Tag Archives: Kaempferia parviflora

Phyllanthus tenellus and Kaempferia parviflora compounds inhibit SARS-CoV-2

J. Pharm. Pharmacogn. Res., vol. 10, no. 6, pp. 1103-1116, November-December 2022.

DOI: https://doi.org/10.56499/jppres22.1485_10.6.1103

Original Article

Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study

[Compuestos de Phyllanthus tenellus Roxb. y Kaempferia parviflora Wall. ex Baker como inhibidores de la proteasa principal del SARS-CoV-2 y de la ARN polimerasa dependiente de ARN: Un estudio de acoplamiento molecular]

Suhaina Supian*, Muhamad Aizuddin Ahmad, Lina Rozano, Machap Chandradevan, Zuraida Ab Rahman

Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia.

*E-mail: suhaina@mardi.gov.my

Abstract

Context: The outbreak of a novel coronavirus, SARS-CoV-2 has caused an unprecedented COVID-19 pandemic. To put an end to this pandemic, effective antivirals should be identified or developed for COVID-19 treatment. However, specific and effective antivirals or inhibitors against SARS-CoV-2 are still lacking.

Aims: To evaluate bioactive compounds from Phyllanthus tenellus and Kaempferia parviflora as inhibitorsagainst two essential SARS-CoV-2 proteins, main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), through molecular docking studies and to predict the drug-likeness properties of the compounds.

Methods: The inhibition potential and interaction of P. tenellus and K. parviflora compounds against Mpro and RdRp were assessed through molecular docking. The drug-likeness properties of the compounds were predicted using SwissADME and AdmetSAR tools.

Results: Rutin and ellagic acid glucoside from P. tenellus and 4-hydroxy-6-methoxyflavone and 5-hydroxy-3,7,4’-trimethoxyflavone from K. parviflora exhibited the highest binding conformations to Mpro by interacting with its substrate binding site that was predicted to halt the Mpro activity. As for RdRp, ellagitannin and rutin from P. tenellus and peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were the best-docked compounds that bound to the RdRp catalytic domain (Asp760 and Asp761) and NTP-entry channel that were anticipated to stop RNA polymerization. However, in the context of drug developability, 4-hydroxy-6-methoxyflavone, 5-hydroxy-3,7,4’-trimethoxyflavone, peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were highly potential to be oral active drugs compared to rutin, ellagic acid glucoside and ellagitannin from P. tenellus.

Conclusions: P. tenellus and K. parviflora compounds, particularly the aforementioned compounds, were suggested as potential inhibitors of SARS-CoV-2 Mpro and RdRp.

Keywords: antiviral; compounds; COVID-19; in silico; Kaempferia parviflora; Phyllanthus tenellus.

jppres_pdf_free

Resumen

Contexto: El brote de un nuevo coronavirus, el SARS-CoV-2, ha provocado una pandemia de COVID-19 sin precedentes. Para poner fin a esta pandemia, es necesario identificar o desarrollar antivirales eficaces para el tratamiento del COVID-19. Sin embargo, aún se carece de antivirales o inhibidores específicos y eficaces contra el SARS-CoV-2.

Objetivos: Evaluar compuestos bioactivos de Phyllanthus tenellus y Kaempferia parviflora como inhibidores contra dos proteínas esenciales del SARS-CoV-2, la proteasa principal (Mpro) y la ARN polimerasa dependiente del ARN (RdRp), mediante estudios de acoplamiento molecular y predecir las propiedades de similitud con los fármacos de los compuestos.

Métodos: El potencial de inhibición y la interacción de los compuestos de P. tenellus y K. parviflora contra la Mpro y la RdRp fueron evaluados mediante docking molecular. Las propiedades de semejanza de los compuestos se predijeron mediante las herramientas SwissADME y AdmetSAR.

Resultados: La rutina y el glucósido del ácido elágico de P. tenellus y la 4-hidroxi-6-metoxiflavona y la 5-hidroxi-3,7,4′-trimetoxiflavona de K. parviflora mostraron las conformaciones de unión más altas a Mpro al interactuar con su sitio de unión al sustrato que se predijo para detener la actividad de Mpro. En cuanto a la RdRp, la elagitanina y la rutina de P. tenellus y la peonidina y la 5,3′-dihidroxi-3,7,4′-trimetoxiflavona de K. parviflora fueron los compuestos mejor acoplados que se unieron al dominio catalítico de la RdRp (Asp760 y Asp761) y al canal de entrada NTP que se anticipó que detendría la polimerización del ARN. Sin embargo, en el contexto del desarrollo de fármacos, la 4-hidroxi-6-metoxiflavona, la 5-hidroxi-3,7,4′-trimetoxiflavona, la peonidina y la 5,3′-dihidroxi-3,7,4′-trimetoxiflavona de K. parviflora tendrían un gran potencial para ser fármacos activos por vía oral en comparación con la rutina, el glucósido de ácido elágico y la elagitanina de P. tenellus.

Conclusiones: Los compuestos de P. tenellus y K. parviflora, en particular los mencionados, fueron sugeridos como potenciales inhibidores de Mpro y RdRp del SARS-CoV-2.

Palabras Clave: antiviral; compuestos; COVID-19; in silico; Kaempferia parviflora; Phyllanthus tenellus.

jppres_pdf_free
Citation Format: Supian S, Ahmad MA, Rozano L, Chandradevan M, Ab Rahman Z (2022) Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study. J Pharm Pharmacogn Res 10(6): 1103–1116. https://doi.org/10.56499/jppres22.1485_10.6.1103
References

Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N (2020)Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 18(1): 275. https://doi.org/10.1186/s12967-020-02439-0

Amin ML (2013) P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7: 27–34. https://doi.org/10.33393/dti.2013.1349

Babar M, Najam‑Us‑Sahar SZ, Ashraf M, Kazi AG (2013) Antiviral drug therapy – Exploiting medicinal plants. J Antivir Antiretrovir 5: 28–36. https://doi.org/10.4172/2155-6113.1000215

Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 10(2): 354–367. https://doi.org/10.1007/s13346-019-00691-6

Chen D, Li H, Li W, Feng S, Deng D (2018) Kaempferia parviflora and its methoxyflavones: Chemistry and biological activities. Evid Based Complement Alternat Med 2018: 4057456. https://doi.org/10.1155/2018/4057456

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11): 3099–3105. https://doi.org/10.1021/ci300367a

Cheng PW, Ng LT, Chiang LC, Lin CC (2006) Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 33(7): 612–616. https://doi.org/10.1111/j.1440-1681.2006.04415.x

Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11: 1117–1121. https://doi.org/10.1002/cmdc.201600182

Eweas AF, Alhossary AA, Abdel-Moneim AS (2021) Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Front Microbiol 11: 592908. https://doi.org/10.3389/fmicb.2020.592908

Farouk F, Shamma R (2019) Chemical structure modifications and nano-technology applications for improving ADME-Tox properties, a review. Arch Pharm Chem Life Sci 352(2): e1800213. https://doi.org/10.1002/ardp.201800213

Jin Z, Wang H, Duan Y, Yang H (2020) The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun 538: 63–71. https://doi.org/10.1016/j.bbrc.2020.10.091

Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368: 779–782. https://doi.org/10.1126/science.abb7498

Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar Drugs 18(4): 225. https://doi.org/10.3390/md18040225

Ghanimi R, Ouhammou A, El Atki Y, Cherkaoui M (2022) Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. J Pharm Pharmacogn Res 10(2): 227–238. https://doi.org/10.56499/jppres21.1200_10.2.227

Goyal B, Goyal D (2020) Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci 22(6): 297–305. https://doi.org/10.1021/acscombsci.0c00058

Kharisma VD, Aghata A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res 10(1): 138–146. https://doi.org/10.56499/jppres21.1174_10.1.138

Lamb YN (2022) Nirmatrelvir plus ritonavir: first approval. Drugs 82:585–591. https://doi.org/10.1007/s40265-022-01692-5  

Long C, Romero ME, La Rocco D, Yu J (2021) Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 19: 3339–3348. https://doi.org/10.1016/j.csbj.2021.06.005

Martin R, Li J, Parvangada A, Perry J, Cihlar T, Mo H, Porter D, Svarovskaia E (2021) Genetic conservation of SARS-CoV-2 RNA replication complex in globally circulating isolates and recently emerged variants from humans and minks suggests minimal pre-existing resistance to remdesivir. Antiviral Res 188: 105033. https://doi.org/10.1016/j.antiviral.2021.105033

Mehrbod P, Hudy D, Shyntum D, Markowski J, Łos MJ, Ghavami S (2021) Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomol 11(1): 10. https://doi.org/10.3390/biom11010010

Mohammad Zadeh N, Mashinchi Asl NS, Forouharnejad K, Ghadimi K, Parsa S, Mohammadi S, Omidi A (2021) Mechanism and adverse effects of COVID-19 drugs: a basic review. Int J Physiol Pathophysiol Pharmacol 13(4): 102–109.

Mohd Jusoh NH, Subki A, Yeap SK, Yap KC, Jaganath IB (2019) Pressurized hot water extraction of hydrosable tannins from Phyllanthus tenellus Roxb. BMC Chem 13(1): 134. https://doi.org/10.1186/s13065-019-0653-0

Nutan MM, Goel T, Das T, Malik S, Suri S, Rawat AKS, Srivastava SK, Tuli R, Malhotra S, Gupta SK (2013) Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J Med Res 137: 540–548.

Oh C, Price J, Brindley MA, Widrlechner MP, Qu L, McCoy JA, Murphy P, Hauck C, Maury W (2011) Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virol J 8: 188. https://doi.org/10.1186/1743-422X-8-188

Ortega JT, Suárez AI, Serrano ML, Baptista J, Pujol FH, Rangel HR (2017) The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res Ther 14(1): 57. https://doi.org/10.1186/s12981-017-0183-6

Pitts J, Li J, Perry JK, Du Pont V, Riola N, Rodriguez L, Lu X, Kurhade C, Xie X, Camus G, Manhas S, Martin R, Shi PY, Cihlar T, Porter DP, Mo H, Maiorova E, Bilello JP (2022) Remdesivir and GS-441524 retain antiviral activity against delta, omicron, and other emergent SARS-CoV-2 variants. Antimicrob Agents Chemother 66(6): e0022222. https://doi.org/10.1128/aac.00222-22

Ritchie TJ, Macdonald SJ (2009) The impact of aromatic ring count on compound developability–are too many aromatic rings a liability in drug design? Drug Discovery Today 14(21/22): 1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014

Shivanika C, Deepak Kumar S, Venkataraghavan R, Pawan T, Sumitha A, Brindha Devi P (2020) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 40(2): 585–611. https://doi.org/10.1080/07391102.2020.1815584

Silva T, Veras Filho J, Lúcia CDAE, Antonia DSI, Albuquerque U, Cavalcante de Araújo E (2012) Acute toxicity study of stone-breaker (Phyllanthus tenellus Roxb.). Rev Cienc Farm 33: 205–210.

Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A, Danielson UH (2006) Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 61(8): 717–721.

Sornpet B, Potha T, Tragoolpua Y, Pringproa K (2017) Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med 10(9): 871–876. https://doi.org/10.1016/j.apjtm.2017.08.010

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L (2020) Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 17(6): 613–620. https://doi.org/10.1038/s41423-020-0400-4

Tan WC, Jaganath IB, Manikam R, Sekaran SD (2013) Evaluation of antiviral activities of four local Malaysian Phyllanthus species against herpes simplex viruses and possible antiviral target. Int J Med Sci 10(13): 1817–1829. https://doi.org/10.7150/ijms.6902

Tao J, Hu Q, Yang J, Li R, Li X, Lu C, Chen C, Wang L, Shattock R, Ben K (2007) In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral Res75(3): 227–233. https://doi.org/10.1016/j.antiviral.2007.03.008

te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ (2010) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38(1): 203–214. https://doi.org/10.1093/nar/gkp904

te Velthuis AJ, van den Worm SH, Snijder EJ (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40(4): 1737–1747. https://doi.org/10.1093/nar/gkr893

Vangeel L, Chiu W, De Jonghe S, Maes P, Slechten B, Raymenants J, André E, Leyssen P, Neyts J, Jochmans D (2022) Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 198: 105252. https://doi.org/10.1016/j.antiviral.2022.105252

Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S (2014) Structural disorder in viral proteins. Chem Rev 114(13): 6880–6911. https://doi.org/10.1021/cr4005692

Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75(1): 89–92. https://doi.org/10.1016/j.fitote.2003.08.017

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 368: 409–412. https://doi.org/10.1126/science.abb3405

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 588(7836): E6. https://doi.org/10.1038/s41586-020-2951-z

Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y (2020) From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21(1): 224. https://doi.org/10.1186/s12931-020-01479-w

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)