Tag Archives: inflammation

Syzygium polyanthum bioactive compounds in polycystic ovary syndrome

J. Pharm. Pharmacogn. Res., vol. 10, no. 4, pp. 725-736, July-August 2022.

DOI: https://doi.org/10.56499/jppres22.1408_10.4.725

Original Article

Anti-inflammatory and antioxidant potential of Syzygium polyanthum (Wight) Walp. bioactive compounds in polycystic ovary syndrome: An in silico study

[Potencial anti-inflamatorio y antioxidante de compuestos bioactivos de Syzygium polyanthum (Wight) Walp. en el síndrome de ovario poliquístico: Un estudio in silico]

Renny Aditya1,4, Budi Santoso2*, Widjiati Widjiati3

1Doctoral Program of Medical Science, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia.

2Department of Obstetrics and Gynecology, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia.

3Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Airlangga, Surabaya, Indonesia.

4Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia.

*E-mail: budi.santoso@fk.unair.ac.id


Context: Polycystic ovary syndrome (PCOS) is significantly associated with inflammation and oxidative stress. Syzygium polyanthum is a plant rich in pharmacological properties. Aims: To evaluate the anti-inflammation and antioxidant potential of S. polyanthum bioactive compounds using in silico approach.

Methods: The S. polyanthum was extracted using the ultrasound-assisted extraction (UAE) method, and the bioactive compounds were screened using Liquid Chromatography–High Resolution Mass Spectrometry (LC-HRMS) analysis. This study predicted the biological activity of S. polyanthum compounds using PASS Online server. Before docking, we analyzed the protein-protein interactions (PPIs) network of TNFα, NF-kB, SOD, and KEAP1. The molecular docking was done using Autodock Vina in PyRx software and visualized using Discovery Studio. Probability to be active (Pa) was determined.

Results: The bioactive compounds found in S. polyanthum and used in this study were deoxyphomalone, NCGC00169066-01, and phloretin with retention times [min] of 0.886, 0.907, and 8.323, respectively. The predicted biological activity of compounds and controls were anti-inflammatory, immunosuppressant, TNF expression inhibitor, immunomodulatory and HIF1α expression inhibitor (Pa>0.5 for all S. polyanthum compounds and Pa<0.5 for SPD304, MG-132, and MDF). Based on PPIs network analysis, TNFα, NF-kB, SOD, and KEAP1 are associated. The molecular docking analysis showed that deoxyphomalone, NCGC00169066-01, and phloretin had inhibition potential against TNFα and NF-kB, and activation potential against SOD, due to several residues involved in the interaction of compounds-protein was the same as the interaction of inhibitor (SPD-304 and MG-132) and activator (gallic acid) control against the protein. The residues may have the same inhibition or activation mechanism as the control. However, S. polyanthum bioactive compounds may still have inhibition potential against KEAP1 through Ala548 residue that is also involved in the interaction of DMF-KEAP1.

Conclusions: The bioactive compounds of S. polyanthum showed anti-inflammation and antioxidant potential, which may have a good effect in the treatment of PCOS, yet still need to be confirmed in vitro or in vivo research.

Keywords: antioxidant; inflammation; molecular docking; polycystic ovary syndrome; Syzygium polyanthum.


Contexto: El síndrome de ovario poliquístico (SOP) está significativamente asociado con la inflamación y el estrés oxidativo. Syzygium polyanthum es una planta rica en propiedades farmacológicas. Objetivos: Evaluar el potencial anti-inflamatorio y antioxidante de los compuestos bioactivos de S. polyanthum utilizando un enfoque in silico.

Métodos: S. polyanthum se extrajo mediante el método de extracción asistida por ultrasonido (UAE), y los compuestos bioactivos se seleccionaron mediante análisis de cromatografía líquida-espectrometría de masas de alta resolución (LC-HRMS). Este estudio predijo la actividad biológica de los compuestos de S. polyanthum utilizando el servidor PASS Online. Antes del acoplamiento, analizamos la red de interacciones proteína-proteína (PPI) de TNFα, NF-kB, SOD y KEAP1. El acoplamiento molecular se realizó con Autodock Vina en el software PyRx y se visualizó con Discovery Studio. Se determinó la probabilidad de estar activo (Pa).

Resultados: Los compuestos bioactivos encontrados en S. polyanthum y utilizados en este estudio fueron desoxifomalona, ​​NCGC00169066-01 y floretina con tiempos de retención [min] de 0,886; 0,907 y 8,323, respectivamente. La actividad biológica predicha de los compuestos y controles fue anti-inflamatoria, inmunosupresora, inhibidora de la expresión de TNF, inmunomoduladora e inhibidora de la expresión de HIF1α (Pa>0,5 para todos los compuestos de S. polyanthum y Pa<0,5 para SPD304, MG-132 y MDF). Según el análisis de red de PPI, se asocian TNFα, NF-kB, SOD y KEAP1. El análisis de acoplamiento molecular mostró que la desoxifomalona, ​​NCGC00169066-01 y la floretina tenían potencial de inhibición contra TNFα y NF-kB, y potencial de activación contra SOD, debido a que varios residuos involucrados en la interacción de compuestos-proteína eran los mismos que la interacción del inhibidor (SPD-304 y MG-132) y activador (ácido gálico) controlan contra la proteína. Los residuos pueden tener el mismo mecanismo de inhibición o activación que el control. Sin embargo, los compuestos bioactivos de S. polyanthum aún pueden tener un potencial de inhibición contra KEAP1 a través del residuo Ala548 que también está involucrado en la interacción de DMF-KEAP1.

Conclusiones: Los compuestos bioactivos de S. polyanthum mostraron potencial anti-inflamatorio y antioxidante, lo que puede tener un buen efecto en el tratamiento del SOP, pero aún debe confirmarse en investigaciones in vitro o in vivo.

Palabras Clave: acoplamiento molecular; antioxidante; inflamación; síndrome de ovario poliquistico; Syzygium polyanthum.

Citation Format: Aditya R; Santoso B; Widjiati W (2022) Anti-inflammatory and antioxidant potential of Syzygium polyanthum (Wight) Walp. bioactive compounds in polycystic ovary syndrome: An in silico study. J Pharm Pharmacogn Res 10(4): 725–736. https://doi.org/10.56499/jppres22.1408_10.4.725

Amini L, Tehranian N, Movahedin M, Tehrani FR, Ziaee S (2015) Antioxidants and management of polycystic ovary syndrome in Iran: A systematic review of clinical trials.  Iran J Reprod Med 13(1): 1-8.

Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS (2016) Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016: 5276130.

Gao L, Gu Y, Yin X (2016) High serum tumor necrosis factor-alpha levels in women with polycystic ovary syndrome: a meta-analysis. PloS One 11(10): e0164021

González F (2012) Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 77(4): 300-305.

Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L (2019) Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA reductase inhibitory activity. Heliyon 5(4): e01485.

He Z, Wang Y, Zhuan L, Li Y, Tang ZO, Wu Z, Ma Y (2021) MIF-mediated NF-κB signaling pathway regulates the pathogenesis of polycystic ovary syndrome in rats. Cytokine 146: 155632.

Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Garcia Rudaz C, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA (2017) An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm Res Paediatr 88: 371-395.

Ismail A, Ahmad WANW (2019) Syzygium polyanthum (Wight) Walp: A potential phytomedicine. Pharmacogn J 11(2): 429-438.

Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12(1): 49-62.

Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS, Gloriozova TA, Filimonov DA, Sastry NG, Poroikov VV (2018) CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One 13(1): e0191838.

Li M, Huang W, Jie F, Wang M, Zhong Y, Chen Q, Lu B (2019) Discovery of Keap1− Nrf2 small− molecule inhibitors from phytochemicals based on molecular docking. Food Chem Toxicol 133: 110758.

Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2: 17023.

Ma B, Lucas B, Capacci A, Lin EYS, Jones JH, Dechantsreiter M, Richter K (2020) Design, synthesis and identification of novel, orally bioavailable non-covalent Nrf2 activators. Bioorg Med Chem Lett 30(4): 126852.

Mascret A, Mouhsine H, Attia G, Cabrera D, Benchekroun M, Gizzi P, Zerrouki C, Fourati N, Zagury JF, Veitía MS, Port M (2021) New contributions to the drug profile of TNFα inhibitor SPD304: Affinity, selectivity and ADMET considerations. Eur J Pharmacol 907: 174285.

Mohammadi M (2019) Oxidative stress and polycystic ovary syndrome: a brief review. Int J Prev Med 10: 86.

Nafisah W, Pinanti HN, Christina YI, Rifa’i M, Djati MS (2021) Computational biological activity and pharmacological properties analysis for anti-cancer Cyperus rotundus bioactive compounds. AIP Conf Proc 2353: 030118.

Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4): 518-528.

Pandey PK, Ahmed B, Khan HA, Bala M, Prasad J (2019) In silico molecular docking and comparative in-vitro analysis of ethyl 3, 4, 5-trihydroxybenzoate and its derivative isolated from Hippophae rhamnoides leaves as free radical scavenger and anti-inflammatory compound. Pharmacogn Mag 15(64): 313.

Prabhu YD, Borthakur A, Subeka AG, Vellingiri B, Gopalakrishnan AV (2021) Increased pro-inflammatory cytokines in ovary and effect of γ-linolenic acid on adipose tissue inflammation in a polycystic ovary syndrome model. J of Reprod Immunol 146: 103345.

Rani R, Hajam YA, Kumar R, Bhat RA, Rai S, Rather MA (2022) A landscape analysis of the potential role of polyphenols for the treatment of polycystic ovarian syndrome  (PCOS). Phytomedicine Plus 2(1): 100161.

Regidor PA, Mueller A, Sailer M, Gonzalez Santos F, Rizo JM, Moreno Egea F (2020) Chronic inflammation in PCOS: The potential benefits of specialized pro-resolving lipid mediators (SPMs) in the improvement of the resolutive response. Int J Mol Sci 22(1): 384.

Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37(5): 467-520.

Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, Meczekalski B (2021) Chronic low grade inflammation in pathogenesis of pcos. Int J Mol Sci 22(7): 3789.

Sever MJ, Janež A, Dolžan V (2019) Interplay between oxidative stress and chronic inflammation in PCOS: The role of genetic variability in PCOS risk and treatment responses. In (Ed.), Polycystic Ovarian Syndrome. IntechOpen. https://doi.org/10.5772/ intechopen.88698.

Shao Y, Cheng Z, Li X, Chernaya V, Wang H, Yang XF (2014) Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction-a novel mechanism for maintaining vascular function. J Hematol Oncol 7(1): 80.

Sulaiman MA, Al-Farsi YM, Al-Khaduri MM, Saleh J, Waly MI (2018) Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int J Womens Health 10: 763-771.

Suzuki K, Tominaga T, Ruhee RT, Ma S (2020) Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress. Antioxidants 9(5): 401.

Tosatti JAG, Sóter MO, Ferreira CN, Silva IFO, Cândido AL, Sousa MO, Reis FM, Gomes KB (2020) The hallmark of pro-and anti-inflammatory cytokine ratios in women with polycystic ovary syndrome. Cytokine 134: 155187.

Uçkan K, Demir H, Turan K, Sarıkaya E, Demir C (2022) Role of oxidative stress in obese and nonobese PCOS patients. Int J Clin Pract 2022: 4579831.

Victor VM, Rovira-Llopis S, Bañuls C, Diaz-Morales N, Martinez de Marañon A, Rios-Navarro C, Alvarez A, Gomez M, Rocha M, Hernández-Mijares A (2016) Insulin resistance in PCOS patients enhances oxidative stress and leukocyte adhesion: Role of myeloperoxidase. PLoS One 11(3): e0151960.

Wang Y, Chen Y, Zhang X, Lu Y, Chen H (2020) New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Food 75: 104248

Witchel SF, Oberfield SE, Peña AS (2019) Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc 3(8): 1545-1573.

Zhang W, Xu W, Chen W, Zhou Q (2018) Interplay of autophagy inducer rapamycin and proteasome inhibitor MG132 in reduction of foam cell formation and inflammatory cytokine expression. Cell Transplant 27(8): 1235-1248.

Zuo T, Zhu M, Xu W (2016) Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev 2016: 8589318.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Pharmacological studies of A. leiocarpa leaves

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 459-468, May-June 2022.

DOI: https://doi.org/10.56499/jppres21.1265_10.3.459

Original Article

Pharmacological studies of anti-inflammatory, anti-nociceptive and anti-pyretic compounds found in chromatographic fractions of Anogeissus leiocarpa (DC). Guill. & Perr. leaves

[Estudios farmacológicos de compuestos antiinflamatorios, antinociceptivos y antipiréticos encontrados en fracciones cromatográficas de hojas de Anogeissus leiocarpa (DC). Guill. & Perr.]

Precious A. Idakwoji1*, Francis O. Atanu1, Paul C. Nweje-Anyalowu2,9, Theophilus B. Momoh3, Wisdom O. Oniwon1, Sara T. Elazab4, Souty M.Z. Sharkawi5,10, Rania M. Waheed6, Amal Youssef7, Gaber El-Saber Batiha8

1Department of Biochemistry, Faculty of Natural Science, Kogi State University, P.M.B. 1008, Anyigba, Kogi State, Nigeria.

2Biochemistry Programme, Department of Chemical Sciences, Faculty of Science, Clifford University, Owerrinta, Abia State, Nigeria.

3Department of Plant Science and Biotechnology, Faculty of Natural Science, Kogi State University, P.M.B. 1008, Anyigba, Kogi State, Nigeria.

4Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.

5Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt.

6Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.

7Medical Pharmacology Department, Faculty of Medicine, Cairo University, Egypt.

8Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Albeheira, Egypt.

9Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.

10Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Egypt.

*E-mail: precious.ia@ksu.edu.ng


Context: The anti-nociceptive and anti-pyretic properties of the crude aqueous extract of Anogeissus leiocarpa (DC). Guill. & Perr. leaves have been reported.

Aims: To investigate the anti-inflammatory, anti-nociceptive, and anti-pyretic properties of aqueous extract of A. leiocarpa leaves (AEAL) and its fractions to identify the bioactive compound(s).

Methods: AEAL was fractionated successively and eluted in gradients of solvent mixture (n-hexane, ethylacetate, and methanol). Eluates, which showed similar TLC profiles were pooled to afford 5 fractions (F1-F5). AEAL and the fractions were subjected to phytochemical analysis and investigated for anti-inflammatory, anti-nociceptive, and anti-pyretic effects using carrageenan-induced paw edema and Brewer’s yeast-induced pyrexia in rats, and acetic acid-induced writhing in mouse models, respectively.

Results: Phytochemical analysis indicated presence of terpenoids, saponins, steroids, glycosides, flavonoids, tannins and alkaloids. At 200 mg/kg b.w, AEAL and F1-F5 recorded significant (p<0.05) improvements in paw edema, abdominal constrictions and pyrexia, which is comparable to the standard (ketoprofen or Aspirin), relative to the control groups, with F4 observed to be the most potent fraction. GC-MS analysis of F4 reveal the presence of hexadecenoic acid, 15-methyl-, methylester, 9-oxabicyclo (6.1.0) nonane, cis-, cholest-4-en-3-one, cholesterol and 3-diazo-1-methyl-1, 3-dihydro-indol-2-one.

Conclusions: The results indicate that identified compounds, particularly 3-dihydro-indol-2-one, could be responsible for the anti-inflammatory, anti-nociceptive, and anti-pyretic properties of the extract.

Keywords: Anogeissus leiocarpa; anti-inflammatory; antinociception; antipyretic; inflammation; NSAID; pyrexia.


Contexto: Se han reportado las propiedades anti-nociceptivas y antipiréticas del extracto acuoso crudo de hojas de Anogeissus leiocarpa (DC). Guill. & Perr.

Objetivos: Investigar las propiedades antiinflamatorias, anti-nociceptivas y antipiréticas del extracto acuoso de hojas de A. leiocarpa (AEAL) y sus fracciones para identificar los compuestos bioactivos.

Métodos: AEAL se fraccionó sucesivamente y se eluyó en gradientes de mezcla de solventes (n-hexano, acetato de etilo y metanol). Los eluatos que mostraron perfiles de TLC similares se agruparon para proporcionar 5 fracciones (F1-F5). AEAL y las fracciones se sometieron a análisis fitoquímicos y se investigaron los efectos antiinflamatorios, anti-nociceptivos y antipiréticos utilizando edema de la pata inducido por carragenina y pirexia inducida por levadura de Brewer en ratas, y retorcimiento inducido por ácido acético en modelos de ratón, respectivamente.

Resultados: El análisis fitoquímico indicó presencia de terpenoides, saponinas, esteroides, glucósidos, flavonoides, taninos y alcaloides. A 200 mg/kg p.c., AEAL y F1-F5 registraron mejoras significativas (p<0,05) en el edema de la pata, constricciones abdominales y pirexia que es comparable al estándar (ketoprofeno o Aspirina), en relación con los grupos de control, y se observó que F4 era la fracción más potente. El análisis GC-MS de F4 revela la presencia de ácido hexadecenoico, 15-metil-, éster metílico, 9-oxabiciclo (6.1.0) nonano, cis-, colest-4-en-3-ona, colesterol y 3-diazo-1 -metil-1,3-dihidro-indol-2-ona.

Conclusiones: Los resultados indican que los compuestos identificados, particularmente la 3-dihidro-indol-2-ona, podrían ser responsables de las propiedades anti-inflamatorias, anti-nociceptivas y anti-piréticas del extracto.

Palabras Clave: AINE; Anogeissus leiocarpa; anti-inflamatorio; anti-nocicepción; antipirético; inflamación; pirexia.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Idakwoji PA, Atanu FO, Nweje-Anyalowu PC, Momoh TB, Oniwon WO, Elazab ST, Sharkawi SMZ, Waheed RM, Youssef A, Batiha GE-S (2022) Pharmacological studies of anti-inflammatory, anti-nociceptive and anti-pyretic compounds found in chromatographic fractions of Anogeissus leiocarpa (DC). Guill. & Perr. leaves. J Pharm Pharmacogn Res 10(3): 459–468. https://doi.org/10.56499/jppres21.1265_10.3.459

Adigun JO, Amupitan JO, Kelly DR (2000) Isolation and investigation of antimicrobial effect of 3,4,3-tri-O-methylflavellagic acid and its glucoside from Anogeissus leiocarpa. Bull Chem Soc Ethiop 14: 169–174.

Adzu B, Haruna AK, Salawu OA, Sule A (2007) Bioassay-guided evaluation of the antidiarrhoeal potentials of Zizyphusspina-christi root bark in rats. Int J Biol Chem 1: 15–20.

Akuodor GC, Anyalewechi AN, Udoh FV, Okoro NC, Akpan JL, Gwotmut MD, Iwuanyanwu TC, Osunkwo UA (2011) Pharmacological evaluation of Verbena hastata leaf extract in the relief of pain and fever. AdvPharmacol Toxicol 12: 1–8.

Almgeer UM, Muhammad NM, Hafeez UK, Safirah M, Muhammad NHM, Taseer A (2015) Evaluation of anti-inflammatory, analgesic and anti-pyretic activities of Thymus serphyllum Linn. in mice. Acta Pol Pharm 72: 113–118.

Amir M, Kumar S (2005) Anti-inflammatory and gastro- sparing activity of some new indomethacin derivatives. Arch Pharm 338: 24–31.

Arai KF, Lee A, Miyajima S, Miyatake NA, Yokota T (1990) Cytokines: Coordinators of immune and inflammatory responses. Annu Rev Biochem 59: 783–836.

Atawodi SE, Adekunle OO, Bala I (2011) Antioxidant, organ protective and ameliorative properties of methanol extract of Anogeissus leiocarpa leaf against carbon tetrachloride-induced liver injury. Int J Pharm Sci Res 2: 1443–1448.

Batawila K (2005) Antifungal activities of five Combretaceae used in Togolese traditional medicine. Fitoterapia 76: 264–268.

Bhat MA, Al-Omar MA (2011) Synthesis, characterization and in vivo anticonvulsant screening of Schiff bases of phthalimide. Acta Pol Pharm Drug Res 68: 375–380.

Bhat MA, Al-Omar MA, Ansari MA, Zoheir KMA, Imam F, Attia SM, Bakheet SA, Nadeem A, Korashy HM, Voronkov A (2015) Design and synthesis of N-aryl-phthalimides as inhibitors of glucocorticoid-induced TNF receptor-related protein, pro-inflammatory mediators and cytokines in carrageenan-induced lung inflammation. J Med Chem 58: 8850–8867.

Burkill HM (1985) The Useful Plants of Tropical Africa. Vol. 1, 2nd ed. Kew: Royal Botanical Garden.

Deghrigue M, Festa C, Ghribi L, D’Auria MV, Marino SD, Jannet HB, Bouraoui A (2015) Anti-inflammatory and analgesic with gastroprotective effect of semi-purified fractions and isolation of pure compounds from Mediterranean gorgonian Eunicella singularis. Asian Pac J Trop Med 8: 606–611.

Essien AD, Akuodor GC, Essien EA, Asika EC, Chilaka KC, Nwadum SK (2015) Evaluation of anti-pyretic potential of the ethanolic leaf extract of Salacia lehmbachii Loes. Asian J Med Sci 7: 22–25.

Etuk EU, Mohammed BJ (2009) Informant consensus selection method: A reliability assessment on medicinal plants used in north western Nigeria for the treatment of diabetes mellitus. Afr J Pharm Pharmacol 3(10): 496–500.

Gaber A, Alsnie WF, Kumar DN, Refat MS, Saied EM (2020) Novel papaverine metal complexes with potential anti-cancer activities. Molecules 25: 5447.

Hijazi MA, El-Mallah A, Ellakany A (2017) Evaluation of analgesic activity of Papaver libanoticum extract in mice: involvement of opioids receptors. Evid-Based Complement Altern Med 17: 8935085.

Idakwoji PA, Agatemor UM, Akuba BO, Oniemola JM, Momoh TB (2019) Effect of aqueous leaf extract of Anogeissus leiocarpa against experimental models of pain and pyrexia. Int J Adv Res Biol Sci 6: 181–188.

Idakwoji PA, Ekpo DE, Joshua PE, Njoku OU, Nwodo OFC (2021b) Ethanol extract of Tephrosia bracteolata leaves and its fractions ameliorates alloxan-induced diabetes and its associated complications in Wistar rat model. Int J Diabetes Dev Ctries 41: 456–468.

Idakwoji PA, Joshua PE, Asamodu RO, Njoku OU, Nwodo OFC (2021a) Antidiabetic activity, phytochemical and proximate compositions of different extracts of Tephrosia bracteolata leaves. Asian J Plant Sci 20: 291–299.

Kamau JK, Nthiga PM, Safari VC, Njagi SM, Mwonjoria JK, Ngugi P (2016) Anti-pyretic properties of methanolic stem bark extract of Acacia hockii De Wild and Kigelia Africana (Lam) Benth in Wistar rats. J Pharmacogn Nat Prod 2: 3.

Kumar SA, VenkatarathanammaV, Saibabu NV, Ram SK (2015) Anti-pyretic activity of Annona plant leaves on brewer’s yeast induced febrile rats. Asian J Pharm Clin Res 8: 210–212.

Lahlou M (2013) The success of natural products in drug discovery. Pharmacol Pharm 4: 17–31.

Lamie PF, Ali WAM, Bazgier V, Rárová L (2016) Novel N-substituted indole Schiff bases as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes: synthesis, biological activities in vitro and docking study. Eur J Med Chem 123: 803–813.

Mukherjee K, Sahaand BP, Mukherjee PK (2002) Evaluation of anti-pyretic potential of Leucas lavandulaefolia (Labiatae) aerial part extract. Phytother Res 16: 686–688.

National Research Council (1996) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals. Washington (DC): National Academies Press (US).

Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP (2015) Elucidation of in-vitro anti- 35 inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complement Altern Med 15: 11.

Rajeswari G, Murugan M, Mohan VR (2012) GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Res J Pharm Biol Chem Sci 3: 301.

Rani P, Srivastava VK, Kumar A (2004) Synthesis and anti-inflammatory activity of heterocyclic indole derivatives. Eur J Med Chem 39: 449–452.

Samriti F, Sharma S, Sati B, Pathak AK (2016) Comparative analysis of analgesic and anti-inflammatory activity of bark and leaves of Acacia ferruginea DC. Beni-Suef Univ J Basic Appl Sci 5: 70–78.

Sharar M, Saied EM, Rodriguez MC, Arenz C, Montes-Bayon M, Linscheid MW (2017) Elemental labeling and mass spectrometry for the specific detection of sulfenic acid groups in model peptides: a proof of concept. Anal Bioanal Chem 409: 2015–2027.

Sofowora AO (1993) Medicinal plants and traditional medicine in Africa. 2nd ed. Ibadan, Nigeria: Spectrum Books Limited.

Vasudevan A, Kalarickal VD, Pradeep KM, Madathilkovilakathu H (2012) Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des 80: 434–439.

Winter CA, Risley EA, Nuss GW (1962) Carrageenan-induced oedema in the hind limb paw of the rat as an assay for anti-inflammatory Drugs Proc Soc Expt Biol Med 111: 544–547.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Mangifera indica effects on knee osteoarthritis pain

J Pharm Pharmacogn Res 10(2): 239-252, 2022.

DOI: https://doi.org/10.56499/jppres21.1156_10.2.239

Original Article

Mangifera indica L. extract tablets supplementation in patients with knee osteoarthritis pain. A controlled pilot study

[Suplementación con tabletas de extracto de Mangifera indica L. en pacientes con dolor por osteoartritis de rodilla. Un estudio piloto controlado]

Bárbara B. Garrido-Suárez1,2*, Gabino Garrido3,4**, Ana M. López-Mantecón5, Octavio Piñeros6, Jose M. Castro-Lopes7, Rene Delgado-Hernández8

1Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos. La Habana, Cuba.

2Departamento de Farmacología, Instituto de Ciencias del Mar, La Habana, Cuba.

3Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile.

4Fundación ACPHARMA, Antofagasta, Chile.

5Centro de Referencia de Enfermedades Reumatológicas. Hospital Docente Clínico-Quirúrgico 10 de Octubre, La Habana, Cuba.

6Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia

7Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.

8Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, La Habana, Cuba.

*E-mails: *beatriz.garrido@infomed.sld.cu; **gabino.garrido@ucn.cl


Context: Several experimental results and clinical reports using Mangifera indica L extract (MSBE) suggest its potential utility in osteoarthritis (OA) mixed pain.

Aims: To examine the possible therapeutic effects and safety of supplementation on osteoarthritis (OA) pain.

Methods: Fifty patients with painful knee OA who had undergone a year of conventional treatment that included paracetamol and non-pharmacological therapies were randomly allocated to the experimental group (n = 21), which received a daily dose of 900 mg of extract supplementation or preceding usual treatment and placebo in the same form (n = 17) for a period of 120 days. The primary measure outcome was the change in the average daily pain diary score (ADPS) using the Likert scale. Also, a multidimensional measure of pain, stiffness and functional disability on The Western Ontario and Mc Master Universities (WOMAC) index for knee OA and ultrasonographic chronic signs of synovitis such as effusion and synovial thickness were evaluated.

Results: Change from baseline in ADPS of the MSBE supplemented group showed a significant reduction after two weeks that lasted for 120 days with respect to the placebo group. Significant improvements in pain and functional disability WOMAC sub-scores, number of joints with synovial thickness and effusion after MSBE supplementation vs. placebo were observed. Non-adverse effects were reported in the experimental group.

Conclusions: These results suggest that MSBE supplementation has a beneficial effect on OA pain and disability.

Keywords: inflammation; Mangifera indica extract; mangiferin; osteoarthritis; pain.


Contexto: Varios resultados experimentales e informes clínicos que utilizan extracto de Mangifera indica L (ECAM) sugieren su utilidad potencial en el dolor mixto de la osteoartritis (OA).

Objetivos: Examinar los posibles efectos terapéuticos y la seguridad de la suplementación con MSBE sobre el dolor de la osteoartritis (OA).

Métodos: Cincuenta pacientes con artrosis de rodilla dolorosa que habían recibido un año de tratamiento convencional que incluía paracetamol y terapias no farmacológicas fueron asignados aleatoriamente al grupo experimental (n = 21), que recibió además una dosis diaria de 900 mg de suplemento con el extracto o el tratamiento precedente habitual y placebo en la misma forma (n = 17) durante un período de 120 días. El resultado primario de medida fue el cambio en el puntaje diario promedio del dolor (PDMD) usando la escala Likert. Además, se evaluó una medida multidimensional del dolor, la rigidez y la discapacidad funcional en el índice The Western Ontario and Mc Master Universities (WOMAC) para la artrosis de rodilla y los signos ecográficos crónicos de sinovitis, como el derrame y el grosor sinovial.

Resultados: El cambio desde el inicio en PDMD del grupo suplementado con ECAM mostró una reducción significativa después de dos semanas que duró 120 días con respecto al grupo placebo. Se observaron mejoras significativas en las subpuntuaciones WOMAC de dolor y discapacidad funcional, número de articulaciones con engrosamiento sinovial y derrame después de la suplementación con ECAM frente a placebo. No se informaron efectos adversos en el grupo experimental.

Conclusiones: Estos resultados sugieren que la suplementación con ECAM tiene un efecto beneficioso sobre el dolor y la discapacidad por OA.

Palabras Clave: dolor; inflamación; Mangifera indica extracto; mangiferin; osteoartritis.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Garrido-Suárez BB, Garrido G, López-Mantecón AM, Piñeros O, Castro-Lopes JM, Delgado-Hernández R (2022) Mangifera indica L. extract tablets supplementation in patients with knee osteoarthritis pain. A controlled pilot study. J Pharm Pharmacogn Res 10(2): 239–252. https://doi.org/10.56499/jppres21.1156_10.2.239

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Volume 9, Suppl. 1 (MICPS 2021)

J Pharm Pharmacogn Res 9(Suppl. 1), (October) 2021

1st Makassar International Conference on Pharmaceutical Sciences

(MICPS 2021)

Empowering Natural Product in Drugs Discovery and Development

Faculty of Pharmacy Universitas Muslim Indonesia

Makassar, Indonesia

September 25-26, 2021

Conference Proceedings  [1.3 Mb]
Editing, design and realization: Gabino Garrido, Marisela Valdés, Xavier Garrido, Muammar Fawwaz, Aktsar Roskiana Ahmad
Editorial Scientific Council: Muammar Fawwaz, Aktsar Roskiana Ahmad, A. Emelda, Nurmaya Effendi

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Melatonin and quercetin versus celecoxib-induced liver damage

J Pharm Pharmacogn Res 9(4): 397-408, 2021.

Original article

Molecular target mechanisms of celecoxibinduced liver damage in rats and the potential prophylactic roles of melatonin and/or quercetin

[Mecanismos diana moleculares del daño hepático inducido por celecoxib en ratas y las posibles funciones profilácticas de la melatonina y/o quercetina]

Emtenan Sami Sulimani1, Jehad Mustafa Yousef2, Azza M. Mohamed2,3*

1Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

2Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.

3 Department of Therapeutic Chemistry, National Research Center, Cairo, Egypt.

*E-mail: amhassan@uj.edu.sa


Context: Celecoxib (Cele), a nonsteroidal anti-inflammatory drug (NSAID) is linked with a spectrum of hepatotoxic influences, however the underlying mechanism (s) by which this drug induces liver damage is still unexplored.

Aims: To demonstrate the hepatotoxic mechanism (s) of Cele in rats and the prophylactic roles of melatonin (Mel) and/or quercetin(Qr).

Methods: Rats were divided into eight groups, GI, served as control group; GII, Mel (12 mg/kg/day) treated group; GIII, Qr (10 mg/kg/day) treated group; GIV, Mel and Qr treated group; GV, Cele (50 mg/kg/day) treated group; GVI, Cele treated group concurrently with Mel GVII, Cele treated group concurrently with Qr; GVIII, Cele treated group concurrently with the combination of the two agents. The efficiency of Mel and/or Qr on hepatic histomorphology was also investigated.

Results: Cele significantly reduced hepatic succinate dehydrogenase and adenosine triphosphate and increased adenosine diphosphate versus the control group. Cele also caused rising in hepatic malondialdehyde, nitric oxide, tumor necrosis factor-α, transforming growth factor-β, caspase-3 and hydroxyproline as well as DNA damage along with depletion in catalase and glutathione reductase. Alteration in serum liver function markers and its histologic architecture were also observed in Cele treated group. Co-treatment of Cele treated rats with Mel and/or Qr, effectively ameliorated the deteriorations in the studied parameters as well as the histomorphologic liver pictures.

Conclusions: Mel and/or Qr could protect the liver from Cele, toxicity, which was more pronounced in rats treated with the combination of the two agents.

Keywords: celecoxib; inflammation; liver; melatonin; oxidative stress; quercetin.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: Celecoxib (Cele), un fármaco antiinflamatorio no esteroideo (AINE) está vinculado con un espectro de influencias hepatotóxicas; sin embargo, el mecanismo o mecanismos subyacentes por los que este fármaco induce daño hepático aún no se ha explorado.

Objetivos: Demostrar los mecanismos hepatotóxicos de Cele en ratas y las funciones profilácticas de melatonina (Mel) y/o quercetina (Qr).

Métodos: Las ratas se dividieron en ocho grupos, GI, sirvió como grupo control; Grupo tratado con GII, Mel (12 mg/kg/día); Grupo tratado con GIII, Qr (10 mg/kg/día); Grupo tratado con GIV, Mel y Qr; Grupo tratado con GV, Cele (50 mg/kg/día); GVI, grupo tratado con Cele al mismo tiempo que Mel GVII, grupo tratado con Cele al mismo tiempo que Qr; GVIII, grupo tratado con Cele al mismo tiempo que la combinación de los dos agentes. También se investigó la eficacia de Mel y/o Qr en la histomorfología hepática.

Resultados: Cele redujo significativamente la succinato deshidrogenasa hepática y el trifosfato de adenosina y aumentó el difosfato de adenosina en comparación con el grupo de control. Cele también provocó un aumento de malondialdehído hepático, óxido nítrico, factor de necrosis tumoral α, factor de crecimiento transformante β, caspasa 3 e hidroxiprolina, así como daño en el ADN junto con el agotamiento de la catalasa y la glutatión reductasa. También se observaron alteraciones en los marcadores de función hepática en suero y su arquitectura histológica en el grupo tratado con Cele. El tratamiento conjunto de ratas tratadas con Cele con Mel y/o Qr mejoró eficazmente el deterioro de los parámetros estudiados, así como las imágenes histomorfológicas del hígado.

Conclusiones: Mel y/o Qr podrían proteger al hígado de la toxicidad de Cele, que fue más pronunciada en ratas tratadas con la combinación de los dos agentes.

Palabras Clave: celecoxib; estrés oxidativo; hígado; inflamación; melatonina; quercetina.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Sulimani ES, Yousef JM, Mohamed AM (2021) Molecular target mechanisms of celecoxib induced liver damage in rats and the potential prophylactic roles of melatonin and/or quercetin. J Pharm Pharmacogn Res 9(4): 397–408.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Mimusops coriacea fitoquimica capacidad antioxidante y actividad antiinflamatoria

J Pharm Pharmacogn Res 9(1): 33-48, 2021.

Original Article

Composición química, capacidad antioxidante y actividad antiinflamatoria de los frutos de Mimusops coriacea (A.DC) Mig (Sapotaceae) que crece en Ecuador

[Chemical composition, antioxidant capacity and anti-inflammatory activity of the fruits of Mimusops coriacea (A.DC) Mig (Sapotaceae) that grows in Ecuador]

Katherine E. Bustamante Pesantes1; Yamilet I. Gutiérrez Gaitén2; Iván A. Chóez Guaranda3; Migdalia Miranda Martínez3,4*

1Departamento de Farmacia. Facultad de Ciencias Químicas. Universidad de Guayaquil. Ciudadela Universitaria “Salvador Allende”. Ave. Kennedy S/N y Av. Delta. Guayaquil. Ecuador.

2Departamento de Farmacia, Instituto de Farmacia y Alimentos, Universidad de La Habana, Coronela, Lisa, Habana 13600, Cuba.

3Centro de Investigaciones Biotecnológicas del Ecuador. Escuela Superior Politécnica del Litoral, ESPOL. Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863. Guayaquil, Ecuador.

4Departamento de Ciencias Químicas y Ambientales. Facultad de Ciencias Naturales y Matemáticas. Escuela Superior Politécnica del Litoral, ESPOL. Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863. Guayaquil, Ecuador.

*E-mail: mgmiran@espol.edu.ec


Context: Mimusops coriacea (Sapotaceae) is traditionally used to treat inflammation of the urethra, cystitis, diarrhea, and dysentery, among others. In Ecuador it is used as an analgesic and anti-inflammatory, however the phytochemical and pharmacological information is scarce.

Aims: To evaluate the chemical composition, antioxidant capacity and anti-inflammatory activity of the M. coriacea fruits in two stages of ripening.

Methods: An extraction with hexane by Soxhlet of the oils of the seeds of green and mature fruits was carried out. Saponifiable and unsaponifiable fractions were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Hydroalcoholic extracts were obtained by maceration from the green and ripe whole fruits and were tested by Liquid Chromatography-Mass Spectrometry (LC-MS). Antioxidant capacity by FRAP, DPPH and ABTS and anti-inflammatory activity using the plantar edema model by carrageenan were evaluated.

Results: In the saponifiable fractions, four fatty acids were identified (majority 9-octadecenoic acid) and in the unsaponifiable ones four compounds were assigned to green fruits and nine to mature fruits, the majority being squalene and urs-12-en-24-oico, 3-oxo-methyl ester, respectively. By LC-MS 31 compounds were identified, associated with phenolic compounds and triterpenic saponins. The extracts showed Fe3+ reducing capacity and antiradical activity, the green fruit extract was the most active (IC50s = 4.99 μg/mL and 246.80 μg/mL, DPPH and ABTS, respectively). The anti-inflammatory activity of the extracts was demonstrated with inhibition percentages greater than 50% by using indomethacin as reference drug.

Conclusions: The results provide the first findings of the phytochemical and bioactive potential of the M. coriacea species that grows in Ecuador.

Keywords: anti-inflammatory activity;antioxidant activity; GC-MS; LC-MS; Mimusops coriacea.


Contexto: Mimusops coriacea (Sapotaceae) se emplea tradicionalmente para el tratamiento de la inflamación de la uretra, cistitis, diarreas y disentería, entre otros. En Ecuador se utiliza como analgésico y antiinflamatorio, sin embargo, la información fitoquímica y farmacológica es escasa.

Objetivos: Evaluar la composición química, la capacidad antioxidante y la actividad antiinflamatoria de los frutos de M. coriacea en dos estados de maduración.

Métodos: Se realizó una extracción por Soxhlet, con hexano, de los aceites de las semillas de frutos verdes y maduros. Las fracciones saponificables e insaponificables fueron analizadas por CG-EM. Se obtuvieron extractos hidroalcohólicos por maceración a partir de los frutos completos verdes y maduros y se ensayaron por CL-EM. Se evaluó la capacidad antioxidante por FRAP, DPPH y ABTS y la actividad antiinflamatoria mediante el modelo de edema plantar por carragenina.

Resultados: En las fracciones saponificables se identificaron cuatro ácidos grasos (ácido 9-octadecenoico mayoritario) y en las insaponificables se asignaron cuatro compuestos a los frutos verdes y nueve a los frutos maduros, siendo los mayoritarios el escualeno y el ácido urs-12-en-24-oico, 3-oxo-metil éster, respectivamente. Se identificaron 31 compuestos por CL-EM, asociados a compuestos fenólicos y saponinas triterpénicas. Los extractos mostraron capacidad reductora de Fe3+ y actividad antirradicalaria, el extracto de fruto verde fue el más activo (CI50s = 4,99 μg/mL y 246,80 μg/mL, DPPH y ABTS, respectivamente). Se demostró la actividad antiinflamatoria de los extractos con porcentajes de inhibición superiores al 50% utilizando la indometacina como fármaco de referencia.

Conclusiones: Los resultados brindan los primeros hallazgos del potencial fitoquímico y bioactivo de la especie M. coriacea que crece en Ecuador.

Palabras clave: actividad antiinflamatoria; actividad antioxidante; CG-EM, CL-EM, Mimusops coriacea.

Citation Format: Bustamante Pesantes KE, Gutiérrez Gaitén YI, Chóez Guaranda IA, Miranda Martinez M (2021) Composición química, capacidad antioxidante y actividad antiinflamatoria de los frutos de Mimusops coriacea (A.DC) Mig (Sapotaceae) que crece en Ecuador [Chemical composition, antioxidant capacity and anti-inflammatory activity of the fruits of Mimusops coriacea (A.DC) Mig (Sapotaceae) that grows in Ecuador]. J Pharm Pharmacogn Res 9(1): 33–48.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Phytochemical study and bioactivity of Alphonsea tonkinensis

J Pharm Pharmacogn Res 9(1): 24-32, 2021.

Original Article

Secondary metabolites from Alphonsea tonkinensis A.DC. showing inhibition of nitric oxide production and cytotoxic activity

[Metabolitos secundarios de Alphonsea tonkinensis A.DC. muestran inhibición de la producción de óxido nítrico y actividad citotóxica]

Khan Viet Nguyen1,3, Duc Viet Ho1, Anh Tuan Le2, Jyrki Heinämäki3, Ain Raal3*, Hoai Thi Nguyen1*

1Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Viet Nam.

2Quang Tri Center of Science and Technology, Mientrung Institute for Scientific Research, VAST, Dien Bien Phu, Dong Ha, Quang Tri 48000, Viet Nam.

3Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse str. 1, 54011 Tartu, Estonia.

*E-mail: ain.raal@ut.eehoai77@gmail.com


Context: Bioactivities of Alphonsea tonkinensis A.DC have not been reported previously, while the knowledge about its chemical composition is limited.

Aims: To investigate the phytochemical constituents and bioactivities of the stems and leaves of Alphonsea tonkinensis A.DC.

Methods: Combination of various extraction, chromatographic methods and crystallization techniques were performed to obtain pure compounds. Chemical structures of isolated compounds were determined by spectroscopic analyses (1D and 2D NMR). The in vitro anti-inflammatory and cytotoxic activities of isolates were evaluated by a Griess assay and a sulforhodamine B assay.

Results: A phytochemical study of the stems and leaves of Alphonsea tonkinensis A.DC. resulted in the isolation of liriodenine (1), Ntrans-feruloyltyramin (2), corydaldine (3), 8-oxopseudopalmatine (4), 3-hydroxy-7,8-dehydro-β-ionone (5), pseudopalmatine (6), pseudocolumbamine (7), and stigmasterol (8). Compound showed potent inhibitory activity for NO production with an IC50 value of 20.4 μM, which was comparable to that of positive control. Compound 4 and 5 displayed inhibitions against the HepG2, SK-LU-1 cancer cell lines with IC50 values ranging from 54.4 and 69.6 µM.

Conclusions: Among eight compounds isolated from Alphonsea tonkinensis A.DC., compounds 3 and were isolated from the genus Alphonsea for the first time. Compound was stronger inhibitor of NO production than positive control L-NMMA. In addition, this is the first investigation showing the bioactivities of and cytotoxicity against the HepG2, SK-LU-1 cancer cell lines of 4.

Keywords: 3-hydroxy-7,8-dehydro-β-ionone; Alphonsea tonkinensis; cytotoxicity; nitric oxide inhibition.



Contexto: Las bioactividades de Alphonsea tonkinensis A.DC no se han informado anteriormente, mientras que el conocimiento sobre su composición química es limitado.

Objetivos: Investigar los componentes fitoquímicos y las bioactividades de los tallos y las hojas de Alphonsea tonkinensis A.DC.

Métodos: Se realizaron combinaciones de diversas técnicas de extracción, cromatografía y cristalización para obtener compuestos puros. Las estructuras químicas de los compuestos aislados se determinaron mediante análisis espectroscópicos (RMN 1D y 2D). Las actividades antiinflamatorias y citotóxicas in vitro de los aislados se evaluaron mediante un ensayo de Griess y un ensayo de sulforhodamina B.

Resultados: un estudio fitoquímico de los tallos y hojas de Alphonsea tonkinensis A.DC. resultó en el aislamiento de liriodenina (1), N-trans-feruloiltyramina (2), coridaldina (3), 8-oxopseudopalmatina (4), 3-hidroxi-7,8-deshidro-β-ionona (5), pseudopalmatina (6), pseudocolumbamina (7) y estigmasterol (8). El compuesto 5 mostró una potente actividad inhibitoria para la producción de NO con un valor de CI50 de 20,4 μM, que fue comparable al del control positivo. Los compuestos 4 y 5 mostraron inhibiciones contra las líneas celulares de cáncer HepG2, SK-LU-1 con valores de CI50 entre 54,4 y 69,6 µM.

Conclusiones: Entre ocho compuestos aislados de Alphonsea tonkinensis A.DC., los compuestos 3 y 5 se aislaron del género Alphonsea por primera vez. El compuesto 5 fue un inhibidor más fuerte de la producción de NO que el control positivo L-NMMA. Además, esta es la primera investigación que muestra las bioactividades de 5 y la citotoxicidad contra las líneas celulares de cáncer HepG2, SK-LU-1 de 4.

Palabras Clave: 3-hidroxi-7,8-deshidro-β-ionona; Alphonsea tonkinensis; citotoxicidad; óxido nítrico inhibición.


Citation Format: Nguyen KV, Ho DV, Le AT, Heinämäki J, Raal A, Nguyen HT (2021) Secondary metabolites from Alphonsea tonkinensis A.DC. showing inhibition of nitric oxide production and cytotoxic activity. J Pharm Pharmacogn Res 9(1): 24–32.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)