Tag Archives: infectious disease

Stachytarpheta jamaicensis antibacterial activity

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1087-1102, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1474_10.6.1087

Original Article

Antibacterial activity of Stachytarpheta jamaicensis (L.) Vahl roots extract on some bacteria proteins: An in silico and in vitro study

[Actividad antibacteriana del extracto de raíces de Stachytarpheta jamaicensis (L.) Vahl sobre algunas proteínas bacterianas: un estudio in silico e in vitro]

Juliyatin Putri Utami1*, Sherli Diana2, Rahmad Arifin3, Irham Taufiqurrahman4, Kholifa Aulia Nugraha5, Milka Widya Sari5, Rizky Yoga Wardana5

1Department of Biomedicine, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

 2Department of Conservative Dentistry, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

3Department of Prosthodontic, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

4Departement of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

5Undergraduate of Dentistry Program, Faculty of Dentistry, University of Lambung Mangkurat, Banjarmasin, Indonesia.

*E-mail: juliyatin.utami@ulm.ac.id

Abstract

Context: Stachytarpheta jamaicensis (L.) Vahlplant is used for traditional therapy because of its content, including flavonoids, alkaloids, tannins, saponins, terpenoids, and coumarins.

Aims: To determine the antibacterial ability of S. jamaicensis roots extract (SJRE) on some selected mouth bacteria through in vitro and in silico studies.

Methods: Phytochemical analysis and liquid chromatography-high resolution mass spectrometry (LC-HRMS) were done to explore the active compounds on SJRE. Absorption, distribution, metabolism, excretion and toxicity prediction, molecular docking simulation and visualization of luvangetin, and xanthyletin as anti-inflammatory and antibacterial were investigated in silico. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of SJRE against Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, and Actinomyces spp. were calculated.

Results: Luvangetin and xanthyletin are good candidate drug molecules with low toxicity. Xanthyletin has higher binding activity than luvangetin to TNF-α, IL-6, IL-10, peptidoglycan, flagellin, and dectin protein. SJRE exhibited a high antibacterial ability, and MIC. This extract inhibits the growth of A. actinomycetemcomitans, E. faecalis and Actinomyces spp. at various concentrations 2000, 8000, and 8000 µg/mL, respectively, with statistically significant differences (p = 0.0001; p<0.05).

Conclusions: SJRE has an antibacterial ability, and 2000 µg/mL SJRE may act as an antibacterial agent in vitro. In addition, xanthyletin in SJRE has a potential role as an antibacterial and anti-inflammatory in silico.

Keywords: communicable disease; dentistry; infectious disease; medicine; periodontal disease.

jppres_pdf_free

Resumen

Contexto: La planta de Stachytarpheta jamaicensis (L.) Vahl se utiliza para la terapia tradicional por su contenido, que incluye flavonoides, alcaloides, taninos, saponinas, terpenoides y cumarinas.

Objetivos: Determinar la capacidad antibacteriana del extracto de raíces de S. jamaicensis (SJRE) sobre algunas bacterias bucales seleccionadas mediante estudios in vitro e in silico.

Métodos: Se realizaron análisis fitoquímico y cromatografía líquida-espectrometría de masas de alta resolución (LC-HRMS) para explorar los compuestos activos en SJRE. Se investigaron in silico la absorción, la distribución, el metabolismo, la excreción y la predicción de la toxicidad, la simulación de acoplamiento molecular y la visualización de la luvangetina y la xantiletina como antiinflamatorios y antibacterianos. Se calcularon la concentración inhibitoria mínima (MIC) y la concentración bactericida mínima (MBC) de SJRE contra Aggregatibacter actinomycetemcomitans, Enterococcus faecalis y Actinomyces spp.

Resultados: Luvangetin y xanthyletin son buenas moléculas candidatos a fármacos y tienen baja toxicidad. La xantiletina tiene una mayor actividad de unión que la luvangetina a TNF-α, IL-6, IL-10, peptidoglicano, flagelina y proteína dectina. SJRE exhibió una alta capacidad antibacteriana y MIC. Este extracto inhibe el crecimiento de A. actinomycetemcomitans, E. faecalis y Actinomyces spp. a varias concentraciones 2000, 8000 y 8000 µg/mL, respectivamente, con diferencias estadísticamente significativas (p = 0,0001; p<0,05).

Conclusiones: SJRE tiene una capacidad antibacteriana y a 2000 µg/mL SJRE puede actuar como un agente antibacteriano in vitro. Además, la xantiletina en SJRE tiene un papel potencial como antibacteriano y antiinflamatorio in silico.

Palabras Clave: enfermedad infecciosa; enfermedad periodontal; enfermedad transmisible; odontología; medicamento.

jppres_pdf_free
Citation Format: Utami JP, Diana S, Arifin R, Taufiqurrahman I, Nugraha KA, Sari MW, Wardana RY (2022) Antibacterial activity of Stachytarpheta jamaicensis (L.) Vahl roots extract on some bacteria proteins: An in silico and in vitro study. J Pharm Pharmacogn Res 10(6): 1087–1102. https://doi.org/10.56499/jppres22.1474_10.6.1087
References

Aberg CH, Kelk P, Johansson A (2015) Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence, 6(3): 188–195. https://doi.org/10.4161/21505594.2014.982428.

Ardani IGAW, Nugraha AP, Suryani NM, Pamungkas RH, Vitamamy DG, Susanto RA, Sarno R, Fajar A, Kharisma VD, Nugraha AP, Noor TNEBTA (2022) Molecular docking of polyether ether ketone and nano-hydroxyapatite as biomaterial candidates for orthodontic mini-implant fabrication. J Pharm Pharmacogn Res 10(4): 676–686. https://doi.org/10.56499/jppres22.1371_10.4.676

Asmah N (2020) Pathogenicity biofilm formation of Enterococcus faecalis. J Syiah Kuala Dent Soc 5(1): 11. https://doi.org/10.24815/jds.v5i1.20011

Babii C, Mihalache G, Bahrin LG, Neagu AN, Gostin I, Mihai CT, Sârbu LG, Birsa LM, Stefan (2018) A novel synthetic flavonoid with potent antibacterial properties: In vitro activity and proposed mode of action. PLoS ONE 13(4): e0194898. https://doi.org/10.1371/journal.pone.0194898

Berniyanti T, Nugraha AP, Hidayati NN, Kharisma VD, Nugraha AP, Tengku NEBTAN (2022) Computational study of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ binding sites identification on cytokines to predict dental metal allergy: An in silico study. J Pharm Pharmacogn Res 10(4): 687–694. https://doi.org/10.56499/jppres22.1372_10.4.687

Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, Bordes C (2019) Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front Microbiol 10: 829. https://doi.org/10.3389/fmicb.2019.00829

Chinonye I, Uchenna LO, Adanna UA, Rita ON (2019) Phytochemical, antimicrobial and GC/MS analysis of the root of Stachytarpheta cayennensis (L.Vahl) grown in Eastern Nigeria. Int Res J Nat Sci 7(2): 20–32.

Cook L, Lisko DJ, Wong MQ, Garcia RV, Himmel ME, Seidman EG, Bressler B, Levings MK, Steiner TS (2020) Analysis of flagellin-specific adaptive immunity reveals links to dysbiosis in patients with inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 9(3): 485–506. https://doi.org/10.1016/j.jcmgh.2019.11.012

de Souza GA, Leversen NA, Målen H, Wiker HG (2011) Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 75(2): 502–510. https://doi.org/10.1016/j.jprot.2011.08.016

Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Lo Muzio L, Troiano G (2020) Prevalence of bacteria of genus Actinomyces in persistent extraradicular lesions-systematic review. J Cin Med 9(2): 457. https://doi.org/10.3390/jcm9020457

Elashiry M, Tian F, Elashiry M, Zeitoun R, Elsayed R, Andrews ML, Bergeon BE, Cutler, Tay F (2021) Enterococcus faecalis shifts macrophage polarization toward M1-like phenotype with an altered cytokine profile. J Oral Microbiol 13: 1868152. https://doi.org/10.1080/20002297.2020.1868152

Erst AS, Chernonosov AA, Petrova NV, Kulikovskiy MS, Maltseva SY, Wang W, Kostikova VA (2022) Investigation of chemical constituents of Eranthis longistipitata (Ranunculaceae): Coumarins and furochromones. Int J Mol Sci 23: 406. https://doi.org/10.3390/ijms23010406

Fahmi M, Kharisma VD, Ansori AN, Ito M (2021) Retrieval and investigation of data on SARS-CoV-2 and COVID-19 using bioinformatics approach. In Coronavirus Disease-COVID-19 1318: 839–857. https://doi.org/10.1007/978-3-030-63761-3_47

Guimarães AC, Meireles LM, Lemos MF, Guimarães M, Endringer DC, Fronza M, Scherer R (2019) Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24(13): 2471. https://doi.org/10.3390/molecules24132471

Irazoki O, Hernandez SB, Cava F (2019) Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front Microbiol 10: 500. https://doi.org/10.3389/fmicb.2019.00500

Kharisma VD, Agatha A, Ansori AN, Widyananda MH, Rizky WC, Dings TG, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2021) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Kharisma VD, Widyananda MH, Ansori ANM, Nege AS, Naw SW, Nugraha AP (2021) Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res 9(4): 435–445. https://doi.org/10.56499/jppres21.1009_9.4.435

Krueger E, Brown AC (2020) Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol. 35(3): 85–105. https://doi.org/10.1111/omi.12284

Kumar A, Kaur H, Jain A, Nair DT, Salunke DM (2018) Docking, thermodynamics and molecular dynamics (MD) studies of a non-canonical protease inhibitor, MP-4, from Mucuna pruriens. Sci Rep 8: 689. https://doi.org/10.1038/s41598-017-18733-9

Liew PM, Yong YK (2016) Stachytarpheta jamaicensis (L.) Vahl: From traditional usage to pharmacological evidence. Evid Based Complement Alternat Med 2016: 7842340. https://doi.org/10.1155/2016/7842340

Luqman A, Kharisma VD, Ruiz RA, Götz F (2020) In silico and in vitro study of trace amines (TA) and dopamine (DOP) interaction with human alpha 1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cell Physiol Biochem 54: 888–898. https://doi.org/10.33594/000000276

Maisetta G, Batoni G, Caboni P, Esin S, Rinaldi AC, Zucca P (2019) Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement Altern Med 19(1): 82. https://doi.org/10.1186/s12906-019-2487-7

Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C (2022) Dectin-1 signaling update: New perspectives for trained immunity. Front Immunol 13: 812148. https://doi.org/10.3390/cells11182879

Mehrotra N, Singh S (2022) Periodontitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

Mingga M, Oramahi HA, Tavita GE (2019) Utilization of medicinal plants by the community of Raba Village in Menjalin subdistict of Landak Regency [Indonesian]. Jurnal Hutan Lestari 7(1): 97–105.

Nice JB, Balashova NV, Kachlany SC, Koufos E, Krueger E, Lally ET, Brown AC (2018) Aggregatibacter actinomycetemcomitans leukotoxin is delivered to host cells in an LFA-1-indepdendent manner when associated with outer membrane vesicles. Toxins 10(10): 414. https://doi.org/10.3390/toxins10100414

Nugraha AP, Sibero MT, Nugraha AP, Puspitaningrum MS, Rizqianti Y, Rahmadhani D, Kharisma VD, Ramadhani NF, Ridwan RD, Noor TNEBTA, Ernawati DS (2022a) Anti-periodontopathogenic ability of mangrove leaves (Aegiceras corniculatum) ethanol extract: In silico and in vitro study. Eur J Dent. https://doi.org/10.1055/s-0041-1741374

Nugraha AP, Kitaura H, Ohori F, Pramusita A, Ogawa S, Noguchi T, Marahleh A, Nara Y, Kinjo R, Mizoguchi I (2022b) C‑X‑C receptor 7 agonist acts as a C‑X‑C motif chemokine ligand 12 inhibitor to ameliorate osteoclastogenesis and bone resorption. Mol Med Rep 25(3): 78. https://doi.org/10.3892/mmr.2022.12594

Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Nugraha AP, Joestandari F (2022c) Gingival mesenchymal stem cells metabolite decreasing TRAP, NFATc1, and sclerostin expression in LPS-Associated inflammatory osteolysis in vivo. Eur J Dent. https://doi.org/10.1055/s-0042-1748529

Ololade Zs, Oo O, Se K, Oo A (2017) Stachytarpheta jamaicensis leaf extract: Chemical composition, antioxidant, anti-arthritic, anti-inflammatory and bactericidal potentials. J Sci Innov Res 6(4): 119–125.

Onofre SB, Santos ZMQ, Kagimura FY, Mattiello SP (2015) Antioxidant activity, total phenolic and flavonoids contents in Stachytarpheta cayennensis (Rich.) Vahl. (Verbenaceae). J Med Plants Res 9(17): 569–575. https://doi.org/10.5897/JMPR2014.5751

Ozok AR, Persoon IF, Huse SM, Keijser BJF, Wesselink PR, Crielaard W (2012) Ecology of the microbiome of the infected root canal system: A comparison between apical and coronal root segments. Int Endod J 45: 530–541. https://doi.org/10.1111/j.1365-2591.2011.02006.x

Pinzi L, Rastelli G (2019) Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 20(18): 4331. https://doi.org/10.3390/ijms20184331

Prada I, Micó-Muñoz P, Giner-Lluesma T, Micó-Martínez P, Colla-do-Castellano N, Manzano-Saiz A (2019) Influence of microbiology on endodontic failure. Literature review. Med Oral Patol Oral Cir Bucal 24(3): e364-72. https://doi.org/10.4317/medoral.22907

Prahasanti C, Nugraha AP, Kharisma VD, Ansori AN, Devijanti R, Ridwan TP, Ramadhani NF, Narmada IB, Ardani IG, Noor TN (2021) A bioinformatic approach of hydroxyapatite and polymethylmethacrylate composite exploration as dental implant biomaterial. J Pharm Pharmacogn Res 9(5): 746–754. https://doi.org/10.56499/jppres21.1078_9.5.746

Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I (2020) Cytokines and chemokines in periodontitis. Eur J Dent 14(3): 483–495. https://doi.org/10.1055/s-0040-1712718

Ramadhani NF, Nugraha AP, Gofur NRP, Hakiki D, Ridwan RD (2020a) Elevation of c-reactive protein in chronic periodontitis patient as cardiovascular disease risk factor. Biochem Cell Arch 20: 2875–2878.

Ramadhani NF, Nugraha AP, Putra Gofur NR, Permatasari RI, Ridwan RD (2020b) Increased levels of malondialdehyde and cathepsin C by Aggregatibacter actinomycetemcomitans in saliva as aggressive periodontitis biomarkers: A review. Biochem Cell Arch 20: 2895–2901. https://doi.org/10.35124/bca.2020.20.S1.2895

Ramadhani NF, Nugraha AP, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Noor TNEBTA, Ridwan RD, Ernawati DS, Nugraha AP (2022) Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach. J Pharm Pharmacogn Res 10(3): 418–428. http://doi.org/10.56499/jppres21.1316_10.3.418

Ridwan RD (2012) The role of Actinobacillus actinomycetemcomitans fimbrial adhesin on MMP-8 activity in aggressive periodontitis pathogenesis. Dent J (Majalah Kedokteran Gigi) 45(4): 181–186. https://doi.org/10.20473/j.djmkg.v45.i4.p181-186

Ridwan RD, Juliastuti WS, Setijanto RD (2017) Effect of electrolyzed reduced water on Wistar rats with chronic periodontitis on malondialdehyde levels. Dent J (Majalah Kedokteran Gigi) 50(1): 10–13. https://doi.org/10.20473/j.djmkg.v50.i1.p10-13

Ruksakiet K, Hanák L, Farkas N, Hegyi P, Sadaeng W, Czumbel LM, Sang-Ngoen T, Garami A, Mikó A, Varga G, Lohinai Z (2020) Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: A systematic review and meta-analysis of randomized controlled trials. J Endod 46(8): 1032–1041.e7. https://doi.org/10.1016/j.joen.2020.05.002

Shafquat Y, Jabeen K, Farooqi J, Mehmood K, Irfan S, Hasan R, Zafar A (2019) Antimicrobial susceptibility against metronidazole and carbapenem in clinical anaerobic isolates from Pakistan. Antimicrob Resist Infect Control 8: 99. https://doi.org/10.1186/s13756-019-0549-8

Strickertsson JA, Desler C, Martin-Bertelsen T, Machado AM, Wadstrøm T, Winther O, Rasmussen LJ, Friis-Hansen L (2013) Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells. PLoS One 8(4): e63147. https://doi.org/10.1371/journal.pone.0063147

Suhirman S (2015) Phytochemicals screening of several types of blue porterweed (Stachytarpheta jamaicensis L. Vahl). Prosiding Seminar Nasional Swasembada Pangan Polinela 29 April 2015, pp. 93–97. https://doi.org/10.25181/prosemnas.v0i0.516

Tagousop CN, Tamokou JD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L (2018) Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18(1): 252. https://doi.org/10.1186/s12906-018-2321-7

Tatsimo TJDD, Lamshöft M (2015) LC-MS guided isolation of antibacterial and cytotoxic constituents from Clausena anisata. Med Chem Res 24: 1468–1479. https://doi.org/10.1007/s00044-014-1233-4

Ticoalu JP, Kepel BJ, Mintjelungan CN (2016) Hubungan periodontitis dengan penyakit jantung koroner pada pasien di RSUP Prof. Dr. R. D. Kandou Manado. e-GiGi 4(2): 277–281. https://doi.org/10.35790/eg.4.2.2016.14222

Tuan Anh HL, Kim DC, Ko W, Ha TM, Nhiem NX, Yen PH, Tai BH, Truong LH, Long VN, Gioi T, Hong Quang T, Minh CV, Oh H, Kim YC, Kiem PV (2017) Anti-inflammatory coumarins from Paramignya trimera. Pharm Biol 55(1): 1195–1201. https://doi.org/10.1080/13880209.2017.1296001

Utami JK, Kurnianingsih N, Faisal MR (2022) An in silico study of the cathepsin L inhibitory activity of bioactive compounds in Stachytarpheta jamaicensis as a Covid-19 drug therapy. Makara J Sci 26(1): 3. https://doi.org/10.7454/mss.v26i1.1269

Utami JP, WasiaturrahmahY, Putri KTD (2021) Hydroxyl radical scavenging activity of Stachytarpheta jamaicensis root extract using in vitro deoxyribose degradation assay. Trad Med J 26(2): 103–112. https://doi.org/10.22146/mot.61746

Utami K, Sari I, Nurhafidhah (2019) Pengaruh Pemberian Topikal Ekstrak Etanol Daun Pecut Kuda (Stachytarpheta jamaicensis (L.) Vahl) Terhadap Penyembuhan Luka Terbuka Pada Punggung Mencit (Mus musculus). J Ilm Pendidik Kim Indones 2(1): 21–27.

Vu TT, Kim H, Tran VK, Vu HD, Hoang TX, Han JW, Choi YH, Jang KS, Choi GJ, Kim JC (2017) Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS One 12(7): e0181499. https://doi.org/10.1371/journal.pone.0181499

Wahyudi VA, Seqip P, Sahirah N, Resya N (2019) Formulation of throat relief candy from Stacytarpheta jamaicensis leaf as a functional food. J Pangan Agroind 7(4): 31–41. https://doi.org/10.21776/ub.jpa.2019.007.04.4

Wang CY, Chen YW, Hou CY (2019) Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop 22(1): 230–238. https://doi.org/10.1080/10942912.2019.1582541

Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori AN, Parikesit AA (2021) Covid-19 in silico drug with Zingiber officinale natural product compound library targeting the mpro protein. Makara J Sci 25(3): 5. https://doi.org/10.7454/mss.v25i3.1244

Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X (2020) Advances in pharmacological activities of terpenoids. Nat Prod Comm 15(3). 1–13. https://doi.org/10.1177/1934578X20903555

Yuliana Y, Auwaliyah F, Fatmawati S (2019) 6β-hydroxyipolamiide of Stachytarpheta jamaicensis leaves. J Technol Sci 30(3): 68–72. http://dx.doi.org/10.12962/j20882033.v30i3.5408

Zhang W, Wang J, Chen Y, Zheng H, Xie B, Sun Z (2020) Flavonoid compounds and antibacterial mechanisms of different parts of white guava (Psidium guajava L. cv. Pearl). Nat Prod Res 34(11): 1621–1625. https://doi.org/10.1080/14786419.2018.1522313

Zhou X, Nanayakkara S (2021) Chlorhexidine and sodium hypochlorite provide similar antimicrobial effect in root canal disinfection. J Evid Based Dent Pract 21(3): 101577. https://doi.org/10.1016/j.jebdp.2021.101577

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Roselle flower for immunomodulatory adjuvant therapy in COVID-19

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 418-428, May-June 2022

DOI: https://doi.org/10.56499/jppres21.1316_10.3.418

Original Article

Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach

[Antocianina, ácido tartárico, ácido ascórbico de flor de Jamaica (Hibiscus sabdariffa L.) para la terapia adyuvante inmunomoduladora en la manifestación oral de la enfermedad por coronavirus-19: Un enfoque inmunoinformático]

Nastiti Faradilla Ramadhani1, Alexander Patera Nugraha1,2*, Desintya Rahmadhani3, Martining Shoffa Puspitaningrum3, Yuniar Rizqianti3, Viol Dhea Kharisma4, Tengku Natasha Eleena binti Tengku Ahmad Noor5, Rini Devijanti Ridwan6, Diah Savitri Ernawati7, Albertus Putera Nugraha8

1Graduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

2Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

4Graduate Student of Biology Science, Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia

5Military Dental Officer of Royal Medical and Dental Corps, Malaysian Armed Forces, Indonesia.

6Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

7Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

8Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

*E-mail: alexander.patera.nugraha@fkg.unair.ac.id

Abstract

Context: Oral manifestations that arose from COVID-19 infection often causes morbidity and systemic drug administration is less effective. Roselle flower (Hibiscus sabdariffa) is one of the plants that is often used in infusion as it gives health benefits. Hence, H. sabdariffa may benefit from adjuvant therapy to treat oral manifestation due to COVID-19.

Aims: To investigate the potential of H. sabdariffa anthocyanins, tartaric acid, and ascorbic acid chemical compounds as antiviral, anti-inflammatory, antioxidant, and increasing tissue regeneration in oral manifestation due to COVID-19 infection in silico.

Methods: Chemical compounds consisted of anthocyanins, (+)-tartaric acid, and ascorbic acid beside target proteins consisted of ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR and MDA-ovalbumin were obtained from the database, ligand samples were selected through absorption, distribution, metabolism, excretion and toxicology analysis, then molecular docking simulations, identification of protein-ligand interactions, and 3D visualization were performed.

Results: Anthocyanins, tartaric acid, and ascorbic acid are the active compounds in H. sabdariffa, which act as antioxidants. The activity of anthocyanin compounds is higher than other compounds through value binding affinity, which is more negative and binds to specific domains of target proteins by forming weak binding interactions that play a role in biological responses. Anthocyanins have the most negative binding energy compared to tartaric-acid and ascorbic acid.

Conclusions: Anthocyanins act as antioxidants; this mechanism increases heat shock protein-70 (HSP70), which may play an important role in increasing wound regeneration of oral manifestation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as documented in silico.

Keywords: COVID-19; dentistry; Hibiscus sabdariffa; infectious disease; medicine.

Resumen

Contexto: Las manifestaciones orales derivadas de la infección por COVID-19 suelen causar morbilidad y la administración sistémica de fármacos es menos efectiva. La flor de Jamaica (Hibiscus sabdariffa) es una de las plantas que se suele utilizar en infusión ya que aporta beneficios para la salud. Por lo tanto, H. sabdariffa puede beneficiarse de la terapia adyuvante para tratar las manifestaciones orales debido a COVID-19.

Objetivos: Investigar el potencial de los compuestos químicos de H. sabdariffa, como antocianinas, ácido tartárico y ácido ascórbico como antivirales, antiinflamatorios, antioxidantes y el aumento de la regeneración de tejidos en la manifestación oral debido a la infección por COVID-19 a través de un enfoque inmunoinformático, un estudio in silico.

Métodos: Antocianinas, ácido tartárico y ácido ascórbico, además de proteínas diana como ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR y MDA-ovoalbúmina, se obtuvieron de la base de datos, las muestras de ligando se seleccionaron mediante análisis de absorción, distribución, metabolismo, excreción y toxicología, luego se realizaron simulaciones de acoplamiento molecular, identificación de interacciones proteína-ligando y visualización 3D.

Resultados: Las antocianinas, el ácido tartárico y el ácido ascórbico son los compuestos activos de H. sabdariffa que actúan como antioxidantes. La actividad de los compuestos de antocianina es mayor que la de otros compuestos a través de una afinidad de unión de valor que es más negativa y se une a dominios específicos de proteínas diana formando interacciones de unión débiles que desempeñan un papel en las respuestas biológicas. Las antocianinas tienen la energía de unión más negativa en comparación con el ácido tartárico y el ácido ascórbico.

Conclusiones: Las antocianinas actúan como antioxidantes; este mecanismo aumenta la proteína de choque térmico-70 (HSP70), que puede desempeñar un papel importante en el aumento de la regeneración de heridas de la manifestación oral en el síndrome respiratorio agudo severo coronavirus 2 (SARS-CoV-2) como se documenta in silico.

Palabras Clave: COVID-19; enfermedad infecciosa; Hibiscus sabdariffa; medicamento; odontología.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ramadhani NF, Nugraha AP, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Noor TNEBTA, Ridwan RD, Ernawati DS, Nugraha AP (2022) Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach. J Pharm Pharmacogn Res 10(3): 418–428. https://doi.org/10.56499/jppres21.1316_10.3.418
References

Al-Snafi AE (2016) Pharmacological importance of Clitoria ternatea–A review. IOSR J Pharm 6(3): 68–83.

Amorim Dos Santos J, Normando AGC, Carvalho da Silva RL, De Paula RM, Cembranel AC, Santos-Silva AR, Guerra ENS (2020) Oral mucosal lesions in a COVID-19 patient: New signs or secondary manifestations? Int J Infect Dis 97: 326–328.

Arrigoni O, De Tullio MC (2002) Ascorbic acid: Much more than just an antioxidant. Biochim Biophys Acta 1569(1-3): 1–9.

Atiqi S, Hooijberg F, Loeff FC, Rispens T, Wolbink GJ (2020) Immunogenicity of TNF-inhibitors. Front Immunol 11: 312.

Babich O, Sukhikh S, Prosekov A, Asyakina L, Ivanova S (2020) Medicinal plants to strengthen immunity during a pandemic. Pharmaceuticals 13(10): 313.

Bell LCK, Meydan C, Kim J, Foox J, Butler D, Mason CE, Shapira SD, Noursadeghi M, Pollara G (2021) Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience 24(1): 101896.

Carvajal-Zarrabal O, Barradas-Dermitz DM, Orta-Flores Z, Hayward-Jones PM, Nolasco-Hipólito C, Aguilar-Uscanga MG, Miranda-Medina A, Bujang KB (2012) Hibiscus sabdariffa L, roselle calyx, from ethnobotany to pharmacology. J Exp Pharmacol 4: 25–39.

Coomes EA, Haghbayan H (2020) Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol 30(6): 1–9.

Danladi J, Sabir H (2021) Innate immunity, inflammation activation and heat-shock protein in COVID-19 pathogenesis. J Neuroimmunol 358: 577632.

Dewi AMC, Dagradi EM, Wibowo P (2021) The effect of high dose vitamin C (ascorbic acid) on pro-inflammatory cytokines in COVID-19. Med Health Sci J 5(1): 46–50.

Díaz Rodríguez M, Jimenez Romera A, Villarroel M (2020) Oral manifestations associated with COVID‐19. Oral Dis DOI: 10.1111/odi.13555

Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O (2020) Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci 21(9): 3242.

Fakeye T (2008) Toxicity and immunomodulatory activity of fractions of Hibiscus sabdariffa Linn (family Malvaceae) in animal models. Afr J Tradit Complement Altern Med 5(4): 394–398.

Galvan-Pena S, Leon J, Chowdhary K, Michelson DA, Vijaykumar B, Yang L, Magnuson A, Manickas-Hill Z, Piechocka-Trocha A, Worrall DP, Hall KE, Ghebremichael M, Walker BD, Li JZ, Yu XG, Mathis D, Benoist C (2020) Profound Treg perturbations correlate with COVID-19 severity. bioRxiv [Preprint]. 12(11): 416180.

Gani MA, Nurhan AD, Maulana S, Siswodihardjo S, Shinta DW, Khotib J (2021) Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. J Adv Pharm Technol Res 12: 120–126.

Gollen B, Mehla J, Gupta P (2018) Clitoria ternatea Linn: A herb with potential pharmacological activities: Future prospects as therapeutic herbal medicine. J Pharma Reports 3(1): 1000141.

Haider T, Simader E, Glück O, Ankersmit HJ, Heinz T, Hajdu S, Negrin LL (2019) Systemic release of heat-shock protein 27 and 70 following severe trauma. Sci Rep 9(1): 9595.

Heck TG, Ludwig MS, Frizzo MN, Rasia-Filho AA, Homem de Bittencourt PI (2020) Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: Lessons from basic research (inclusive bats), light on conceivable therapies. Clin Sci (Lond) 134(15): 1991–2017.

Iranmanesh B, Khalili M, Amiri R, Zartab H, Aflatoonian M (2021) Oral manifestations of COVID‐19 disease: A review article. Dermatol Ther 34(1): e14578.

Izquierdo-Vega JA, Arteaga-Badillo DA, Sánchez-Gutiérrez M, Morales-González JA, Vargas-Mendoza N, Gómez-Aldapa CA, Castro-Rosas J, Delgado-Olivares L, Madrigal-Bujaidar E, Madrigal-Santillán E (2020) Organic acids from roselle (Hibiscus sabdariffa L.)—A brief review of its pharmacological effects. Biomedicines 8(5): 100.

Jiang XW, Zhang Y, Zhang H, Lu K, Yang SK, Sun GL (2013) Double-blind, randomized, controlled clinical trial of the effects of diosmectite and basic fibroblast growth factor paste on the treatment of minor recurrent aphthous stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol 116(5): 570–575.

Khandia R, Munjal AK, Iqbal HMN, Dhama K (2017) Heat shock proteins: Therapeutic perspectives in inflammatory disorders. Recent Pat Inflamm Allergy Drug Discov 10(2): 94–104.

Kharisma VD, Ansori ANM, Widyananda MH, Utami SL, Nugraha AP (2020) Molecular simulation: The potency of conserved region on E6 HPV-16 as a binding target of black tea compounds against cervical cancer. Biochem Cell Arch 20(Suppl 1): 2795–2802.

Kharisma VD, Widyananda MH, Ansori ANM, Nege A, Naw SW, Nugraha AP (2021) Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res 9(4): 435–445.

Li S, Zhang Y, Guan Z, Li H, Ye M, Chen X, Shen J, Zhou Y, Shi ZL, Zhou P, Peng K (2020) SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther 5(1): 235.

López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA (2020) Immune response and COVID-19: A mirror image of sepsis. Int J Biol Sci 16(14): 2479–2489.

Luo XH, Zhu Y, Mao J, Du RC (2021) T cell immunobiology and cytokine storm of COVID-19. Scand J Immunol 93(3): e12989.

Luqman A, Kharisma VD, Ruiz RA, Götz F (2020) In silico and in vitro study of trace amines (TA) and dopamine (DOP) interaction with human alpha1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cell Physiol Biochem 54: 888–898.

Marpaung A (2020) Tinjauan manfaat bunga telang (Clitoria ternatea L.) bagi kesehatan manusia. J Funct Food Nutraceutical 1(2): 47–69.

Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M (2021) Changes in oxidative markers in COVID-19 patients. Arch Med Res 52(8): 843–849.

Mishra N, Tandon VL, Gupta R (2012) Immunomodulation by Hibiscus rosa-sinensis: Effect on the humoral and cellular immune response of Mus musculus. Pak J Biol Sci 15(6): 277–283.

Plum SM, Vu HA, Mercer B, Fogler WE, Fortier AH (2004) Generation of a specific immunological response to FGF-2 does not affect wound healing or reproduction. Immunopharmacol Immunotoxicol 26(1): 29–41.

Putra WE, Kharisma VD, Susanto H (2020) The exploration of medicinal plants’ phytochemical compounds as potential inhibitor against human α-3 nicotinic acetylcholine receptors: The insight from computational study. AIP Conf Proc 2231(1): 040078.

Reang J, Sharma PC, Thakur VK, Majeed J (2021) Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer. Biomolecules 11(8): 1130.

Sari F, Nurkhasanah, Bachri MS (2016) Acute toxicity test of rosella (Hibiscus sabdariffa L.) calyx ethanolic extract on Sprague Dawley rats. Trad Med J 21: 12–18.

Shruthi VH, Ramachandra CT, Nidoni U, Hiregoudar S, Naik N, Kurubar AR (2016) Roselle (Hibiscus sabdariffa L.) as a source of natural colour: A review. Plant Arch 16(2): 515–522.

Smadja DM, Philippe A, Bory O, Gendron N, Beauvais A, Gruest M, Peron N, Khider L, Guerin CL, Goudot G, Levavasseur F, Duchemin J, Pene F, Cheurfa C, Szwebel TA, Sourdeau E, Planquette B, Hauw-Berlemont C, Hermann B, Gaussem P, Samama CM, Mirault T, Terrier B, Sanchez O, Rance B, Fontenay M, Diehl JL, Chocron R (2021) Placental growth factor level in plasma predicts COVID-19 severity and in-hospital mortality. J Thromb Haemost 19(7): 1823–1830.

Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7(5): a016303.

Susanto H, Kharisma VD, Listyorini D, Taufiq A (2018) Effectivity of black tea polyphenol in adipogenesis related IGF-1 and its receptor pathway through in silico based study. J Phys Conf Ser 1093 (1): 012037.

Syahrana NA, Akrom A, Darmawan E (2017) Efek serbuk bunga rosella merah (Hibiscus sabdariffa L.) terhadap ekspresi IL-10 pada sukarelawan sehat. Indones J Pharm Pharm Sci 4(1): 1–5.

Umeoguaju FU, Ephraim-Emmanuel BC, Uba JO, Bekibele GE, Chigozie N, Orisakwe OE (2021) Immunomodulatory and mechanistic considerations of Hibiscus sabdariffa (HS) in dysfunctional immune responses: A systematic review. Front Immunol 12: 550670.

Velavan TP, Meyer CG (2020) The COVID‐19 epidemic. Trop Med Int Health 25(3): 278.

Vieira AR (2021) Oral manifestations in coronavirus disease 2019 (COVID-19). Oral Dis 27(3): 770.

Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Yulanda A (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res 9(4): 484–496

WHO (2021) World Health Organization. https://covid19.who.int/table [Accessed online on: 19 March 2021]

Yalçin B, Arda N, Tezel GG, Erman M, Alli N (2006) Expressions of vascular endothelial growth factor and CD34 in oral aphthous lesions of Behçet’s disease. Anal Quant Cytol Histol 28(6): 303–306.

Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2): 27–37.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)