Tag Archives: hypertension

Rhodomyrtus tomentosa and HIF1α-VEGF expressions in placental

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1076-1086, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1517_10.6.1076

Original Article

Effect of Rhodomyrtus tomentosa Hassk. on HIF1α and VEGF expressions on hypertension placental

[Efecto de Rhodomyrtus tomentosa Hassk. sobre las expresiones de HIF1α y VEGF sobre la hipertensión placentaria]

Putri Cahaya Situmorang1*, Syafruddin Ilyas1, Doni Aldo Samuel Siahaan1, Martina Restuati2, Endang Ratna Sari1, Chairunisa Chairunisa1, Muhammad Faldhy Maliki1

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia.

2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia.

*E-mail: putri.cahaya@usu.ac.id

Abstract

Context: HIF1α and VEGF are proteins marker oxidative stress and a decrease in placental growth factor (PlGF). Decreasing of HIF1α and VEGF in rats displayed poor trophoblast differentiation, placental abnormalities, and fetal mortality. Rhodomyrtus tomentosa is a flowering plant in the Myrtaceae family that has the potential to be a source of health-promoting chemicals.

Aims: To analyze HIF1α and VEGF in serum and hypertension placental tissue after giving Rhodomyrtus tomentosa (RHO) leaves extract.

Methods: Six treatments were given to the rats that were identified as being pregnant and pregnant rats with hypertension were given RHO with three doses: (a) normal pregnant rats (control); (b) hypertensive rats; (c) hypertensive rats + 100 mg/kg BW of RHO; (d) hypertensive rats +200 mg/kg BW of RHO; and (e) hypertensive rats + 400 mg/kg BW of RHO and (f) hypertensive rats + nifedipine. Under ketamine anesthesia, pregnant rats were removed on their 20th day of gestation. Immunohistochemistry and ELISA were used to assess HIF1α and VEGF protein expression.

Results: There was a significant difference (p<0.01) in the expression of HIF1α and VEGF in the labyrinthine zone and yolk sac of the rat placenta between the normal (C-) and hypertensive (C+) groups. HIF1α and VEGF expression decreased when RHO was administered at doses ranging from 100 to 400 mg/kg BW. However, there was no significant change (p>0.05) in VEGF expression in the basal zone of the rat placenta across all groups.

Conclusions: Rhodomyrtus tomentosa leaves extract decreases HIF1α and VEGF expressions in serum and repairs the tissue of the placenta’s labyrinth, basal, and yolk sacs.

Keywords: basal zone; HIF1α; hypertension; labyrinth zone; plant extract; VEGF; yolk sac.

jppres_pdf_free

Resumen

Contexto: HIF1α y VEGF son proteínas marcadoras de estrés oxidativo y disminución del factor de crecimiento placentario (PlGF). La disminución de HIF1α y VEGF en ratas mostró una pobre diferenciación del trofoblasto, anomalías placentarias y mortalidad fetal. Rhodomyrtus tomentosa es una planta con flores de la familia Myrtaceae que tiene el potencial de ser una fuente de productos químicos que promueven la salud.

Objetivos: Analizar HIF1α y VEGF en suero y tejido placentario hipertenso después de administrar extracto de hojas de Rhodomyrtus tomentosa (RHO).

Métodos: Se administraron seis tratamientos a las ratas que se identificaron como preñadas ya las ratas preñadas con hipertensión se les administró RHO con tres dosis: (a) ratas preñadas normales (control); (b) ratas hipertensas; (c) ratas hipertensas + 100 mg/kg de peso corporal de RHO; (d) ratas hipertensas +200 mg/kg de peso corporal de RHO; y (e) ratas hipertensas + 400 mg/kg de peso corporal de RHO y (f) ratas hipertensas + nifedipina. Bajo anestesia con ketamina, las ratas preñadas se extrajeron en su día 20 de gestación. Se usaron inmunohistoquímica y ELISA para evaluar la expresión de proteínas HIF1α y VEGF.

Resultados: Hubo diferencia significativa (p<0.01) en la expresión de HIF1α y VEGF en la zona laberíntica y saco vitelino de la placenta de rata entre los grupos normal (C-) e hipertenso (C+). La expresión de HIF1α y VEGF disminuyó cuando se administró RHO en dosis que oscilaron entre 100 y 400 mg/kg de peso corporal. Sin embargo, no hubo cambios significativos (p>0,05) en la expresión de VEGF en la zona basal de la placenta de rata en todos los grupos.

Conclusiones: El extracto de hojas de Rhodomyrtus tomentosa disminuye las expresiones de HIF1α y VEGF en suero y repara el tejido del laberinto, basal y saco vitelino de la placenta.

Palabras Clave: extracto de plantas; HIF1α; hipertensión; saco vitelino; VEGF; zona basal; zona laberinto.

jppres_pdf_free
Citation Format: Situmorang PC, Ilyas S, Siahaan DAS, Restuati M, Sari ER, Chairunisa C, Maliki MF (2022) Effect of Rhodomyrtus tomentosa Hassk. on HIF1α and VEGF expressions on hypertension placental. J Pharm Pharmacogn Res 10(6): 1076–1086. https://doi.org/10.56499/jppres22.1517_10.6.1076
References

Belkacemi L, Desai M, Nelson DM, Ross MG (2011) Altered mitochondrial apoptotic pathway in placentas from undernourished rat gestations. Am J Physiol Regul Integr Comp Physiol 301(6): R1599-R1615. https://doi.org/10.1152/ajpregu.00100.2011

Braunthal S, Brateanu A (2019) Hypertension in pregnancy: Pathophysiology and treatment. SAGE Open Med 7: 2050312119843700. https://doi.org/10.1177/2050312119843700

Fan X, Rai A, Kambham N, Sung JF, Singh N, Petitt M, Dhal S, Agrawal R, Sutton RE, Druzin ML, Gambhir SS, Ambati BK, Cross JC, Nayak NR (2014) Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest 124(11): 4941-4952. https://doi.org/10.1172/JCI76864

Fan X, Muruganandan S, Shallie PD, Dhal S, Petitt M, Nayak NR (2021) VEGF maintains maternal vascular space homeostasis in the mouse placenta through modulation of trophoblast giant cell functions. Biomolecules 11(7): 1062. https://doi.org/10.3390/biom11071062

Furukawa S, Tsuji N, Sugiyama A (2019) Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol 32(1): 1–17. https://doi.org/10.1293/tox.2018-0042

Furukawa S, Kuroda Y, Sugiyama A (2014) A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 27(1): 11–18. https://doi.org/10.1293/tox.2013-0060

Hemberger M (2012) Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med44: 325–337. https://doi.org/10.3109/07853890.2012.663930

Hutagaol JM, Bintang, Hidayat B (2021) Identification of highland peat vegetation in the sub-district of Lintong Nihuta, Humbang Hasundutan Regency, North Sumatera, Indonesia. IOP Conf Series: Earth Environ Sci 912: 012027 https://doi.org/10.1088/1755-1315/912/1/012027

Ilyas S, Murdela F, Hutahaean S, Situmorang PC (2019) The effect of haramounting leaf ethanol extract (Rhodomyrtus tomentosa (Aiton) Hassk.) on the number of leukocyte type and histology of mice pulmo (Mus musculus L.) exposed to electronic cigarette. Open Access Maced J Med Sci 7(11): 1750-1756. https://doi.org/10.3889/oamjms.2019.467

Ilyas S, Situmorang PC (2021) Role of heat shock protein 70 (HSP-70) after giving nanoherbal haramonting (Rhodomyrtus tomentosa) in preeclamptic rats. Pak J Biol Sci 24: 139-145. https://doi.org/10.3923/pjbs.2021.139.145

Irianti E, Ilyas S, Hutahaean S, Rosidah R, Situmorang PC (2020) Placental histological on preeclamptic rats (Rattus norvegicus) after administration of nanoherbal haramonting (Rhodomyrtus tomentosa). Res J Pharm Technol 13(8): 3879-3882. https://doi.org/10.5958/0974-360X.2020.00686.1

Kametas NA, Nzelu D, Nicolaides KH (2022) Chronic hypertension and superimposed preeclampsia: Screening and diagnosis. Am J Obstet Gynecol 226(2S): S1182-S1195. https://doi.org/10.1016/j.ajog.2020.11.029

Kubo T, Fujie K, Yamashita M, Misu Y (1981) Antihypertensive effects of nifedipine on conscious normotensive and hypertensive rats. J Pharmacobiodyn 4(4): 294-300. https://doi.org/10.1248/bpb1978.4.294

Kurnianto A, Kurniadi Sunjaya D, Ruluwedrata Rinawan F, Hilmanto D (2020) Prevalence of hypertension and its associated factors among Indonesian adolescents. Int J Hypertens 2020: 4262034. https://doi.org/10.1155/2020/4262034

Li Q, Yao B, Endler L, Chen L, Shibasaki F, Cheng H (2018) Int6/eIF3e silencing promotes placenta angiogenesis in a rat model of pre-eclampsia. Sci Rep 8(1): 8944. https://doi.org/10.1038/s41598-018-27296-2

Malnou EC, Umlauf D, Mouysset M, Cavaillé J (2019) Imprinted microRNA gene clusters in the evolution, development, and functions of mammalian placenta.Front Genet 9: 706. https://doi.org/10.3389/fgene.2018.00706

Maria JM, Warrington JP (2019) Cerebral blood flow regulation in pregnancy, hypertension, and hypertensive disorders of pregnancy. Brain Sci 9(9): 224. https://doi.org/10.3390/brainsci9090224

Morfoisse F, Renaud E, Hantelys F, Prats AC, Garmy-Susini B (2014) Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis. Mol Cell Oncol 1(1): e29907. https://doi.org/10.4161/mco.29907

Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ (2021) Vascular dysfunction in preeclampsia. Cells 10(11): 3055. https://doi.org/10.3390/cells10113055

Pandey AK, Singhi EK, Arroyo JP, Ikizler TA, Gould ER, Brown J, Beckman JA, Harrison DG, Moslehi J (2018) Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension 71(2): e1-e8. https://doi.org/10.1161/HYPERTENSIONAHA.117.10271

Phipps EA, Benzing TR, Thandani TR, Karumanchi SA (2019) Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15(5): 275–289. https://doi.org/10.1038/s41581-019-0119-6

Reshef T (2012) The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod 87(6): 134. https://doi.org/10.1095/biolreprod.112.102723

Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD (2010) Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol 30(6): 591-601. https://doi.org/10.1016/j.semnephrol.2010.09.007

Ross C, Boroviak TE (2020) Origin and function of the yolk sac in primate embryogenesis. Nature Comm 11: 3760. https://doi.org/10.1038/s41467-020-17575-w

Salles AMR, Galvao TF, Silva MT, Motta LCD, Pereira MG (2012) Antioxidants for preventing preeclampsia: A systematic review. ScientificWorldJournal 2012: 243476. https://doi.org/10.1100/2012/243476

Sarkar AA, Sabatino JA, Sugrue KF, Zohn IE (2016) Abnormal labyrinthine zone in the Hectd1-null placenta. Placenta 38: 16-23. https://doi.org/10.1016/j.placenta.2015.12.002

Siragher E, Sferruzzi-Perri AN (2021) Placental hypoxia: What have we learnt from small animal models. Placenta113: 29-47. https://doi.org/10.1016/j.placenta.2021.03.01

Situmorang PC, Ilyas S (2018) Description of testis histology of Mus musculus after giving nano herbal Rhodomyrtus tomentosa (haramonting). Asian J Pharm Clin Res 11: 461-463. https://doi.org/10.22159/ajpcr.2018.v11i11.29042

Situmorang PC, Ilyas S, Hutahaean S, Rosidah R (2020) Components and acute toxicity of nanoherbal haramonting (Rhodomyrtus tomentosa). J Herbmed Pharmacol 10: 139-148. https://doi.org/10.34172/jhp.2021.15

Situmorang PC, Ilyas S, Hutahaean S, Rosidah R (2021) Histological changes in placental rat apoptosis via FasL and cytochrome c by the nano-herbal Zanthoxylum acanthopodium. Saudi J Bio Sci 28(5): 3060–3068. https://doi.org/10.1016/j.sjbs.2021.02.047

Situmorang PC, Syahputra RA, Simanullang RH (2022) EGFL7 and HIF-1a expression on human trophoblast placental by Rhodomyrtus tomentosa and Zanthoxylum acanthopodium. Pak J Biol Sci 25(2): 123-130. https://doi.org/10.3923/pjbs.2022.123.130

Strowitzki C, Taylor (2019) Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: Unique or ubiquitous? Cells 8(5): 384. https://doi.org/10.3390/cells8050384

Villanueva-Toledo JR, Chale-Dzul J, Castillo-Bautista C, Olivera-Castillo LA, Rangel-Méndez LA, Graniel-Sabido MJ, Moo-Puc RE (2020) Hepatoprotective effect of an ethanol extract of Tradescantia pallida against CCl4-induced liver damage in rats. S Afr J Bot 13: 444–450. https://doi.org/10.1016/j.sajb.2020.09.031

Vo T, Ngo D (2019) The health beneficial properties of Rhodomyrtus tomentosa as potential functional food. Biomolecules 9(2): 76. https://doi.org/10.3390/biom9020076

Wang HJ, Lu CK, Chen WC, Chen AC, Ueng YF (2019) Shenmai-Yin decreased the clearance of nifedipine in rats: The involvement of time-dependent inhibition of nifedipine oxidation. J Food Drug Anal 27(1): 284-294. https://doi.org/10.1016/j.jfda.2018.10.005

Zhang B, Kim MY, Elliot G, Zhou Y, Zhao G, Li D, Lowdon RF, Gormley M, Kapidzic M, Robinson JF, McMaster MT, Hong C, Mazor T, Hamilton E, Sears RL, Pehrsson EC, Marra MA, Jones SJM, Bilenky M, Hirst M, Wang T, Costello JF, Fisher SJ (2021) Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. Dev Cell 56(9): 1238–1252.e5. https://doi.org/10.1016/j.devcel.2021.04.001

Zhang YB, Li W, Jiang L, Yang L, Chen NH, Wu ZN, Li YL, Wang GC (2018) Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 153: 111–119. https://doi.org/10.1016/j.phytochem.2018.05.018.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Medicinal plants for hypertension in Guinea

J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 938-951, September-October 2022.

DOI: https://doi.org/10.56499/jppres22.1470_10.5.938

Original Article

Ethnobotanical survey of medicinal plants used to manage hypertension in the Republic of Guinea

[Estudio etnobotánico de las plantas medicinales utilizadas para tratar la hipertensión en la República de Guinea]

Mohamed S. Traore1,2*, Aïssata Camara1,2, Mamadou A. Balde1,2, Mamadou ST. Diallo1,2, Nene S. Barry1, Elhadj S. Balde1,2, Aliou M. Balde1,2

1Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea.

2Institute for Research and Development of Medicinal and Food Plants of Guinea, Dubréka (IRDPMAG-Dubréka), Guinea.

*E-mail: mstraore@irdpmag.edu.gn, sahartra1900@gmail.com

Abstract

Context: Like many other African countries, medicinal plants are widely used in Guinea to manage hypertension, which is a highly prevalent health problem.

Aims: To identify the plants used in the traditional management of hypertension in Guinea.

Methods: From May to November 2018, three hundred and forty-nine Traditional Health Practitioners (THPs) respondents, including 244 traditional healers and 105 herbalists, were contacted. Through semi-structured interviews, ethnobotanical information on medicinal plants were collected. Voucher specimens were authenticated by the department of Botany of the IRDPMAG and deposited in the Herbarium of this Institute.

Results: Among the traditional anti-hypertensive recipes, a total of 97 plant species from 85 genera belonging to 43 families have been identified. Combretum micranthum, Hymenocardia acida, Anacardium occidentale, Spondias mombin and Alchornea cordifolia were the most frequently cited. The traditional recipes included one plant species (23 recipes), a combination of two species (18 recipes) or more (47 recipes).

Conclusions: A large number of medicinal plants are used for the management of arterial hypertension in Guinea. Further biological and phytochemical investigations are needed to validate the traditional uses of these plants.

Keywords: hypertension; Guinea; medicinal plants; traditional healers.

Resumen

Contexto: Al igual que muchos otros países africanos, las plantas medicinales se utilizan ampliamente en Guinea para controlar la hipertensión, que es un problema de salud muy frecuente.

Objetivos: Identificar las plantas utilizadas en el manejo tradicional de la hipertensión en Guinea.

Métodos: De mayo a noviembre de 2018, se contactó a trescientos cuarenta y nueve practicantes de salud tradicional (THP), incluidos 244 curanderos tradicionales y 105 herbolarios. A través de entrevistas semiestructuradas se recopiló información etnobotánica sobre plantas medicinales. Los ejemplares comprobantes fueron autenticados por el departamento de Botánica del IRDPMAG y depositados en el Herbario de este Instituto.

Resultados: Entre las recetas tradicionales antihipertensivas se han identificado un total de 97 especies vegetales de 85 géneros pertenecientes a 43 familias. Combretum micranthum, Hymenocardia acida, Anacardium occidentale, Spondias mombin y Alchornea cordifolia fueron las más citadas. Las recetas tradicionales incluían una especie de planta (23 recetas), una combinación de dos especies (18 recetas) o más (47 recetas).

Conclusiones: Un gran número de plantas medicinales se utilizan para el manejo de la hipertensión arterial en Guinea. Se necesitan más investigaciones biológicas y fitoquímicas para validar los usos tradicionales de estas plantas.

Palabras Clave: curanderos tradicionales; hipertensión; Guinea; plantas medicinales.

Citation Format: Traore MS, Camara A, Balde MA, Diallo MST, Diallo NS, Balde ES, Balde AM (2022) Ethnobotanical survey of medicinal plants used to manage hypertension in the Republic of Guinea. J Pharm Pharmacogn Res 10(5): 938–951. https://doi.org/10.56499/jppres22.1470_10.5.938
References

Amos S, Akah PA, Binda L, Enwerem NM, Ogundaini A, Wambebe C, Hussaini IM, Gamaniel KS (2003) Hypotensive activity of the ethanol extract of Pavetta crassipes leaves. Biol Pharm Bull 26(12): 1674-1680. https://doi.org/10.1248/bpb.26.1674

Amrani S, Harnafi H, Gadi D, Mekhfi H, Legssyer A, Aziz M, Martin-Nizard F, Bosca L (2009) Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract. J Ethnopharmacol 125(1): 157-162. https://doi.org/10.1016/j.jep.2009.05.043

Amssayef A, Eddouks M (2019) Aqueous extract of Matricaria pubescens exhibits anti-hypertensive activity in L-NAME-induced hypertensive rats through its vasorelaxant effect. Cardiovasc Hematol Agents Med Chem 17(2): 135-143. https://doi.org/10.2174/1871525717666191007151413

Aremu OO, Oyedeji AO, Oyedeji OO, Nkeh-Chungag BN, Sewani Rusike CR (2019) In vitro and in vivo antioxidant properties of taraxacum officinale in Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. Antioxidants (Basel) 8(8): 309. https://doi.org/10.3390/antiox8080309

Ayele Y, Urga K, Engidawork E (2010) Evaluation of in vivo anti-hypertensive and in vitro vasodepressor activities of the leaf extract of Syzygium guineense (Willd) D.C. Phytother Res 24(10): 1457-1462. https://doi.org/10.1002/ptr.3141

Baldé AM, Traoré S, Touré M, Diallo D, Keita A, Magassouba FB, Donzo M, Baldé D, Baldé N, Barry R, Kaba ML, Bah AO, Diallo TS, Barry AB, Sylla C, Sangaré BM (2006) Hypertension artérielle en Guinée: Epidémiologie et place de la phytothérapie dans la prise en charge dans les zones urbaines et rurales de Fria, Boké, Forecariah (Basse Guinée). Pharm Méd Trad Afr 12: 19-43.

Baldé MA, Tuenter E, Traoré MS, Matheeussen A, Cos P, Maes L, Camara A, Haba NL, Gomou K, Diallo MST, Baldé ES, Pieters L, Balde AM, Foubert K (2020) Antimicrobial investigation of ethnobotanically selected Guinean plant species. J Ethnopharmacol 263: 113232. https://doi.org/10.1016/j.jep.2020.113232

Balogun FO, Ashafa AOT (2019) A review of plants used in South African traditional medicine for the management and treatment of hypertension. Planta Med 85(4): 312-334. https://doi.org/10.1055/a-0801-8771

Bourqui A, Niang EAB, Graz B, Diop EA, Dahaba M, Thiaw I, Soumare K, Valmaggia P, Nogueira RC, Cavin AL, Al-Anbaki M, Seck SM (2021) Hypertension treatment with Combretum micranthum or Hibiscus sabdariffa, as decoction or tablet: A randomized clinical trial. J Hum Hypertens 35(9): 800-808. https://doi.org/10.1038/s41371-020-00415-1

Camara A, Baldé NM, Diakité M, Sylla D, Baldé EH, Kengne AP, Baldé MD (2016) High prevalence, low awareness, treatment and control rates of hypertension in Guinea: Results from a population-based STEPS survey. Hum Hypertens 30(4): 237-244. https://doi.org/10.1038/jhh.2015.92

Diallo A, Traore MS, Keita SM, Balde MA, Keita A, Camara M, Van Miert S, Pieters L, Balde AM (2012) Management of diabetes in Guinean traditional medicine: An ethnobotanical investigation in the coastal lowlands. J Ethnopharmacol 144(2): 353-361. https://doi.org/10.1016/j.jep.2012.09.020

Diallo MST, Traore MS, Balde MA, Camara AK, Baldé ES, Traore S, Oulare K, Diallo TS, Laurent S, Muller RN, Tuenter E, Pieters L, Balde AM (2019) Prevalence, management and ethnobotanical investigation of hypertension in two Guinean urban districts. J Ethnopharmacol 231: 73-79. https://doi.org/10.1016/j.jep.2018.07.028

El-Ouady F, Eddouks M (2020) Warionia saharae induces anti-hypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. J Ethnopharmacol 231: 73-79. https://doi.org/10.1016/j.jep.2018.07.028

Galati EM, Trovato A, Kirjavainen S, Forestieri AM, Rossitto A, Monforte MT (1996) Biological effects of hesperidin, a Citrus flavonoid. (Note III): Antihypertensive and diuretic activity in rat. Farmaco 51: 219-221.

Gbolade A (2012) Ethnobotanical study of plants used in treating hypertension in Edo State of Nigeria. J Ethnopharmacol 144(1): 1-10. https://doi.org/10.1016/j.jep.2012.07.018

Irondi EA, Agboola SO, Oboh G, Boligon AA, Athayde ML, Shode FO (2016) Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. J Intercult Ethnopharmacol 5(2): 122-130. https://doi.org/10.5455/jice.20160321115402

James PB, Kamara H, Bah AJ, Steel A, Wardle J (2018) Herbal medicine use among hypertensive patients attending public and private health facilities in Freetown Sierra Leone. Complement Ther Clin Pract 31: 7-15. https://doi.org/10.1016/j.ctcp.2018.01.001

Kassi Y, Aka K, Abo KJ-C, Mea A, Bi S, Ehile E (2008) Effet antihypertensif d’un extrait aqueux d’écorce de tronc de Parkia biglobosa (mimosaceae) sur la pression artérielle de lapin. Sci Nat 5: 133-143. https://doi.org/10.4314/scinat.v5i2.42159

Keane KM, George TW, Constantinou CL, Brown MA, Clifford T, Howatson G (2016) Effects of Montmorency tart cherry (Prunus cerasus L.) consumption on vascular function in men with early hypertension. Am J Clin Nutr 103(6): 1531-1539. https://doi.org/10.3945/ajcn.115.123869

Keter LK, Mutiso PC (2012) Ethnobotanical studies of medicinal plants used by traditional health practitioners in the management of diabetes in Lower Eastern Province, Kenya. J Ethnopharmacol 139(1): 74-80. https://doi.org/10.1016/j.jep.2011.10.014

Kretchy IA, Owusu-Daaku F, Danquah S (2014) Patterns and determinants of the use of complementary and alternative medicine: A cross-sectional study of hypertensive patients in Ghana. BMC Complement Altern Med 14: 44. https://doi.org/10.1186/1472-6882-14-44

Lawal IO, Uzokwe NE, Ladipo DO, Asinwa IO, Igboanugo ABI (2009) Ethnophytotherapeutic information for the treatment of high blood pressure among the people of Ilugun, Ilugun area of Ogun State, South-West Nigeria. Afr J Pharm Pharmacol 3: 222-226.  https://doi.org/10.5897/AJPP.9000141

N’Gouin-Claih AP, Donzo M, Barry AB, Diallo A, Kabiné O, Barry R, Abdoulaye K, Sylla C, Magassouba FB, Baldé AM (2003) Prevalence of hypertension in Guinean rural area. [French]. Arch Mal Coeur Vaiss 96(7-8): 763-767.

Nsuadi Manga F, El Khattabi C, Fontaine J, Berkenboom G, Duez P, Noyon C, Van Antwerpen P, Lami Nzunzu J, Pochet S (2013) Vasorelaxant and anti-hypertensive effects of methanolic extracts from Hymenocardia acida Tul. J Ethnopharmacol 146(2): 623-631. https://doi.org/10.1016/j.jep.2013.02.002

Nugroho AE, Malik A, Pramono S (2013) Total phenolic and flavonoid contents, and in vitro antihypertension activity of purified extract of Indonesian cashew leaves (Anacardium occidentale L.). Int Food Res J 20(1): 299-305.

Nuwaha F, Musinguzi G (2013) Use of alternative medicine for hypertension in Buikwe and Mukono districts of Uganda: A cross sectional study. BMC Complement Altern Med 13: 301. https://doi.org/10.1186/1472-6882-13-301

Ola-Davies OE, Oyagbemi AA, Omobowale TO, Akande I, Ashafa A (2019) Ameliorative effects of Annona muricata Linn. (Annonaceae) against potassium dichromate-induced hypertension in vivo: Involvement of Kim-1/p38 MAPK/Nrf2 signaling. J Basic Clin Physiol Pharmacol 30(4): 20180172. https://doi.org/10.1515/jbcpp-2018-0172

Olisa NS, Oyelola FT (2010) Evaluation of use of herbal medicines among ambulatory hypertensive patients attending a secondary health care facility in Nigeria. Int J Pharm Pract 17(2): 101-115.

Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK (2018) Hypertension. Nat Rev Dis Primers 4: 18014. https://doi.org/10.1038/nrdp.2018.14

Perez YY, Jimenez-Ferrer E, Alonso D, Botello-Amaro CA, Zamilpa A (2010) Citrus limetta leaves extract antagonizes the hypertensive effect of angiotensin II. J Ethnopharmacol 128(3): 611-614. https://doi.org/10.1016/j.jep.2010.01.059

Seck SM, Doupa D, Dia DG, Diop EA, Ardiet DL, Nogueira RC, Graz B, Diouf B (2017) Clinical efficacy of African traditional medicines in hypertension: A randomized controlled trial with Combretum micranthum and Hibiscus sabdariffa. J Hum Hypertens 32(1): 75-81. https://doi.org/10.1038/s41371-017-0001-6

Shum OL, Chiu KW (1991) Hypotensive action of Solanum melongena on normotensive rats. Phytother Res 5: 76-81. https://doi.org/10.1002/ptr.2650050208

Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B (2007) Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in South-Eastern Morocco (Errachidia province). J Ethnopharmacol 110(1): 105-117. https://doi.org/10.1016/j.jep.2006.09.011

Tannor EK, Nyarko OO, Adu-Boakye Y, Owusu Konadu S, Opoku G, Ankobea-Kokroe F, Opare Addo M, Amuzu EX, Ansah GJ, Appiah-Boateng K, Ansong D (2022) Burden of hypertension in Ghana – Analysis of awareness and screening campaign in the Ashanti Region of Ghana. JRSM Cardiovasc Dis 11: 1-7. https://doi.org/10.1177/20480040221075521

Tata CM, Sewani-Rusike CR, Oyedeji OO, Gwebu ET, Mahlakata F, Nkeh-Chungag BN (2019) Anti-hypertensive effects of the hydro-ethanol extract of Senecio serratuloides DC in rats. BMC Complement Altern Med 19(1): 52. https://doi.org/10.1186/s12906-019-2463-2

Tokoudagba JM, Auger C, Bréant L, N’Gom S, Chabert P, Idris-Khodja N, Gbaguidi F, Gbenou J, Moudachirou M, Lobstein A, Schini-Kerth VB (2010) Procyanidin-rich fractions from Parkia biglobosa (Mimosaceae) leaves cause redox-sensitive endothelium-dependent relaxation involving NO and EDHF in porcine coronary artery. J Ethnopharmacol 132(1): 246-250. https://doi.org/10.1016/j.jep.2010.08.031

Traore MS, Baldé MA, Diallo MS, Baldé ES, Diané S, Camara A, Diallo A, Balde A, Keïta A, Keita SM, Oularé K, Magassouba FB, Diakité I, Diallo A, Pieters L, Baldé AM (2013) Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria. J Ethnopharmacol 150(3): 1145-1153. https://doi.org/10.1016/j.jep.2013.10.048

Twagirumukiza M, de Bacquer D, Kips JG, de Backer G, Stichele R vander, van Bortel LM (2011) Current and projected prevalence of arterial hypertension in sub-Saharan Africa by sex, age and habitat: An estimate from population studies. J Hypertens 29(7): 1243-1252. https://doi.org/10.1097/HJH.0b013e328346995d

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G (2013) Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—An alpine ethnobotanical study. J Ethnopharmacol 145(2): 517-529. https://doi.org/10.1016/j.jep.2012.11.024

Welch CR (2010) Chemistry and pharmacology of Kinkéliba (Combretum micranthum), a West African medicinal plant. [New Brunswick, New Jersey] https://rucore.libraries.rutgers.edu/rutgers-lib/26656/PDF/1/play/ [Consulted 1 February 2022].

Yao AN, Kamagaté M, Amonkan AK, Chabert P, Kpahé F, Koffi C, Kouamé MN, Auger C, Kati-Coulibaly S, Schini-Kerth V, Die-Kakou H (2018) The acute diuretic effect of an ethanolic fraction of Phyllanthus amarus (Euphorbiaceae) in rats involves prostaglandins. BMC Complement Altern Med 18(1): 94. https://doi.org/10.1186/s12906-018-2158-0

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)