffa puede beneficiarse de la terapia adyuvante para tratar las manifestaciones orales debido a COVID-19.

Objetivos: Investigar el potencial de los compuestos químicos de H. sabdariffa, como antocianinas, ácido tartárico y ácido ascórbico como antivirales, antiinflamatorios, antioxidantes y el aumento de la regeneración de tejidos en la manifestación oral debido a la infección por COVID-19 a través de un enfoque inmunoinformático, un estudio in silico.

Métodos: Antocianinas, ácido tartárico y ácido ascórbico, además de proteínas diana como ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR y MDA-ovoalbúmina, se obtuvieron de la base de datos, las muestras de ligando se seleccionaron mediante análisis de absorción, distribución, metabolismo, excreción y toxicología, luego se realizaron simulaciones de acoplamiento molecular, identificación de interacciones proteína-ligando y visualización 3D.

Resultados: Las antocianinas, el ácido tartárico y el ácido ascórbico son los compuestos activos de H. sabdariffa que actúan como antioxidantes. La actividad de los compuestos de antocianina es mayor que la de otros compuestos a través de una afinidad de unión de valor que es más negativa y se une a dominios específicos de proteínas diana formando interacciones de unión débiles que desempeñan un papel en las respuestas biológicas. Las antocianinas tienen la energía de unión más negativa en comparación con el ácido tartárico y el ácido ascórbico.

Conclusiones: Las antocianinas actúan como antioxidantes; este mecanismo aumenta la proteína de choque térmico-70 (HSP70), que puede desempeñar un papel importante en el aumento de la regeneración de heridas de la manifestación oral en el síndrome respiratorio agudo severo coronavirus 2 (SARS-CoV-2) como se documenta in silico.

Palabras Clave: COVID-19; enfermedad infecciosa; Hibiscus sabdariffa; medicamento; odontología.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ramadhani NF, Nugraha AP, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Noor TNEBTA, Ridwan RD, Ernawati DS, Nugraha AP (2022) Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach. J Pharm Pharmacogn Res 10(3): 418–428.

Al-Snafi AE (2016) Pharmacological importance of Clitoria ternatea–A review. IOSR J Pharm 6(3): 68–83.

Amorim Dos Santos J, Normando AGC, Carvalho da Silva RL, De Paula RM, Cembranel AC, Santos-Silva AR, Guerra ENS (2020) Oral mucosal lesions in a COVID-19 patient: New signs or secondary manifestations? Int J Infect Dis 97: 326–328.

Arrigoni O, De Tullio MC (2002) Ascorbic acid: Much more than just an antioxidant. Biochim Biophys Acta 1569(1-3): 1–9.

Atiqi S, Hooijberg F, Loeff FC, Rispens T, Wolbink GJ (2020) Immunogenicity of TNF-inhibitors. Front Immunol 11: 312.

Babich O, Sukhikh S, Prosekov A, Asyakina L, Ivanova S (2020) Medicinal plants to strengthen immunity during a pandemic. Pharmaceuticals 13(10): 313.

Bell LCK, Meydan C, Kim J, Foox J, Butler D, Mason CE, Shapira SD, Noursadeghi M, Pollara G (2021) Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience 24(1): 101896.

Carvajal-Zarrabal O, Barradas-Dermitz DM, Orta-Flores Z, Hayward-Jones PM, Nolasco-Hipólito C, Aguilar-Uscanga MG, Miranda-Medina A, Bujang KB (2012) Hibiscus sabdariffa L, roselle calyx, from ethnobotany to pharmacology. J Exp Pharmacol 4: 25–39.

Coomes EA, Haghbayan H (2020) Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol 30(6): 1–9.

Danladi J, Sabir H (2021) Innate immunity, inflammation activation and heat-shock protein in COVID-19 pathogenesis. J Neuroimmunol 358: 577632.

Dewi AMC, Dagradi EM, Wibowo P (2021) The effect of high dose vitamin C (ascorbic acid) on pro-inflammatory cytokines in COVID-19. Med Health Sci J 5(1): 46–50.

Díaz Rodríguez M, Jimenez Romera A, Villarroel M (2020) Oral manifestations associated with COVID‐19. Oral Dis DOI: 10.1111/odi.13555

Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O (2020) Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci 21(9): 3242.

Fakeye T (2008) Toxicity and immunomodulatory activity of fractions of Hibiscus sabdariffa Linn (family Malvaceae) in animal models. Afr J Tradit Complement Altern Med 5(4): 394–398.

Galvan-Pena S, Leon J, Chowdhary K, Michelson DA, Vijaykumar B, Yang L, Magnuson A, Manickas-Hill Z, Piechocka-Trocha A, Worrall DP, Hall KE, Ghebremichael M, Walker BD, Li JZ, Yu XG, Mathis D, Benoist C (2020) Profound Treg perturbations correlate with COVID-19 severity. bioRxiv [Preprint]. 12(11): 416180.

Gani MA, Nurhan AD, Maulana S, Siswodihardjo S, Shinta DW, Khotib J (2021) Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. J Adv Pharm Technol Res 12: 120–126.

Gollen B, Mehla J, Gupta P (2018) Clitoria ternatea Linn: A herb with potential pharmacological activities: Future prospects as therapeutic herbal medicine. J Pharma Reports 3(1): 1000141.

Haider T, Simader E, Glück O, Ankersmit HJ, Heinz T, Hajdu S, Negrin LL (2019) Systemic release of heat-shock protein 27 and 70 following severe trauma. Sci Rep 9(1): 9595.

Heck TG, Ludwig MS, Frizzo MN, Rasia-Filho AA, Homem de Bittencourt PI (2020) Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: Lessons from basic research (inclusive bats), light on conceivable therapies. Clin Sci (Lond) 134(15): 1991–2017.

Iranmanesh B, Khalili M, Amiri R, Zartab H, Aflatoonian M (2021) Oral manifestations of COVID‐19 disease: A review article. Dermatol Ther 34(1): e14578.

Izquierdo-Vega JA, Arteaga-Badillo DA, Sánchez-Gutiérrez M, Morales-González JA, Vargas-Mendoza N, Gómez-Aldapa CA, Castro-Rosas J, Delgado-Olivares L, Madrigal-Bujaidar E, Madrigal-Santillán E (2020) Organic acids from roselle (Hibiscus sabdariffa L.)—A brief review of its pharmacological effects. Biomedicines 8(5): 100.

Jiang XW, Zhang Y, Zhang H, Lu K, Yang SK, Sun GL (2013) Double-blind, randomized, controlled clinical trial of the effects of diosmectite and basic fibroblast growth factor paste on the treatment of minor recurrent aphthous stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol 116(5): 570–575.

Khandia R, Munjal AK, Iqbal HMN, Dhama K (2017) Heat shock proteins: Therapeutic perspectives in inflammatory disorders. Recent Pat Inflamm Allergy Drug Discov 10(2): 94–104.

Kharisma VD, Ansori ANM, Widyananda MH, Utami SL, Nugraha AP (2020) Molecular simulation: The potency of conserved region on E6 HPV-16 as a binding target of black tea compounds against cervical cancer. Biochem Cell Arch 20(Suppl 1): 2795–2802.

Kharisma VD, Widyananda MH, Ansori ANM, Nege A, Naw SW, Nugraha AP (2021) Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res 9(4): 435–445.

Li S, Zhang Y, Guan Z, Li H, Ye M, Chen X, Shen J, Zhou Y, Shi ZL, Zhou P, Peng K (2020) SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther 5(1): 235.

López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA (2020) Immune response and COVID-19: A mirror image of sepsis. Int J Biol Sci 16(14): 2479–2489.

Luo XH, Zhu Y, Mao J, Du RC (2021) T cell immunobiology and cytokine storm of COVID-19. Scand J Immunol 93(3): e12989.

Luqman A, Kharisma VD, Ruiz RA, Götz F (2020) In silico and in vitro study of trace amines (TA) and dopamine (DOP) interaction with human alpha1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cell Physiol Biochem 54: 888–898.

Marpaung A (2020) Tinjauan manfaat bunga telang (Clitoria ternatea L.) bagi kesehatan manusia. J Funct Food Nutraceutical 1(2): 47–69.

Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M (2021) Changes in oxidative markers in COVID-19 patients. Arch Med Res 52(8): 843–849.

Mishra N, Tandon VL, Gupta R (2012) Immunomodulation by Hibiscus rosa-sinensis: Effect on the humoral and cellular immune response of Mus musculus. Pak J Biol Sci 15(6): 277–283.

Plum SM, Vu HA, Mercer B, Fogler WE, Fortier AH (2004) Generation of a specific immunological response to FGF-2 does not affect wound healing or reproduction. Immunopharmacol Immunotoxicol 26(1): 29–41.

Putra WE, Kharisma VD, Susanto H (2020) The exploration of medicinal plants’ phytochemical compounds as potential inhibitor against human α-3 nicotinic acetylcholine receptors: The insight from computational study. AIP Conf Proc 2231(1): 040078.

Reang J, Sharma PC, Thakur VK, Majeed J (2021) Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer. Biomolecules 11(8): 1130.

Sari F, Nurkhasanah, Bachri MS (2016) Acute toxicity test of rosella (Hibiscus sabdariffa L.) calyx ethanolic extract on Sprague Dawley rats. Trad Med J 21: 12–18.

Shruthi VH, Ramachandra CT, Nidoni U, Hiregoudar S, Naik N, Kurubar AR (2016) Roselle (Hibiscus sabdariffa L.) as a source of natural colour: A review. Plant Arch 16(2): 515–522.

Smadja DM, Philippe A, Bory O, Gendron N, Beauvais A, Gruest M, Peron N, Khider L, Guerin CL, Goudot G, Levavasseur F, Duchemin J, Pene F, Cheurfa C, Szwebel TA, Sourdeau E, Planquette B, Hauw-Berlemont C, Hermann B, Gaussem P, Samama CM, Mirault T, Terrier B, Sanchez O, Rance B, Fontenay M, Diehl JL, Chocron R (2021) Placental growth factor level in plasma predicts COVID-19 severity and in-hospital mortality. J Thromb Haemost 19(7): 1823–1830.

Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7(5): a016303.

Susanto H, Kharisma VD, Listyorini D, Taufiq A (2018) Effectivity of black tea polyphenol in adipogenesis related IGF-1 and its receptor pathway through in silico based study. J Phys Conf Ser 1093 (1): 012037.

Syahrana NA, Akrom A, Darmawan E (2017) Efek serbuk bunga rosella merah (Hibiscus sabdariffa L.) terhadap ekspresi IL-10 pada sukarelawan sehat. Indones J Pharm Pharm Sci 4(1): 1–5.

Umeoguaju FU, Ephraim-Emmanuel BC, Uba JO, Bekibele GE, Chigozie N, Orisakwe OE (2021) Immunomodulatory and mechanistic considerations of Hibiscus sabdariffa (HS) in dysfunctional immune responses: A systematic review. Front Immunol 12: 550670.

Velavan TP, Meyer CG (2020) The COVID‐19 epidemic. Trop Med Int Health 25(3): 278.

Vieira AR (2021) Oral manifestations in coronavirus disease 2019 (COVID-19). Oral Dis 27(3): 770.

Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Yulanda A (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res 9(4): 484–496

WHO (2021) World Health Organization. https://covid19.who.int/table [Accessed online on: 19 March 2021]

Yalçin B, Arda N, Tezel GG, Erman M, Alli N (2006) Expressions of vascular endothelial growth factor and CD34 in oral aphthous lesions of Behçet’s disease. Anal Quant Cytol Histol 28(6): 303–306.

Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2): 27–37.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Phytotherapy against COVID-19 and risks of intoxication

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 357-386, May-June 2022.

Original Article

Phytotherapy in response to COVID-19 and risks of intoxication: A field study in the city of Meknes (Morocco)

[Fitoterapia en respuesta al COVID-19 y riesgos de intoxicación: un estudio de campo en la ciudad de Meknes (Marruecos)]

Mariame Najem*, Jamal Ibijbijen, Laila Nassiri

Environment and Valorisation of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University of Meknes, P.O.B: 11201 Meknes, Morocco.

*E-mail: ma.najem@edu.umi.ac.ma, mariamenajem@gmail.com


Context: The contagious global pandemic of coronavirus 2019 (COVID-19) has prompted many Moroccans to turn to traditional phytoremedies.

Aims: To highlight the ethnopharmacological information and the risks of intoxication related to the use of herbal medicine to combat COVID-19.

Methods: Through a semi-structured questionnaire and using the “Free listing” technique, an ethnobotanical survey was conducted among 36 herbalists of the Meknes prefecture to collect ethnopharmacological data on species used in the fight against COVID-19. Then, many databases were used to document their pharmacological and toxicological activities.

Results: A total of 36 species in 22 families were reported to be used to prepare traditional recipes against COVID-19. According to the relative frequency index of citation, the species Artemisia herba-alba Asso, Eucalyptus globulus Labill, Syzygium aromaticum (L.) Merr. & L.M. Perry, Citrus limon (L.) Osbeck, and Zingiber officinale Roscoe. were recommended by all respondents and recorded the highest usage values. Based on the value of the plant parts index, leaves were the most used part (PPV = 0.37). Most of the remedies were prepared as infusions and administered orally. The bibliographic research revealed that the plants used have several biological activities and are frequently used to treat respiratory diseases. However, some of them have been reported to be toxic.

Conclusions: Recommended species are endowed with innumerable biological activities. They can be a promising alternative to combat COVID-19. However, their toxic effects require pharmacotoxicological studies to ensure the safety and efficacy of these natural remedies.

Keywords: COVID-19; ethnobotany; herbalism; Morocco; Meknes; phytotherapy; toxicity.


Contexto: La contagiosa pandemia mundial del coronavirus 2019 (COVID-19) ha llevado a muchos marroquíes a recurrir a los fitorremedios tradicionales.

Objetivos: Resaltar la información etnofarmacológica y los riesgos de intoxicación relacionados con el uso de fitoterápicos para combatir el COVID-19.

Métodos: A través de un cuestionario semiestructurado y utilizando la técnica de “Listado Libre”, se realizó un relevamiento etnobotánico entre 36 herbolarios de la prefectura de Meknes para recolectar datos etnofarmacológicos sobre especies utilizadas en la lucha contra COVID-19. Luego, se utilizaron muchas bases de datos para documentar sus actividades farmacológicas y toxicológicas.

Resultados: Se informó que un total de 36 especies en 22 familias se utilizaron en la preparación de recetas tradicionales contra COVID-19. Según el índice de frecuencia relativa de citación, las especies Artemisia herba-alba Asso, Eucalyptus globulus Labill, Syzygium aromaticum (L.) Merr. & L.M. Perry, Citrus limon (L.) Osbeck y Zingiber officinale Roscoe. son recomendados por todos los encuestados y registró los valores de uso más altos. Sobre la base del índice del valor de las partes de la planta, las hojas son la parte más utilizada (VPP = 0,37). La mayoría de los remedios se prepararon como infusiones y se administraron por vía oral. La investigación bibliográfica reveló que las plantas utilizadas tienen varias actividades biológicas y se utilizan con frecuencia en el tratamiento de enfermedades respiratorias. Sin embargo, se ha informado que algunos de ellos son tóxicos.

Conclusiones: Las especies recomendadas están dotadas de innumerables actividades biológicas, pueden ser una alternativa prometedora para combatir el COVID-19. Sin embargo, sus efectos tóxicos requieren estudios farmacotoxicológicos para garantizar la seguridad y eficacia de estos remedios naturales.

Palabras Clave: COVID-19; etnobotánica; fitoterapia; herboristería; Marruecos; Meknes; toxicidad.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Najem M, Ibijbijen J, Nassiri L (2022) Phytotherapy in response to COVID-19 and risks of intoxication: A field study in the city of Meknes (Morocco). J Pharm Pharmacogn Res 10(3): 357–386.

Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-Ldrissi M, Bouachrine M (2020) Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations. J Biomol Struct Dyn 39(8): 2971–2979.

Abdossi V, Moghaddam EY, Hadipanah A (2015) Chemical composition of Eucalyptus globulus grown in Iran. Biol Forum 7: 322–324.

Abdoul-Azize S (2016) Potential benefits of jujube (Zizyphus lotus L.) bioactive compounds for nutrition and health. J Nutr Metab 2016: 2867470.

Abdul-Jalil TZ, Saour KY, Nasser AA (2010) Phytochemical study of some flavonoids present in the fruits of two Ammi L. species wildly grown in Iraq. J Pharm Sci 19: 48–57.

Adam SE (1999) Effects of various levels of dietary Lepidium sativum L. seeds in rats. Am J Chin Med 27: 397–405.

Adekenov SM (1995) Sesquiterpene lactones from plants of the family Asteraceae in the Kazakhstan flora and their biological activity. Chem Nat Compd 31: 21–25.

Adhikari B, Marasini BP, Rayamajhee B, Bhattarai BR, Lamichhane G, Khadayat K, Adhikari A, Khanal S, Parajuli N (2020) Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID‐19: A review. Phytother Res 35(3): 1298–1312.

Agyare C, Appiah T, Boakye YD, Apenteng JA (2017) Petroselinum crispum: A Review. Medicinal Spices and Vegetables from Africa 25: 527–547.

Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 3: 337–352.

Ahmadipour S, Ahmadipour S, Mohsenzadeh A, Asadi-Samani M (2016) The importance of some native medicinal plants of Iran effective on gastrointestinal disorders in children: A review. Der Pharm Lett 8: 61–66.

Alamgeer, Younis W, Asif H, Sharif A, Riaz H, Bukhari IA, Assiri AM (2018) Traditional medicinal plants used for respiratory disorders in Pakistan: A review of the ethno-medicinal and pharmacological evidence. Chin Med 13: 48.

Al-Ashban RM, Abou-Shaaban RR, Shah AH (2010) Toxicity studies on Trigonella foenum-graecum L. seeds used in spices and as a traditional remedy for diabetes. Orient Pharm Exp Med 10: 66–78.

Al-Farwachi MI, Rhaymah MS, Al-Badrani BA (2008) Acute toxicity of Nerium oleander aqueous leaf extract in rabbits. Iraqi J Vet Sci 22: 1–4.

Al-Hizab FA, Hussein YA, Hasseeb MM, Barakat SE, Moqbel MS (2018) Toxico-pathological studies of Foeniculum vulgare plant in Mice. Open J Pathol 8: 123–131.

Alison J, Paul D (2008) Toxicologie d’urgence. 1ère édition Elsevier/Masson.

Al-Maqtari MAA, Alghalibi SM, Alhamzy EH (2011) Chemical composition and antimicrobial activity of essential oil of Thymus vulgaris from Yemen. Turk J Biochem 36: 342–349.

Al-Shoubaki R, Ahmed AKL, Sheikh I, Shaheen F (2020) Khella induced nephropathy: A case report and review of literature. Urol Nephrol Open Access J 8: 62–64.

Al-Snafi AE (2016) Medical importance of Anthemis nobilis (Chamaemelum nobile) – A review. Asian J Pharm Sci Technol 6: 89–95.

Amin JN, Murad A, Motasem AM, Ibrahem SR, Ass’ad JM, Ayed AM (2015) Phytochemical screening and in-vitro evaluation of antioxidant and antimicrobial activities of the entire Khella plant (Ammi visnaga L.) a member of palestinian flora. Int J Pharmacogn Phytochem Res 7: 137–143.

Amole O, Izegbu M (2005) Chronic toxicity of Chenopodium ambrosioides in rats. Biomed Res 16: 111–113.

Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P (2018) Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci OA 4(4): FSO283.

Anlar HG, Bacanli M (2020) Chapter 35 – Thymoquinone: The active compound of black seed (Nigella sativa). In Pathology. Preedy VR ed. Academic Press, pp. 369–378.

Anyinam C (1995) Ecology and ethnomedicine: Exploring links between current environmental crisis and indigenous medical practices. Soc Sci Med 40: 321–329.

Aouadhi S (2010) Atlas des risques de la phytothérapie rationnelle à l’étude de 57 plantes recommandées par les herboristes. faculté de médecine de Tunis, Tunis.

Araee M, Norouzi M, Habibi G, Sheikhvatan M (2009) Toxicity of Trigonella foenum graecum (fenugreek) in bone marrow cell proliferation in rat. Pak J Pharm Sci 22: 126–130.

Asadi-Samani M, Bahmani M, Rafieian-Kopaei M (2014) The chemical composition, botanical characteristic and biological activities of Borago officinalis: A review. Asian Pac J Trop Dis 7: S22–S28.

Awad AD, Khuon OS, Ali NA (2006) Spasmoltic activity of Ammi visnaga seeds on isolated rabbit jejunum. Basrah J Sci (B) 24: 47–58.

Bachiri L, Labazi N, Daoudi A, Ibijbijen J, Nassiri L, Echchegadda G, Et Mokhtari F (2015) Etude ethnobotanique de quelques lavandes marocaines spontanées. Int J Biol Chem Sci 9: 1308–1318.

Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT (2014) Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm Biol 52: 1487–1503.

Bakkali H, Ababou K, Nassim Sabah T, Moussaoui A, Ennouhi A, Fouadi FZ, Siah S, Ihrai H (2010) Les brulures chimiques par le laurier rose. Ann. Burn Fire Disasters 23: 128–130.

Baregama C, Goyal A (2019) Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum Linn.: A review. Asian J Pharm Clin Res 12: 45–50.

Bar-On YM, Flamholz A, Phillips R, Milo R (2020) SARS-CoV-2 (COVID-19) by the numbers. Elife 9: e57309.

Bary K, El Amraoui B (2020) Moroccan traditional medicine for the prevention and relief of corona virus COVID-19 symtomes. J Appl Sci Envir Stud 3: 199–208.

Bellakhdar J (1997) La pharmacopée marocaine traditionnelle, médecine arabe ancienne et savoirs populaires. Editions Le Fennec, Ibis Press, Casablanca, Maroc.

Beltagy AM, Beltagy DM (2015) Chemical composition of Ammi visnaga L. and new cytotoxic activity of its constituents khellin and visnagin. J Pharm Sci Res 7: 285–291.

Bencheraiet R, Kherrab H, Kabouche A, Kabouche Z, Jay M (2011) Flavonols and antioxidant activity of Ammi visnaga L. (Apiaceae). Rec Nat Prod 5: 52–55.

Benítez GC, González-Tejero MR, Molero-Mesa J (2010) Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): Ethnopharmacological synthesis. J Ethnopharmacol 129: 87–105.

Bhat JA, Kumar M, Bussmann RW (2013) Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. J Ethnobiol Ethnomed 9: 1.

Bone K, Mills S (2013) Principles and Practice of Phytotherapy: Modern Herbal Medicine. 2nd Edition. Elsevier Health Sciences.

Bouchentouf S, Missoum N (2020) Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel corona virus (Covid-19): Molecular docking study. ChemRxiv. DOI: 10.26434/chemrxiv.12055716.v1.

Boudghene Stambouli O (2017) Réactions cutanées et aggravation de dermatoses après applications de produits traditionnels à base d’épine vinette (Berberis vulgaris), phytothérapie (khella–fucus vésiculeux graines de carotte) et l’huile essentielle d’argan. Rev Fr Allergol 57: 246–247.

Boumediou A, Addoun S (2017) Étude ethnobotanique sur l’usage des plantes toxiques, en médecine traditionnelle, dans la ville de Tlemcen (Algérie). Université Abou Bekr Belkaîd. Faculte de Medecine Dr. B. Benzerdjeb – Tlemcen, Algérie.

Bousta D, Boukhira S, Aafi A, Ghanmi M, El-Mansouri L (2014) Ethnopharmacological study of anti–diabetic medicinal plants used in the Middle-Atlas region of Morocco (Sefrou region). Int J Pharma Res Health Sci 2: 75–79.

Bouyahya A, Abrini J, Et-Touys A, Bakri Y, Dakka N (2017) Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. Eur J Integr Med 13: 9–25.

Brneuton J (1996) Plantes toxiques: végétaux dangereux pour l’homme et les animaux. (1ère édition). Ed, Technique et Documentation Lavoisier. Paris, France.

Bukhari SI, Manzoor M, Dhar MK (2018) A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 98: 733–745.

Bunchorntavakul C, Reddy KR (2013) Review article: herbal and dietary supplement hepatotoxicity. Aliment Pharmacol Ther 37: 3–17.

Cabanillas M, Fernandez-Redondo V, Toribio J (2006) Allergic contact dermatitis to plants in a Spanish dermatology department: A 7-year review. Contact Derm 55: 84–91.

Cadena-González AL, Sørensen M, Theilade I (2013) Use and valuation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia. J Ethnobiol Ethnomed 9: 23.

Chahal KK, Kaur M, Bhardwaj U, Singla N, Kaur A (2017) A review on chemistry and biological activities of Laurus nobilis L. essential oil. J Pharmacogn Phytochem 6: 1153–1161.

Chan KW, Wong VT, Tang SCW (2020) COVID-19: An Update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-Western Medicine for the management of 2019 novel coronavirus disease. Am J Chin Med 48: 737–762.

Cheminat A, Stampf JL, Benezra C (1984) Allergic contact dermatitis to laurel (Laurus nobilis L.): Isolation and identification of haptens. Arch Dermatol Res 276: 178–181.

Choi EM, Hwang JK (2004) Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 75: 557–565.

Collins S, Martins X, Mitchell A, Teshome A, Arnason JT (2006) Quantitative ethnobotany of two East Timorese cultures. Econ Bot 60: 347–361.

Craft JD, Setzer WN (2017) The volatile components of parsley, Petroselinum crispum (Mill.) Fuss. Am J Essent Oil Nat Prod 5: 27–32.

Cronquist A (1982) An integrated system of classification of flowering plants. New York, United States: Columbia University Press.

Daoudi A, Aarab L, Abdel-Sattar E (2013) Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol Ind Health 29: 245–253.

Daoudi A, Bachiri L, Bammou M, Ibijbijen J, Nassiri L (2015) Étude ethnobotanique au Moyen Atlas Central. Eur Sci J 11: 226–242.

Daoudi A, Bammou M, Ibijbijen J, Nassiri L (2017) Antibacterial activity of aqueous extracts of Anacyclus pyrethrum (L) Link and Corrigiola telephiifolia Pourr. from the Middle Atlas Region-Morocco. Eur Sci J 13: 116–128.

Dehghani F, Heshmatpour A, Panjehshahin M, Talaei-Khozani T (2012) Toxic effects of water/alcoholic extract of Syzygium aromaticum on sperm quality, sex hormones and reproductive tissues in male mouse. Eur J Biol 71: 95–102.

Derraji A (2020) Covid-19 au Maroc: retour d’expérience d’un pharmacien d’officine. J Alger Pharm 3: 75–79.

Derraji S, Mahassin F, Rhalem N, Ouzzif Z (2014) Hépatotoxicité par Chenopodium ambrosioides à propos de 3 observations (colligées à l’hôpital militaire d’instruction Mohammed V, Rabat – Maroc). Toxicol Anal Clin 26: 176–180.

Dextreit R (1984) La cure végétale, Toutes les plantes pour se guérir, Vol 3, Editions de la Revue “Vivre en Harmonie”. Paris, France.

Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) Coronavirus Disease 2019–COVID-19. Clin Microbiol Rev 33(4): e00028-20.

Diao WR, Hu QP, Zhang H, Xu JG (2014) Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 35: 109–116.

Dossou-Yovo HO, Vodouhè FG, Sinsin B (2017) Ethnobotanical survey of mangrove plant species used as medicine from Ouidah to Grand-Popo Districts, Southern Benin. Am J Ethnomed 4(1): 8.

Duarte J, Torres AI, Zarzuelo A (2000) Cardiovascular effects of visnagin on rats. Planta Med 66: 35–39.

Durasnel P, Vanhuffel L, Blondé R, Lion F, Galas T, Mousset-Hovaere M, Balaÿ I, Viscardi G, Valyi L (2014) Intoxications graves lors de traitements traditionnels par les plantes à Mayotte. Bull Soc Pathol Exot 107: 306–311.

Durnev AD, Lapitskaya AS (2013) The genotoxicology of plant compounds. Russ J Genet Appl Res 3: 388–398.

El Atki Y, Aouam I, El Kamari F, Taroq A, Lyoussi B, Oumokhtar B, Abdellaoui A (2019a) Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab J Chem 13(2): 3866–3874.

El Atki Y, Aouam I, El Kamari F, Taroq A, Zejli H, Taleb M, Abdellaoui A (2020) Antioxidant activities, total phenol an flavonoid contents of two Teucrium polium subspecies extracts. Mor J Chem 8: 446–455.

El Atki Y, Aouam I, Taroq A, Lyoussi B, Taleb M, Abdellaoui A (2019b) Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Mater Today: Proc 13: 777–783.

El-Saber Batiha G, Magdy Beshbishy A, Wasef L, Elewa YHA, Al-Sagan A, Abd El-Hack ME, Taha AE, Abd-Elhakim Y, Prasad Devkota H (2020) Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 12: 872.

Esquivel-Ferriño PC, Favela-Hernández JMJ, Garza- González E, Waksman N, Ríos MY, Camacho-Corona MdR (2012) Antimycobacterial activity of constituents from Foeniculum vulgare var. dulce grown in Mexico Molecules 17: 8471–8482.

Ez Zoubi Y, Bousta D, Farah AA (2020) A phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. Clin Phytosci 6: 9.

Fennane M, Ibn Tattou M (1998) Catalogue des plantes vasculaires rares, menacées ou endémiques du Maroc. Bocconea 8: 5–243.

Fennane M, Ibn Tattou M, El Oulaidi J (2014) Flore pratique du Maroc. Vol. 3, Travaux Institut Scientifique. Sér. Botanique N° 40. Rabat, Maroc.

Fennane M, Ibn Tattou M, Mathez J, Ouyahya A, El Oulaidi J (1999) Flore pratique du Maroc. Vol. 1, Travaux Institut Scientifique, Sér. Botanique N° 36, Rabat, Maroc.

Fennane M, Ibn Tattou M, Ouyahya A, El Oulaidi J (2007) Flore pratique du Maroc. Vol. 2, Travaux Institut Scientifique. Sér. Botanique N° 38, Rabat, Maroc.

Flesch F (2005) Intoxications d’origine végétale. EMC-Médecine 2: 532–546.

GabAllah M, Kandeil A, Mousa AEB, Ahmed Ali M (2020) Antiviral activity of water extracts of some medicinal and nutritive plants from the Apiaceae family. Novel Res Microbiol J 4: 725–735.

Gardiner P (1999) Chamomile (Matricaria recutita, Anthemis nobilis). The Longwood Herbal Task Force, pp. 1–21.

Gattefossé J (1952) L’Ammi visnaga et la khelline. Rev Int Bot Appl Agric Trop 353-354: 116–123.

Gavliakova S, Biringerova Z, Buday T, Brozmanova M, Calkovsky V, Poliacek I, Plevkova J (2013a) Antitussive effects of nasal thymol challenges in healthy volunteers. Respir Physiol Neurobiol 187: 104–107.

Gavliakova S, Dolak T, Licha H, Krizova S, Plevkova J (2013b) Cineole, thymol and camphor nasal challenges and their effect on nasal symptoms and cough in an animal model. Acta Medica Martiniana 13: 5–13.

Gerenutti M, Modesto L, Carrara VA, Magalhães SA, Paulo S (2014) Maternal exposure to aqueous extract of Mentha pulegium L. inducing toxicity to embryo development in rats. Afr J Pharm Pharmacol 8: 609–614.

Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 7: 433–440.

Gille L, Monzote L, Stamberg W, Staniek K (2010) Toxicity of ascaridole from Chenopodium ambrosioides in mammalian mitochondria. BMC Pharmacol 10(suppl. 1): A10.

Grange JM, Davey RW (1990) Detection of antituberculous activity in plant extracts. J Appl Bacteriol 68: 587–591.

H.C.P. (2013) Monographie de la Région Meknès_Tafilalt (Haut Commissariat au Plan, Direction Régionale de Meknès, Maroc.

H.C.P. (2018) Recensement Général de la Population et de l’Habitat au Maroc 2014. In Haut-commissariat au Plan. http://rgphentableaux.hcp.ma/Default1/ (accessed 10 March 2021).

Hadi MY, Hameed IH, Ibraheam IA (2017) Mentha pulegium: Medicinal uses, anti-hepatic, antibacterial, antioxidant effect and analysis of bioactive natural compounds: A review. Res J Pharm Technol 10: 1827–1831.

Hammiche V, Merad R, Azzouz M (2013) Plantes toxiques à usage médicinal du pourtour méditerranéen. Hammiche V, Merad R, Azzouz M, eds. France, Paris: Springer-Verlag, p. 393.

Haque A, Khatun R, Yaakob Z (2015) Gas chromatography mass spectrometry analysis and in vitro antibacterial activity of essential oil from Trigonella foenum-graecum. Asian Pac J Trop Biomed 5: 1033-1036.

Hardel DK, Laxmidhar S (2011) A review on phytochemical and pharmacological of Eucalyptus globulus: A multipurpose tree. Int J Ayurveda Res 2: 1527–1530.

Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S (2015) Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid Based Complement Alternat Med 2015: 541591.

He F, Deng Y, Li W (2020) Coronavirus disease 2019: What we know? J Med Virol 92: 719–725.

Hebi M, Eddouks M (2019) Hypolipidemic and antioxidant activities of Corrigiola telephiifolia in diabetic rats. Cardiovasc Hematol Agents Med Chem 17: 47–51.

Hebi M, Eddouks M (2020) Antidiabetic effect of aqueous Corrigiola telephiifolia in streptozotocin-induced diabetic rats. Nat Prod J 10: 61–68.

Hedayat KM, Lapraz JC, Schuff B (2020) The Theory of Endobiogeny. Vol. 4, Bedside Handbook, Academic Press.

Hussain W, Haleem KS, Khan I, Tauseef I, Qayyum S, Ahmed B, Riaz MN (2017) Medicinal plants: A repository of antiviral metabolites. Future Virol 12: 299–308.

Jain SK (1964) The role of botanist in folklore research. Folklore 5: 145–150.

Jamshidi-Kia F, Lorigooini Z, Asgari S, Saeidi K (2018) Iranian species of Verbascum: A review of botany, phytochemistry, and pharmacological effects. Toxin Rev 38(4): 255–262.

Jassim SAA, Naji MA (2003) Novel antiviral agents: A medicinal plant perspective. J Appl Microbiol 95: 412–427.

Kahouadji A (1986) Recherches floristiques sur le massif montagneux des Béni-Snassène (Maroc oriental). Thèse d’Université des Sciences et Techniques, Languedoc, Montpellier.

Karimi E, Oskoueian E, Karimi A, Noura R, Ebrahimi M (2017) Borago officinalis L. flower: A comprehensive study on bioactive compounds and its health-promoting properties. J Food Meas Charact 12: 826–838.

Kayani S, Ahmad M, Zafar M, Sultana S, Khan MPZ, Ashraf MA, Hussain J, Yaseen G (2014) Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies – Abbottabad, Northern Pakistan. J Ethnopharmacol 156: 47–60.

Keddad A, Baaliouamer A, Hazzit M (2016) Chemical composition and antioxidant activity of essential oils from umbels of Algerian Ammi visnaga (L.). J Essent Oil Bear Plants 19: 1243–1250.

Kharchoufa L, Alami Merrouni I, Yaman A, Elachouri M (2018) Profile on medicinal plants used by the people of North Eastern Morocco: Toxicity concerns. Toxicon 154: 90–113.

Khazaei M, Nematollahi-Mahani SN, Mokhtari T, Sheikhbahaei F (2018) Review on Teucrium polium biological activities and medical characteristics against different pathologic situations. J Contemp Med Sci 4(1): 1–6.

Kiran C, Prasad DN (2014) A review on: Nerium oleander Linn. (Kaner). Int J Pharmacogn Phytochem Res 6: 593–597.

Klauke A, Racz I, Pradier B, Markert A, Zimmer AM, Gertsch J, Zimmer A (2014) The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur Neuropsychopharmacol 24: 608–620.

Klimek-Szczykutowicz M, Szopa A, Ekiert H (2020) Citrus limon (lemon) phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 9(1): 119.

Kompelly A, Kompelly S, Vasudha B, Narender B (2019) Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. J Drug Deliver Ther 9: 323–330.

Kooti W, Moradi M, Ali Akbari S, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D (2015) Therapeutic and pharmacological potential of Foeniculum vulgare Mill: A review. J HerbMed Pharmacol 4(1): 1–9.

Kubica P, Szopa A, Dominiak J, Luczkiewicz M, Ekiert H (2020) Verbena officinalis (common vervain) – A review on the investigations of this medicinally important plant species. Planta Med 86: 1241–1257.

Kumar Gupta S, Sharma A (2014) Medicinal properties of Zingiber officinale Roscoe-A review. J Pharm Biol Sci 9: 124–129.

Kumar R, Mishra AK, Dubey NK, Tripathi YB (2007) Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int J Food Microbiol 115: 159–164.

Kunzemann J, Herrmann K (1977) Isolation and identification of flavon (ol)-O-glycosides in caraway (Carum carvi L.), fennel (Foeniculum vulgare Mill.), anise (Pimpinella anisum L.), and coriander (Coriandrum sativum L.), and of flavon-C-glycosides in anise. I. Phenolics of spices (author’s transl). Z Lebensm Unters Forsch 164: 194–200.

Lakmichi H, Bakhtaoui FZ, Gadhi CA, Ezoubeiri A, Jahiri El, Mansouri El, Zrara I, Loutfi K (2011) Toxicity profile of the aqueous ethanol root extract of Corrigiola telephiifolia Pourr. (Caryophyllaceae) in rodents. Evid Based Complement Alternat Med 2011: 317090.

Lamarti A, Badoc A, Carde JP (1993) Étude chromatographique de l’huile essentielle de la plantule de fenouil amer (Foeniculum vulgare Mill.); caractéristiques spectrales (uv, ir,sm) de ses constituants. Bull Soc Pharm 132: 73–89.

Levorato S, Dominici L, Fatigoni C, Zadra C, Pagiotti R, Moretti M, Villarini M (2018) In vitro toxicity evaluation of estragole-containing preparations derived from Foeniculum vulgare Mill. (fennel) on HepG2 cells. Food Chem Toxicol 111: 616–622.

Li XJ, Yang YJ, Li YS, Zhang WK, Tang HB (2016) Tang α-pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol 179: 22–26.

Lima CF, Carvalho F, Fernandes E, Bastos ML, Santos-Gomes P, Fernandes-Ferreira M, Pereira-Wilson C (2003) Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicol In Vitro 18: 457–465.

Lin J, Puckree T, Mvelase TP (2002) Anti-diarrhoeal evaluation of some medicinal plants used by Zulu traditional healers. J Ethnopharmacol 79: 53–56.

Lobstein A, Couic-Marinier F, Koziol N (2018) Huile essentielle d’Eucalyptus globulus. Actual Pharm 57: 59–61.

Lodhi S, Vadnere GP, Sharma VK, Usman M (2017) Marrubium vulgare L.: A review on phytochemical and pharmacological aspects. J Intercult Ethnopharmacol 6: 429–452.

Luo L, Jiang J, Wang C, Fitzgerald M, Hu W, Zhou Y, Zhang H, Chen S (2020) Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm Sin B 10: 1192–1204.

Martin GJ (2014) Ethnobotany: A Methods Manual. Boston, MA: Springer, pp. 296.

Martins RDP, Roseli AS, Gomes ACG, Malpass MHO (2019) Chemical characterization of Lavandula dentata L. essential oils grown in Uberaba-MG. Cienc Rural 49(8): e20180964.

Mazokopakis E, Lazaridou S, Tzardi M, Mixaki J, Diamantis I, Ganotakis E (2004) Acute cholestatic hepatitis caused by Teucrium polium L. Phytomedicine 11: 83–84.

Milpied-Homsi B (2009) Progrès en dermato-allergologie. John Libbey Eurotext, Bordeaux.

Mimica‐Dukić N, Kujundžić S, Soković M, Couladis M (2003) Essential oil composition and antifungal activity of Foeniculum vulgare Mill. obtained by different distillation conditions. Phytother Res 17: 368–371.

Miraj S, Kiani S (2016a) A review study of therapeutic effects of Salvia officinalis L‏. Der Pharm Lett 8: 299–303.

Miraj S, Kiani S (2016b) Study of pharmacological effect of Mentha pulegium: A review. Der Pharm Lett 8: 242–245.

Mittal M, Gupta N, Parashar P, Mehra V, Khatri M (2014) Phytochemical evaluation and pharmacological activity of Syzygium aromaticum: A comprehensive review. Int J Pharm Pharm Sci 6: 67–72.

Mohamad RH, El-Bastawesy AM, Abdel-Monem MG, Noor AM, Al-Mehdar HA, Sharawy SM, El-Merzabani MM (2011) Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). J Med Food 14: 986–1001.

Mohamed A, El-Hamd H, El-Sayed MA, Hegazy ME, Helaly SE, Esmail AM, Mohamed NS (2010) Chemical constituents and biological activities of Artemisia herba-alba. Rec Nat Prod 4(1): 1–25.

Mohammadi Nejad S, Özgüneş H, Başaran N (2017) Pharmacological and toxicological properties of eugenol. Turk J Pharm Sci 14: 201–206.

Moufid A, Eddouks M (2012) Artemisia herba alba: A popular plant with potential medicinal properties. Pak J Biol Sci 15: 1152–1159.

Najem M, Bachiri L, Bouiamrine EH, Ibijbijen J, Nassiri L (2020c) Overview of some toxicplants for medicinal use: the case of the central Middle Atlas – Morocco. Ethnobot Res Appl 19: 1–39.

Najem M, Belaidi R, Harouak H, Bouiamrine EH, Ibijbijen J, Nassiri L (2018b) Occurrence de plantes toxiques en phytothérapie traditionnelle dans la région du Moyen Atlas central Maroc. J Anim Plant Sci 35: 5651–5673.

Najem M, Belaidi R, Slimani I, Bouiamrine EH, Ibijbijen J, Nassiri L (2018a) Pharmacopée traditionnelle de la région de Zerhoun – Maroc -: connaissances ancestrales et risques de toxicité. Int J Biol Chem Sci 12: 2797–2807.

Najem M, Daoudi A, Bouiamrine EH, Ibijbijen J, Nassiri L (2019b) Biodiversity of poisonous medicinal plants solicited in the traditional phytotherapy of the central Middle Atlas -Morocco. Ethnobot Res Appl 18: 1–23.

Najem M, Harouak H, Ibijbijen J, Nassiri L (2020a) Oral disorders and ethnobotanical treatments: A field study in the central Middle Atlas (Morocco). Heliyon 6(8): e04707.

Najem M, Ibijbijen J, Nassiri L (2019a) Quantitative ethnobotanical study of poisonous medicinal plants used in the traditional pharmacopoeia of the Central Middle Atlas Region: Morocco. Ethnobot Res Appl 18: 1–17.

Najem M, Ibijbijen J, Nassiri L (2020b) Vernacular names of toxic plants used as medicine in the central Middle Atlas – Morocco. Ethnobot Res Appl 20: 1–30.

Najem M, Ibijbijen J, Nassiri L (2021b) Ethnobotanical treatment of respiratory diseases in the central Middle Atlas (Morocco): Qualitative and quantitative approach. Eur J Integrat Med 46: 101358.

Najem M, Nassiri L, Ibijbijen J (2021a) Vernacular names of plants between diversity and potential risks of confusion: Case of toxic plants used in medication in the central Middle Atlas, Morocco. J Pharm Pharmacogn Res 9: 222–250.

Najem M, Nassiri L, Ibijbijen J 2021c) Origin of vernacular names of plants: Case of toxic plants for medicinal use in the central Middle Atlas – Morocco. Interdiscip Sci Rev. DOI: 10.1080/03080188.2021.1918371.

Nassiri L, Zarkani S, Daoudi A, Bammou M, Bouiamrine EH, Ibijbijen J (2016) Contribution à l’élaboration d’un catalogue ethnobotanique de la commune rurale d’Aguelmous (Province de Khénifra, Maroc). Int J Innov Appl Stud 17: 373–387.

Nawash O, Shudiefat M, Al-Tabini R, Al-Khalidi K (2013) Ethnobotanical study of medicinal plants commonly used by local Bedouins in the Badia region of Jordan. J Ethnopharmacol 148: 921–925.

Ni L, Zhou L, Zhou M, Zhao J, Wang DW (2020) Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19. Front Med 14: 210–214.

Nolkemper S, Reichling J, Stintzing FC, Carle R, Schnitzler P (2006) Antiviral effect of aqueous extracts from species of the Lamiaceae family against herpes simplex virus type 1 and type 2 in vitro. Planta Med 72: 1378–1382.

Olaiya CO, Soetan KO (2014) A review of the health benefits of fenugreek (Trigonella foenum-graecum L.): Nutritional, biochemical and pharmaceutical perspectives. Am J Soc Issues Humanit 4: 3–12.

Oliveira AP, Valentão P, Pereira JA, Silva BM, Tavares F, Andrade PB (2009) Ficus carica L.: Metabolic and biological screening. Food Chem Toxicol 47: 2841–2846.

Orav A, Raal A, Arak E (2008) Essential oil composition of Pimpinella anisum L. fruits from various European countries. Nat Prod Res 22: 227–232.

Ostad SN, Soodi M, Shariffzadeh M, Khorshidi N, Marzban H (2001) The effect of fennel essential oil on uterine contraction as a model for dysmenorrhea, pharmacology and toxicology study. J Ethnopharmacol 76: 299–304.

Ould El Hadj M, Didi M, Hadj-Mahammed M, Zabeirou H (2003) Place des plantes spontanées dans la médicine traditionnelle de la région d’Ouargla (Sahara septentrional Est). Courr Savoir 3: 47–51.

Pankaj S, Lokeshwar T, Mukesh B, Vishnu B (2011) Review on neem (Azadirachta indica): Thousand problems one solution. Int Res J Pharm 2: 97–102.

Parejo I, Viladomat F, Bastida J, Schmeda-Hirschmann G, Burillo J, Codina C (2004) Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. J Agric Food Chem 52: 1890–1897.

Parthiban R, Vijayakumar S, Prabhu S, Yabesh JM (2016) Quantitative traditional knowledge of medicinal plants used to treat livestock diseases from Kudavasal taluk of Thiruvarur district, Tamil Nadu, India. Rev Bras Farmacogn 26: 109–121.

Patrakar R, Mansuriya M, Patil P (2012) Phytochemical and pharmacological review on Laurus nobilis. Int J Pharm Chem Sci 1: 595–602.

Peana AT, D’Aquila PS, Chessa ML, Moretti MDL, Serra G, Pippia P (2003) Pippia (-)-linalool produces antinociception in two experimental models of pain. Eur J Pharmacol 460: 37–41.

Pelkonen O, Abass K, Wiesner J (2013) Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul Toxicol Pharmacol 65: 100–107.

Peng C, Zhu Z, Shi Y, Wang X, Mu K, Yang Y, Zhang X, Xu Z, Zhu W (2020) Exploring the binding mechanism and accessible angle of SARS-CoV-2 spike and ACE2 by molecular dynamics simulation and free energy calculation. ChemRxiv 11: 1–14.

Pereira OR, Macias RI, Domingues MR, Marin JJ, Cardoso SM (2019) Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L. Antioxidants 8(8): 267.

Pierre M, Lis M (1992) Au bonheur des plantes. Paris, France: Ed. Belford, pp. 476.

Prasanth Reddy V, Ravi Vital K, Varsha PV, Satyam S (2014) Review on Thymus vulgaris traditional uses and pharmacological properties. Med Aromat Plant 3: 3.

Rafieian-Kopaei M, Nasri H, Baradaran A (2014) Teucrium polium: Liver and kidney effects. J Res Med Sci 19: 478–479.

Ranasinghe P, Pigera S, Premakumara GS, Galappaththy P, Constantine GR, Katulanda P (2013) Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Complement Alternat Med 13: 275.

Reyes-Becerril M, Angulo C, Sanchez V, Vázquez-Martínez J, López MG (2019) Antioxidant, intestinal immune status and anti-inflammatory potential of Chenopodium ambrosioides L. in fish: In vitro and in vivo studies. Fish Shellfish Immunol 86: 420–428.

Rodríguez-Morales AJ, MacGregor K, Kanagarajah S, Patel D, Schlagenhauf P (2020) Going global – Travel and the 2019 novelcoronavirus. Travel Med Infect Dis 33: 101578.

Santos FA, Rao VSN (2000) Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 14: 240–244.

Savo V, Giulia C, Maria GP, David R (2011) Folk phytotherapy of the Amalfi Coast (Campania, Southern Italy). J Ethnopharmacol 135: 376–392.

Semyaril H, Owlia P, Farhadi S, Saeed TM (2011) Evaluation of antimicrobial effect of Ammi visnaga against oral streptococci. J Microbiol Antimicrob 3: 126–129.

Shankar A, Dubey A, Saini D, Prasad CP (2020) Role of complementary and alternative medicine in prevention and treatment of COVID-19: An overhyped hope. Chin J Integr Med 26: 565–567.

Sharma AD, Kaur I (2020) Molecular docking studies on jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. Res Rev Biotechnol Biosci 7: 59–66.

Shaza MA (2016) Phytochemical screening of Petroselinum crispum (Mill.) Fuss and in vitro evaluation of its antimicrobial activity against some uropathogens. Arab J Med Aromat Plant 2: 86–98.

Sijelmassi A (1993) Les plantes médicinales du Maroc. Casablanca, Maroc: Edition Le Fennec.

Singh N, Rao AS, Nandal A, Kumar S, Yadav SS, Ganaie SA, Narasimhan B (2021) Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition. Food Chem 338: 127773.

Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 87: 281–286.

Tahri N, El Basti A, Zidane L, Rochdi A, Douira A (2012) Etude ethnobotanique des plantes medicinales dans la province de Settat (Maroc). J For Fac 12: 192–208.

Talaat IM, Khattab HI, Ahmed AM (2013) Changes in growth, hormones levels and essential oil content of Ammi visnaga L. plants treated with some bio-regulators. Saudi J Biol Sci 21: 355–365.

Tas A, Ozbek H, Atasoy N, Altug ME, Ceylan E (2006) Evaluation of analgesic and anti-inflammatory activity of Pimpinella anisum fixed oil extract. Indian Vet J 83: 840–843.

Tatli I, Akdemir ZS (2004) Chemical constituents of Verbascum L. species. Fabad J Pharm Sci 29: 93–107.

Teixeira B, Marques A, Ramos C, Batista I, Serrano C, Matos O, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML (2012) European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind Crops Prod 36: 81–87.

Tirapelli CR, de Andrade CR, Cassano AO, De Souza FA, Ambrosio SR, da Costa FB, de Oliveira AM (2007) Antispasmodic and relaxant effects of the hidroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle. J Ethnopharmacol 110: 23–29.

Vanachayangkul P, Byer K, Khan S, Butterweck V (2010) An aqueous extract of Ammi visnaga fruits and its constituents khellin and visnagin prevent cell damage caused by oxalate in renal epithelial cells. Phytomedicine 17: 653–658.

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G (2013) Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—An alpine ethnobotanical study. J Ethnopharmacol 145: 517–529.

Wang L, Zhang T, Zhang JL, Yu Y, Gan ZM (2012) Experimental study of Chinese herb Foeniculum vulgare Mill on liver hepatic fibrosis and potassium supplement in rats. J Xinjiang Med Univ 9: 1–9.

Zaghlol DA, Kamel E, Mohammed D, Abbas NH (2012) The possible toxic effect of different doses of Nigella sativa oil on the histological structure of the liver and renal cortex of adult male albino rats. Egypt J Histol 35: 127–136.

Zakariya I, Elhamdaoui O, Ibn Lahmar Andaloussi Z, Chergui A, Taghzouti K, Nejjari R (2020) Acute diuretic activity of the aqueous ethanol root extract of Corrigiola telephiifolia Pourr. in rats. Pharmacogn J 12: 1552-1558.

Zaman W, Saqib S, Ullah F, Ayaz A, Ye J (2020) COVID-19: Phylogenetic approaches may help in finding resources for natural cure. Phytother Res 34: 2783–2785.

Zaoui A, Cherrah Y, Mahassini N, Alaoui K, Amarouch H, Hassar M (2002) Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine 9: 69–74.

Zeggwagh AA, Lahlou Y, Bousliman Y, Ousliman Y (2013) Enquete sur les aspects toxicologiques de la phytotherapie utilisee par un herboriste à Fes, Maroc. Pan Afr Med J 14: 125.

Zenjari L, Elfatoiki FZ, Hali F, Chiheb S (2019) Phytophotodermatose des mains à Marrubium vulgare chez une enfant. Ann Dermatol Venereol 146: A193–A194.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Moroccan medicinal plants against COVID-19

J Pharm Pharmacogn Res 10(2): 227-238, 2022.

Original Article

Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco

[Estudio de acoplamiento molecular de los principales fitoquímicos de algunas plantas medicinales utilizadas contra el COVID-19 por la población rural de la región de Al-Haouz, Marruecos]

Ridwane Ghanimi1*, Ahmed Ouhammou2, Yassine El Atki3, Mohamed Cherkaoui1

1Laboratory of Pharmacology, Neurobiology, Anthropobiology, Environment and Behaviour, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, BP 2390, 40000, Morocco.

2Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Agrosciences, Phytobiodiversity and Environment Team, Regional Herbarium ‘MARK’, Department of Biology, Faculty of Sciences Semlalia , Cadi Ayyad University, PO. Box 2390, Marrakech, 400001, Morocco.

3Laboratory of Physiology Pharmacology and Environmental Health, Department of Biology, Faculty of Sciences Dhar Mehraz,Sidi Mohamed Ben Abdellah University, Fez, Morocco.

*E-mail: ghanimiridwane@gmail.com, ridwane.ghanimi@ced.uca.ma


Context: The infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global health emergency. The management of this crisis requires the discovery of new drugs able to cure or reduce the severity of SARS-CoV-2.

Aims: To explore the medicinal plants consumed by the rural population of Al-Haouz region against the emergence of the COVID-19, and to assess in silico the main phytochemicals present in the essential oils and the extracts of these medicinal plants, as potential inhibitors of the COVID-19 main protease (Mpro).

Methods: The survey was conducted through a semi-structured questionnaire among 85 respondents aged 30 years and above, in the Al-Haouz region, Morocco. AutoDock Vina, was used to assess the binding affinity of the phytochemicals to the Mpro.

Results: Eleven wild medicinal species were cited; 10 belonging to the Lamiaceae family and one to the Compositae family. Thymus saturejoides Coss., Artemisia herba-alba Asso.and Mentha suaveolens Ehrh. were respectively the three most cited species during the survey. The rosmarinic acid (-7.7 kcal/mol), hesperetin (-7.2 kcal/mol), gallocatechin (-7.2 kcal/mol) and cyasterone (-7.2 kcal/mol) have shown the higher inhibitory potential against covid-19 Mpro respectively.

Conclusions: In addition to their different recognized biological activities, the medicinal plants used in the Al-Haouz region have shown good inhibitory potential against SARAS-CoV-2 Mpro. Furthermore, the phytochemicals that exhibited the highest inhibitory potentials in this virtual study require further investigation in vitro and in vivo.

Keywords: COVID-19; ethnomedicine; medicinal plants; molecular docking; Morocco; SARS-CoV-2.


Contexto: La infección por el coronavirus 2 del síndrome respiratorio agudo severo (SARS-CoV-2) es una emergencia sanitaria mundial. El manejo de esta crisis requiere el descubrimiento de nuevos medicamentos capaces de curar o reducir la gravedad del SARS-CoV-2.

Objetivos: Explorar las plantas medicinales consumidas por la población rural de la región de Al-Haouz frente a la aparición del COVID-19, y evaluar in silico los principales fitoquímicos presentes en los aceites esenciales y los extractos de estas plantas medicinales, como potenciales inhibidores. de la proteasa principal COVID-19 (Mpro).

Métodos: La encuesta se realizó a través de un cuestionario semiestructurado entre 85 encuestados de 30 años o más, en la región de Al-haouz, Marruecos. Se utilizó AutoDock Vina para evaluar la afinidad de unión de los fitoquímicos al Mpro.

Resultados: Se citaron once especies medicinales silvestres; 10 pertenecientes a la familia Lamiaceae y una a la familia Compositae. Thymus saturejoides Coss., Artemisia herba-alba Asso. y Mentha suaveolens Ehrh. fueron, respectivamente, las tres especies más citadas durante la encuesta. El ácido rosmarínico (-7,7 kcal/mol), la hesperetina (-7,2 kcal/mol), la galocatequina (-7,2 kcal/mol) y la ciasterona (-7,2 kcal/mol) han mostrado el mayor potencial inhibitorio frente al covid-19 Mpro, respectivamente.

Conclusiones: Además de sus diferentes actividades biológicas reconocidas, las plantas medicinales utilizadas en la región de Al-Haouz han mostrado un buen potencial inhibitorio contra SARAS-CoV-2 Mpro. Además, los fitoquímicos que exhibieron los potenciales inhibidores más altos en este estudio virtual requieren más investigación in vitro e in vivo.

Palabras Clave: acoplamiento molecular; COVID-19; etnomedicina; Marruecos; plantas medicinales; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ghanimi R, Ouhammou A, El Atki Y, Cherkaoui M (2022) Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. J Pharm Pharmacogn Res 10(2): 227–238.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Volume 9, Suppl. 1 (MICPS 2021)

J Pharm Pharmacogn Res 9(Suppl. 1), (October) 2021

1st Makassar International Conference on Pharmaceutical Sciences

(MICPS 2021)

Empowering Natural Product in Drugs Discovery and Development

Faculty of Pharmacy Universitas Muslim Indonesia

Makassar, Indonesia

September 25-26, 2021

Conference Proceedings  [1.3 Mb]
Editing, design and realization: Gabino Garrido, Marisela Valdés, Xavier Garrido, Muammar Fawwaz, Aktsar Roskiana Ahmad
Editorial Scientific Council: Muammar Fawwaz, Aktsar Roskiana Ahmad, A. Emelda, Nurmaya Effendi

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Moringa oleifera and Curcuma longa versus SARS-CoV-2

J Pharm Pharmacogn Res 10(1): 138-146, 2022.

Original Article

Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach

[Combinación de hierbas de Moringa oleifera Lam. y Curcuma longa L. como antiviral SARS-CoV-2 a través de la vía del inhibidor dual: Un enfoque de viroinformática]

Viol Dhea Kharisma1,2#, Aggy Agatha2,3, Arif Nur Muhammad Ansori4#, Muhammad Hermawan Widyananda2,5, Wahyu Choirur Rizky6, Tim Godefridus Antonius Dings7, Marina Derkho8, Irina Lykasova8, Yulanda Antonius9, Imam Rosadi10, Rahadian Zainul11*

1Master Program in Biology, Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia.

2Generasi Biologi Indonesia Foundation, Gresik, Indonesia.

3School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia.

4Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.

5Laboratory of Animal Physiology, Structure, and Growth, Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia.

6College of Medicine, Sulaiman Al Rajhi University, Al Bukayriyah, Qassim, Saudi Arabia.

7College of Medicine, Maastricht University, Maastricht, The Netherlands.

8Department of Natural Sciences, South-Urals State Agrarian University, Troitsk, Russian Federation.

9Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia.

10Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia.

11Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.

#These authors contributed equally to this work.

*E-mail: rahadianzmsiphd@fmipa.unp.ac.id


Context: The COVID-19 outbreak is caused by the transmission and infection of SARS-CoV-2 at the end of 2019. It has led many countries to implement lockdown policies to prevent the viral spreading. Problems arise in a COVID-19 patient because of viral infection that leads to a systemic response in the immune system, specifically due to cytokine storm. Moreover, the antiviral drugs that have not been found. Indonesia had a variety of traditional medicines, such as is ‘jamu’. It consists of a mixture of natural ingredients such as Moringa oleifera Lam. and Curcuma longa L.

Aims: To identify the activity of dual inhibitors as antiviral and anti-inflammatory agents from herbal combination compounds.

Methods: Sample was collected from PubChem (NCBI, USA) and Protein Data Bank (PDB), then drug-likeness analysis using Lipinski rule of five in SCFBIO web server and bioactive probability analysis of bioactive compounds were conducted by PASS web server. Furthermore, the blind docking method was performed using PyRx 0.8 software to determine the binding activity and molecular interaction by PoseView web server and PyMol software v2.4.1 (Schrödinger, Inc, USA).

Results: Cryptochlorogenic acid and curcumin have been computationally proven as dual inhibitors for antivirals by inhibiting Mpro SARS-CoV-2 and as anti-inflammatory through inhibition of NFKB1 activity. However, the results are merely computational so that it must be validated through a wet lab research.

Conclusions: The combination of Moringa oleifera Lam. and Curcuma longa L. is predicted to have antiviral and anti-inflammatory activity through dual inhibitor mechanism played by cryptochlorogenic acid and curcumin.

Keywords: COVID-19; Curcuma longa; Moringa oleifera; Mpro; NFKB1.


Contexto: El brote de COVID-19 es causado por la transmisión e infección del SARS-CoV-2. En un paciente con COVID-19 surgen problemas debido a una infección viral que conduce a una respuesta inmunológica sistémica. Además, no se han encontrado medicamentos antivirales. En Indonesia existe una preparación tradicional conocida como el “jamu”. Esta es una mezla de Moringa oleifera Lam. y Curcuma longa L.

Objetivos: Identificar la actividad de inhibidores duales como agentes antivirales y antiinflamatorios de compuestos de combinación de hierbas.

Métodos: Se recogió una muestra de PubChem (NCBI, EE. UU.) y Protein Data Bank (PDB), luego se realizó un análisis de similitud con el fármaco utilizando la regla de cinco de Lipinski en el servidor web SCFBIO y el servidor web PASS realizó un análisis de probabilidad bioactiva de los compuestos bioactivos. Además, el método de acoplamiento ciego se realizó utilizando el software PyRx 0.8 para determinar la actividad de unión y la interacción molecular mediante el servidor web PoseView y el software PyMol v2.4.1 (Schrödinger, Inc, EE. UU.).

Resultados: Se ha comprobado computacionalmente que el ácido criptoclorogénico y la curcumina son inhibidores duales de los antivirales al inhibir el Mpro SARS-CoV-2 y como antiinflamatorios mediante la inhibición de la actividad de NFKB1. Sin embargo, los resultados son meramente computacionales, por lo que deben validarse mediante una investigación de laboratorio húmedo.

Conclusiones: Se predice que la combinación de Moringa oleifera Lam. y Curcuma longa L. tiene actividad antiviral y antiinflamatoria a través de un mecanismo inhibidor dual desempeñado por el ácido criptoclorogénico y la curcumina.

Palabras Clave: COVID-19; Curcuma longa; Moringa oleifera; Mpro; NFKB1.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Kharisma VD, Aghata A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

B-cell epitope of SARS-CoV-2 and COVID-19 vaccine candidate

J Pharm Pharmacogn Res 9(6): 766-779, 2021.

Original article

Viroinformatics investigation of B-cell epitope conserved region in SARS-CoV-2 lineage B.1.1.7 isolates originated from Indonesia to develop vaccine candidate against COVID-19

[Investigación viroinformática de la región conservada del epítopo de células B en el linaje SARS-CoV-2 B.1.1.7 aislamientos originados en Indonesia para desarrollar una vacuna candidata contra COVID-19]

Arif N. M. Ansori1,2#, Reviany V. Nidom1,3*#, Muhammad K. J. Kusala1,2, Setyarina Indrasari1,3, Irine Normalina1,4, Astria N. Nidom1,3, Balqis Afifah1,3, Kartika B. Sari1,5, Nor L. Ramadhaniyah1,5, Mohammad Y. Alamudi1,3, Umi Cahyaningsih6, Kuncoro P. Santoso1,2, Heri Kuswanto5, Chairul A. Nidom1,2,3*

1Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia.

2Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Riset AIRC Indonesia, Surabaya, Indonesia.

4Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

5Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

6Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia.

#Both authors contributed equally.

*E-mail: reviany@pnfinstitute.org, nidomca@pnfinstitute.org, nidomca@fkh.unair.ac.id


Context: SARS-CoV-2, a member of family Coronaviridae and the causative agent of COVID-19, is a virus which is transmitted to human and other mammals.

Aims: To analyze the B-cell epitope conserved region and viroinformatics-based study of the SARS-CoV-2 lineage from Indonesian B.1.1.7 isolates to invent a vaccine nominee for overcoming COVID-19.

Methods: The sequences of seven Indonesian B.1.1.7 isolates, Wuhan-Hu-1 isolate, and WIV04 isolate were extracted from the GISAID EpiCoV and GenBank, NCBI. MEGA X was employed to understand the transformations of amino acid in the S protein and to develop a molecular phylogenetic tree. The IEDB was implemented to reveal the linear B-cell epitopes. In addition, PEP-FOLD3 web server was utilized to perform peptide modeling, while docking was performed using PatchDock, FireDock, and the PyMOL software. Moreover, in silico cloning was developed by using SnapGene v.3.2.1 software.

Results: In this study, the changes of amino acid in all seven Indonesian B.1.1.7 isolates were uncovered. Furthermore, various peptides based on the B-cell epitope prediction, allergenicity prediction, toxicity prediction from S protein to generate a vaccine contrary to SARS-CoV-2 were identified. Furthermore, the development of in silico cloning using pET plasmid was successfully achieved.

Conclusions: This study exhibits the transformations of amino acid in Indonesian B.1.1.7 isolates, and proposes four peptides (“LTPGDSSSGWTAG”, “VRQIAPGQTGKIAD”, “ILPDPSKPSKRS”, and “KNHTSPDVDLG”) from S protein as the candidate for a peptide-based vaccine. However, further advance trials such as in vitro and in vivo testing are involved for validation.

Keywords: COVID-19; SARS-CoV-2; vaccine design; viroinformatics.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: SARS-CoV-2, un miembro de la familia Coronaviridae y el agente causante de COVID-19, es un virus que se transmite a humanos y otros mamíferos.

Objetivos: Analizar la región conservada del epítopo de células B y el estudio basado en viroinformática del linaje SARS-CoV-2 de los aislados B.1.1.7 de Indonesia para inventar una vacuna candidata para superar COVID-19.

Métodos: Las secuencias de siete aislamientos B.1.1.7 indonesios, el aislado Wuhan-Hu-1 y el aislado WIV04 se extrajeron de GISAID EpiCoV y GenBank, NCBI. Se empleó MEGA X para comprender las transformaciones de aminoácidos en la proteína S y para desarrollar un árbol filogenético molecular. El IEDB se implementó para revelar los epítopos de células B lineales. Además, se utilizó el servidor web PEP-FOLD3 para realizar el modelado de péptidos, mientras que el acoplamiento se realizó mediante PatchDock, FireDock y el software PyMOL. Además, la clonación in silico se desarrolló utilizando el software SnapGene v.3.2.1.

Resultados: En este estudio, se descubrieron los cambios de aminoácidos en los siete aislamientos de B.1.1.7 de Indonesia. Además, se identificaron varios péptidos basados en la predicción del epítopo de células B, la predicción de la alergenicidad, la predicción de la toxicidad de la proteína S para generar una vacuna contraria al SARS-CoV-2. Además, se logró con éxito el desarrollo de la clonación in silico utilizando el plásmido pET.

Conclusiones: Este estudio exhibe las transformaciones de aminoácidos en aislados B.1.1.7 de Indonesiay propone cuatro péptidos (“LTPGDSSSGWTAG”, “VRQIAPGQTGKIAD”, “ILPDPSKPSKRS” y “KNHTSPDVDLG”) de la proteína S como candidato para una vacuna basada en péptidos. Sin embargo, para la validación se requieren más ensayos in vitro e in vivo.

Palabras Clave: COVID-19; SARS-CoV-2; vaccine design; viroinformatics.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ansori ANM, Nidom RV, Kusala MKJ, Indrasari S, Normalina I, Nidom AN, Afifah B, Sari KB, Ramadhaniyah NL, Alamudi MY, Cahyaningsih U, Santoso KP, Kuswanto H, Nidom CA (2021) Viroinformatics investigation of B-cell epitope conserved region in SARS-CoV-2 lineage B.1.1.7 isolates originated from Indonesia to develop vaccine candidate against COVID-19. J Pharm Pharmacogn Res 9(6): 766–779.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Adverse reaction and biosafety of ozone in COVID 19-Cuba

J Pharm Pharmacogn Res 9(4): 465-473, 2021.

Original article

Observancia de reacciones adversas y análisis de cumplimiento de bioseguridad en la aplicación rectal de ozonoterapia en pacientes cubanos con infección aguda o convalecientes de COVID-19

[Observance of adverse reactions and analysis of biosafety compliance in the rectal application of ozone therapy in COVID-19 Cuban patients with acute infection or convalescent]

Lizette Gil del Valle1*, Mario M. Delgado Guerra2, Ana L. Carballo- Reyes3, Joniel A. Sánchez Márquez2, Olga E. López Fernández2, Faustina Fonseca Betancourt2, Zullyt Zamora-Rodríguez3, Lidia A. Fernández García3, Rodolfo Suárez Iznaga4, Raiza Martinez Casanueva4, Lisandra Castro de la Fe4, Niorkidis Gonzalez Carvajal4, Silvia V. Castellanos Veitia4, Yamila R. de Armas-Aguila5

1Departamento de Investigaciones Farmacológicas, Instituto “Pedro Kourí” (IPK), La Habana, Cuba.

2Hospital Ernesto Guevara, Universidad de Ciencias Informáticas, La Habana, Cuba.

3Centro Nacional de Investigaciones Científicas, BioCubaFarma, La Habana, Cuba.

4Hospital Salvador Allende, La Habana, Cuba.

5Ministerio de Salud Pública, La Habana, Cuba.

*E-mail: lgil@ipk.sld.cu


Context: Patients with COVID-19 present different biochemical and metabolic alterations from the acute state of infection until months later with variability of symptoms and increased toxicity of drugs related to oxidative stress according to previous studies. There are various alternatives to modulate oxidative stress, including the use of medical ozone, which rectal way requires observing both compliance with biosafety measures and adverse reactions in patients.

Aims: To evaluate compliance with biosafety measures and the possible manifestations of adverse events in the rectal application of ozone therapy in patients with acute infection or convalescent of COVID-19.

Methods: Descriptive, longitudinal studies in two clinical trials conducted at the Ernesto Guevara Hospital and the Salvador Allende Hospital, from May to July 2020. Rectal ozone therapy was applied to patients in two trials with a cycle of up to 20 applications according to the study. The activities were described and the performance of the professionals in the procedure was evaluated through an observation guide. Patient follow-up and surveillance for potential adverse reactions were performed.

Results: 80% (28/36) of the patients reported the feeling of fullness of the intestines, without other reports, in no case treatment was required. The evaluation of the practices showed full compliance with the procedures without transmission of infection during the period.

Conclusions: Compliance with good practices and biosafety in the rectal application of ozone results in the adequate performance of the protocols with benefit and safety for patients under treatment.

Keywords: adverse reactions; biosafety; COVID-19; ozone therapy.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: En la COVID-19 se presentan diferentes alteraciones bioquímicas y metabólicas desde el estado agudo de infección hasta meses después con variabilidad de síntomas e incremento en la toxicidad a los medicamentos relacionado con el estrés oxidativo según estudios previos. Para modular el estrés oxidativo existen diversas alternativas entre ellas el ozono médico que por vía rectal requiere observar el cumplimiento de las medidas de bioseguridad y de las reacciones adversas en los pacientes.

Objetivos: Evaluar el cumplimiento de la bioseguridad y las posibles manifestaciones de reacciones adversas en la aplicación rectal de ozonoterapia en pacientes con infección aguda o convalecientes de COVID-19.

Métodos: Estudios descriptivos, longitudinales en dos ensayos clínicos realizados en el Hospital Ernesto Guevara y el Hospital Salvador Allende, de mayo a julio de 2020. Se realizó aplicación de ozonoterapia rectal con ciclo de hasta 20 aplicaciones. Se describe y evalúa la ejecución del proceder de los profesionales a través de una guía de observación. Se realizó seguimiento de los pacientes y vigilancia de las reacciones adversas potenciales.

Resultados: Fue referido en el 80% (28/36) de los pacientes la sensación de llenado de los intestinos, sin otros reportes, en ningún caso se requirió tratamiento. La evaluación de las prácticas mostró el cumplimiento en su totalidad de los procedimientos sin transmisión de infección durante el periodo.

Conclusiones: El cumplimiento de los procedimientos y de la bioseguridad en la aplicación rectal de ozono influyen en el desempeño adecuado de los protocolos con beneficio y seguridad para los pacientes en tratamiento.

Palabras Clave: bioseguridad; COVID-19; ozonoterapia; reacciones adversas.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Gil del Valle L, Delgado Guerra MM, Carballo-Reyes AL, Sánchez Márquez JA, López Fernández OE, Fonseca Betancourt F, Zamora-Rodríguez Z, Fernández García LA, Suárez Iznaga R, Martinez Casanueva R, Castro de la Fe L, Gonzalez Carvajal N, Castellanos Veitia SV, de Armas-Aguila YR (2021) Observancia de reacciones adversas y análisis de cumplimiento de bioseguridad en la aplicación rectal de ozonoterapia en pacientes cubanos con infección aguda o convalecientes de COVID-19 [Observance of adverse reactions and analysis of biosafety compliance in the rectal application of ozone therapy in COVID-19 Cuban patients with acute infection or convalescent]. J Pharm Pharmacogn Res 9(4): 465–473.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)