Tag Archives: medicinal plants

Ethnobotanical investigation in Soran district, Iraq

J. Pharm. Pharmacogn. Res., vol. 11, no. 1, pp. 1-32, January-February 2023.

DOI: https://doi.org/10.56499/jppres22.1484_11.1.1

Original Article

Medicinal plants used in Soran district Kurdistan region of Iraq, an ethnobotanicals study

[Plantas medicinales utilizadas en el distrito de Soran, región del Kurdistán de Irak, un estudio etnobotánico]

Samiaa J. Abdulwahid-Kurdi1*, Muhsin J. Abdulwahid2, Usman Magaji3, Zeiad A. Aghwan3, Rodziah Atan4,Kasrin A. Hamadamin1

1Department of General Sciences, Faculty of Education, Soran University, Kawa street, 44008 Soran, Erbil, Kurdistan Region, Iraq.

2Salahaddin University Research Center (SURC), Erbil, Kurdistan Region of Iraq.

3Department of Agronomy, Federal University of Kashere, Gombe, Gombe State, Nigeria.

4Department of Halalan Thayyiban Research Centre, University of Islam Sultan Sharif Ali, Brunei Darussalam.

*E-mail: samiaa.abdulwahid@soran.edu.iq, samiaa.abdulwahid@gmail.com


Context: The current study, the first of its type, focuses on the ethnobotanical uses of 97 medicinal plant species by the inhabitants in the Soran area, Kurdistan region of Iraq.

Aims: To evaluate local knowledge of medicinal plants and provision of preliminary data on the user-benefit of the accessible plant species in the area.

Methods: Between October 2021 and May 2022, key informant interviews were conducted as part of an ethnobotanical survey. Information about a particular study through face-to-face interviews with 171 participants (98 males and 73 females) was collected. For the therapeutic plants considered in the study, quantitative indices such as use value (UV), family use value (FUV), the relative frequency of citation (RFC), fidelity level (FL), and informant consensus factor (ICF) were applied in addition to detailed notes on each plant species.

Results: The survey discovered 97 plant species and 41 plant families. Leaves were the plant portion that was used the most (44%), while seeds were the least (12%). The most popular three methods of preparation were decoction (52%), row (36%), and crushed (6%). The Olea europaea species had the highest use values (0.82), while Vitex agnus-castus had (0.005). Amaryllidaceae had the highest family use value (1.218), while Asteraceae had (0.005). According to the consensus index, Ficus carica and Datura stramonium had (140.84%) and (1.011%). The digestive tract disease category was shown to have the highest informant consensus factor value out of all disease categories (0.57), while the lowest value ICF was (0.0) for tooth pain.

Conclusions: As a result of the development of natural medicines, this study gives information on the indigenous medicinal plants utilized in the Soran district to treat common illnesses that are ready for additional pharmacological and phytochemical examination. For better use of natural resources, the traditional use of plants requires conservation methods and additional research.

Keywords: ethnobotany; food; medicinal plants; Soran district; traditional medicine.


Contexto: El presente estudio se centra en los usos etnobotánicos de 97 especies de plantas medicinales por parte de los habitantes de la zona de Soran, en la región del Kurdistán iraquí.

Objetivos: Evaluar el conocimiento local de las plantas medicinales y aportar datos preliminares sobre el uso-beneficio de las especies vegetales accesibles en la zona.

Métodos: Entre octubre de 2021 y mayo de 2022, se realizaron entrevistas a informantes clave como parte de un estudio etnobotánico. Se recogió información sobre un estudio particular a través de entrevistas cara a cara con 171 participantes (98 hombres y 73 mujeres). Para las plantas terapéuticas consideradas en el estudio, se aplicaron índices cuantitativos como el valor de uso (UV), el valor de uso familiar (FUV), la frecuencia relativa de citación (RFC), el nivel de fidelidad (FL) y el factor de consenso del informante (ICF), además de notas detalladas sobre cada especie vegetal.

Resultados: La encuesta descubrió 97 especies de plantas y 41 familias de plantas. Las hojas fueron la parte de la planta que más se utilizó (44%) mientras que las semillas fueron las menos (12%). Los tres métodos de preparación más populares fueron la decocción (52%), crudo (36%) y el triturado (6%). La especie Olea europaea tuvo los valores de uso más altos (0,82), mientras que Vitex agnus-castus tuvo (0,005). La Amaryllidaceae tuvo el mayor valor de uso de la familia (1,218), mientras que la Asteraceae tuvo (0,005). Según el índice de consenso, Ficus carica y Datura stramonium tuvieron (140,84%) y (1,011%). La categoría de enfermedad del tracto digestivo mostró tener el valor más alto del factor de consenso del informante de todas las categorías de enfermedad (0,57), mientras que el valor más bajo del ICF fue (0,0) para el dolor de muelas.

Conclusiones: Como resultado del desarrollo de las medicinas naturales, este estudio ofrece información sobre las plantas medicinales indígenas utilizadas en el distrito de Soran para tratar enfermedades comunes que están listas para un examen farmacológico y fitoquímico adicional. Para un mejor uso de los recursos naturales, el uso tradicional de las plantas requiere métodos de conservación e investigación adicional.

Palabras Clave: alimentación; distrito de Soran; etnobotánica; medicina tradicional; plantas medicinales.

Citation Format: Abdulwahid-Kurdi SJ, Abdulwahid MJ, Magaji U, Aghwan ZA, Atan R, Hamadamin KA (2023) Medicinal plants used in Soran district Kurdistan region of Iraq, an ethnobotanicals study. J Pharm Pharmacogn Res 11(1): 1–32. https://doi.org/10.56499/jppres22.1484_11.1.1

Abbas S, Saeed J (2021) Vascular plants of Bani Harir mountain (Harir intramural bound). Zanco J Pure Appl Sci 33(5): 57–68. https://doi.org/10.21271/ZJPAS.33.5.7

Abdulwahid SJ (2013) Water quality index of Delizhiyan springs and Shawrawa river within Soran district, Erbil, Kurdistan region of Iraq.J Appl Environ Sci 3(1): 40–48.

Abe R, Ohtani K (2013) An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines. J Ethnopharmacol 145(2): 554–565. https://doi.org/10.1016/j.jep.2012.11.029

Abuyassin B, Laher I (2016) Diabetes epidemic sweeping the Arab world. World J Diabetes 7(8): 165–174. https://doi.org/10.4239/wjd.v7.i8.165

Acar CA (2021) Green synthesis of zinc oxide nanoparticles using aqueous extract of Achiella millefolium: In vitro anti-cancer potential on lung and colon cancer cells. Turk J Health Sci Life 4(1): 40–45.

Agelet A, Vallès J (2001) Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part I. General results and new or very rare medicinal plants. J Ethnopharmacol 77(1): 57–70. https://doi.org/10.1016/s0378-8741(01)00262-8

Ahmed HM (2016) Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J Ethnobiol and Ethnomedicine 12(1): 8. https://doi.org/10.1186/s13002-016-0081-3

Alam MA, Jahan R, Rahman S, Das AK, Rahmatullah M (2011) Antinociceptive and anti-hyperglycemic activity of methanol leaf extract of Cyperus scariosus. Pak J Pharm Sci 24(1): 53–56.

Albuquerque UP, Lucena RF, Monteiro JM, Florentino AT, Cecília de Fátima CBR (2006) Evaluating two quantitative ethnobotanical techniques. Ethnobot Res Appl 4: 51–60.

Al–Douri NA (2014) Some important medicinal plants in Iraq.Int J Adv Herb Alter 2: 10–20.

Alsamri H, Athamneh K, Pintus G, Eid AH, Iratni R (2021) Pharmacological and antioxidant activities of Rhus coriaria L. (Sumac). Antioxidants 10(1): 73. https://doi.org/10.3390/antiox10010073

Anushiravani M, Azad FJ, Taghipour A, Mirsadraee M, Afshari JT, Salari R, Farshchi MK (2020) The effect of Plantago major seed and almond gum on refractory asthma: A proof-of-concept study. J Herb Med 19: 100297. https://doi.org/10.1016/j.hermed.2019.100297

Awan AF, Akhtar MS, Anjum I, Mushtaq MN, Fatima A, Mannan A, Ali I (2020) Anti-oxidant and hepatoprotective effects of Lactuca serriola and its phytochemical screening by HPLC and FTIR analysis. Pak J Pharm Sci 33(9): 2823–2830.

Aziz N, Mehmood MH, Siddiqi HS, Mandukhail SUR, Sadiq F, Maan W, Gilani AH (2009) Antihypertensive, antidyslipidemic and endothelial modulating activities of Orchis mascula. Hypertens Res 32(11): 997–1003. https://doi.org/10.1038/hr.2009.148

Bahmani M, Zargaran A, Rafieian-Kopaei M (2014) Identification of medicinal plants of Urmia for treatment of gastrointestinal disorders. Rev Bras Farmacogn24(4): 468–480. https://doi.org/10.1016/j.bjp.2014.08.001

Bazylko A, Stolarczyk M, Derwińska M, Kiss AK (2012) Determination of the antioxidant activity of extracts and fractions obtained from Galinsoga parviflora and Galinsoga quadriradiata, and a qualitative study of the most active fractions using TLC and HPLC methods. Nat Prod Res 26(17): 1584–1593. https://doi.org/10.1080/14786419.2011.582469

Benninger J, Schneider HT, Schuppan D, Kirchner T, Hahn EG (1999) Acute hepatitis induced by greater celandinee (Chelidonium majus). Gastroenterology 117(5): 1234–1237. https://doi.org/10.1016/s0016-5085(99)70410-5

Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, Gallicchio M (2018) Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of Sinapis nigra L. and Sinapis alba L. extracts. Molecules 23(11): 3004. https://doi.org/10.3390/molecules23113004

Bradusty M (2017) Soran Health Directorate is Concerned about Erbil’s Health. News Wishe. https://www.wishe.net/details.aspx?=hewal&jmare=8589&Jor=9 [23 June 2017].

Bussmann RY, Paniagua Zambrana S, Sikharulidze Z, Kikvidze D, Kikodze D, Tchelidze M, Khutsishvili K, Batsatsashvili RE (2016) A comparative ethnobotany of Khevsureti, Samtskhe-Javakheti, Tusheti, Svaneti, and Racha-Lechkhumi, Republic of Georgia (Sakartvelo), Caucasus. J Ethnobiol Ethnomed 12: 43. https://doi.org/10.1186/s13002-016-0110-2

Capistrano I R, Wouters A, Lardon F, Gravekamp C, Apers S, Pieters L (2015) In vitro and in vivo investigations on the antitumour activity of Chelidonium majus. Phytomedicine 22(14): 1279–1287. https://doi.org/10.1016/j.phymed.2015.10.013

Çolak F, Savaroğlu F, İlhan S (2009) Antibacterial and antifungal activities of Arum maculatum L. leaves extracts. J Appl Biol Sci 3(3): 13–16.

Czinner E, Hagymasi K, Blazovics A, Kery A, Szőke É, Lemberkovics E (2000) In vitro antioxidant properties of Helichrysum arenarium (L.) Moench. J Ethnopharmacol 73(3): 437–443. https://doi.org/10.1016/s0378-8741(00)00304-4

Dashtban M, Sarir H, Omidi A (2016) The effect of Prosopis farcta beans extract on blood biochemical parameters in streptozotocin-induced diabetic male rats. Adv Biomed Res 5: 116. https://doi.org/10.4103/2277-9175.185575

El-Mallah MH, El-Shami SM, Hassanein MM (2003) Detailed studies on some lipids of Silybum marianum (L.) seed oil. Grasas y Aceites 54(4): 397-402. https://doi.org/10.3989/gya.2003.v54.i4.227

Erbil Governorate (2014) Soran District. Erbil Governorate Main Report. https://web.archive.org/web/20140717073706/http://hawlergov.org/ku/region.php?id=1330758837 [17 July 2104].

Friedman J, Yaniv Z, Dafni A, Palewitch D (1986) A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J Ethnopharmacol 16(2-3): 275–287. https://doi.org/10.1016/0378-8741(86)90094-2

Gañán NA, Dias AM, Bombaldi F, Zygadlo JA, Brignole EA, de Sousa HC, Braga ME (2016) Alkaloids from Chelidonium majus L.: Fractionated supercritical CO2 extraction with co-solvents.Sep Purif Technol 165: 199–207. https://doi.org/10.1016/j.seppur.2016.04.006

Gordon A, Hobbs DA, Bowden DS, Bailey MJ, Mitchell J, Francis AJ, Roberts SK (2006) Effects of Silybum marianum on serum hepatitis C virus RNA, alanine aminotransferase levels and well‐being in patients with chronic hepatitis C. J Gastroenterol Hepatol 21(1 Pt 2): 275–280. https://doi.org/10.1111/j.1440-1746.2006.04138.x

Gunes C (2019) The Kurdish conflict in Iraq: towards a sustainable solution. In: The Kurds in a New Middle East: Palgrave Macmillan, Cham, pp. 21–39. https://doi.org/10.1007/978-3-030-00539-9_2

Gunjan M, Naing TW, Saini RS, Ahmad A, Naidu JR, Kumar I (2015) Marketing trends & future prospects of herbal medicine in the treatment of various diseases. World J Pharm Res 4(9): 132–155.

Hamad R (2020) A remote sensing and GIS-based analysis of urban sprawl in Soran District, Iraqi Kurdistan. S N Appl Sci 2: 24. https://doi.org/10.1007/s42452-019-1806-4

Harris DR (1989) An evolutionary continuum of people-plant interaction. In: Foraging and farming, eds. D. R. Harris and G. C. Hillman. London: Routledge. https://doi.org/10.4324/9781315746425

Heinrich M, Ankli A, Frei B, Weimann C (1998) Medicinal plants in Mexico: Healers consensus and cultural importance. Soc Sci Med 47(11): 1859–1871. https://doi.org/10.1016/s0277-9536(98)00181-6

Hosseini SH, Sadeghi Z, Hosseini SV, Bussmann RW (2022) Ethnopharmacological study of medicinal plants in Sarvabad, Kurdistan province, Iran. J Ethnopharmacol 288: 114985. https://doi.org/10.1016/j.jep.2022.114985

Huerta-Franco MR, Vargas-Luna M, Tienda P, Delgadillo-Holtfort I, Balleza-Ordaz M, Flores-Hernandez C (2013) Effects of occupational stress on the gastrointestinal tract. World J Gastrointest Pathophysiol 4(4): 108. https://doi.org/10.4291/wjgp.v4.i4.108

Huo CH, Li Y, Zhang ML, Wang YF, Zhang Q, Qin F, Kiyota H (2013) Cytotoxic flavonoids from the flowers of Achillea millefolium. Chem Nat Compd 48(6): 958–962. https://doi.org/10.1007/s10600-013-0438-y

Ismail Y (2021) The Roots of Coexistence and Religious Tolerance in Kurdistan. Kurdistan 24 News https://www.kurdistan24.net/en/story/24908-The-roots-of-coexistence-and-religious-tolerance-in-Kurdistan [02 July 2021].

Jadid N, Kurniawan E, Himayani S, Prasetyowati I, Purwani I, Muslihatin W, Tjahjaningrum D (2020) An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. PloS One 15(7): e0235886. https://doi.org/10.1371/journal.pone.0235886

Jalalpure SS, Mandavkar YD, Khalure PR, Shinde GS, Shelar PA, Shah AS (2011) Antiarthritic activity of various extracts of Mesua ferrea Linn. seed. J Ethnopharmacol 138(3): 700–704. https://doi.org/10.1016/j.jep.2011.09.042

Janbaz KH, Latif MF, Saqib F, Imran I, Zia-Ul-Haq M, De Feo V (2013) Pharmacological effects of Lactuca serriola L. in experimental model of gastrointestinal, respiratory, and vascular ailments. Evid Based Complement Alternat Med2013: 304394. https://doi.org/10.1155/2013/304394

Karimi E, Oskoueian E, Karimi A, Noura R, Ebrahimi M (2018) Borago officinalis L. flower: a comprehensive study on bioactive compounds and its health-promoting properties. J Food Meas Charact 12(2): 826–838. https://doi.org/10.1007/s11694-017-9697-9

Karwan M, Abdullah O, Amin A, Hasan B, Mohamed Z, Sulaiman L, Shekha M, Najmuldeen H, Barzingi B, Salih A, Mahmood D, Othman H, Rahman F, Mohammad D, Salih F, Ali SK, Housein Z, Mohamad T, Mahmood K, Othman G, Aali M, Qader G, Hussen B, Awla F, Qadir F, Taher D, Salihi A (2021) Cancer Statistics in Kurdistan Region of Iraq: A Tale of Two Cities. Res Squre, Preprint: 1–18. https://doi.org/10.21203/rs.3.rs-142129/v1

Kavak C, Baştürk A (2020) Antioxidant activity, volatile compounds and fatty acid compositions of Cephalaria syriaca seeds obtained from different regions in Turkey. Grasas y Aceites 71(4): e379. https://doi.org/10.3989/gya.0913192

Khan I, AbdElsalam NM, Fouad H, Tariq A, Ullah R, Adnan M (2014) Application of ethnobotanical indices on the use of traditional medicines against common diseases. Evid Based Complementary Altern Med 2014: 635371. https://doi.org/10.1155/2014/635371

Khmil M, Khmil S, Marushchak M (2020) Hormone imbalance in women with infertility caused by polycystic ovary syndrome: Is there a connection with body mass index. Open Access Maced J Med Sci 8(B): 731–737. https://doi.org/10.3889/oamjms.2020.4569

Khodabande Z, Jafarian V, Sariri R (2017) Antioxidant activity of Chelidonium majus extract at phenological stages. Appl Biol Chem 60(5): 497–503. https://doi.org/10.1007/s13765-017-0304-x

Khoja AA, Andrabi AH, Mir RA (2022) Traditional medicine in the treatment of gastrointestinal diseases in northern part of Kashmir Himalayas. Ethnobot Res Appl 23: 22. http://dx.doi.org/10.32859/era.23.22.1-17

Kolak U, Boğa M, Uruşak EA, Ulubelen A (2011) Constituents of Plantago major subsp. intermedia with antioxidant and anticholinesterase capacities. Turk J Chem 35(4): 637–645. http://dx.doi.org/10.3906/kim-1102-990

Kim HG, Nam YH, Jung YS, Oh SM, Nguyen TN, Lee MH, Baek NI (2021). Aurones and flavonols from Coreopsis lanceolata L. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in zebrafish. Molecules 26: 6098. https://doi.org/10.3390/molecules26206098

Kos B, Grčman H, Leštan D (2003) Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ 49(12): 548–553. http://dx.doi.org/10.17221/4192-PSE

Kumar KS, Bhowmik D, Chiranjib B, Tiwari P (2010) Allium cepa: A traditional medicinal herb and its health benefits. J Chem Pharm Res 2(1): 283–291.

Mahmood AM, Sallo AK, Hasan MA (2014) Chemical components and antibacterial activity of Gundelia tournefortii L. Compositae/Asteraceae (Iraq, Kurdistan Region, Sulaymaniyah, Penjwin area, “Kokhalan”). J Indian Chem Soc91: 2107–2111. https://doi.org/10.5281/zenodo.5741404

Mao Z, Gan C, Zhu J, Ma N, Wu L, Wang L, Wang X (2017) Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg Med Chem Lett 27(12): 2812–2817. https://doi.org/10.1016/j.bmcl.2017.04.076

Mitrović PM, Stamenković OS, Banković-Ilić l, Djalović IG, Nježić ZB, Farooq M, Veljković VB (2020) White mustard (Sinapis alba L.) oil in biodiesel production: A review. Front Plant Sci 11: 299. https://doi.org/10.3389/fpls.2020.00299

Molares S, Ladio A (2009) Ethnobotanical review of the Mapuche medicinal flora: Use patterns on a regional scale. J Ethnopharmacol 122(2): 251–260. https://doi.org/10.1016/j.jep.2009.01.003

Muhamad S (2020) Economic Crunch Revives Farming in Soran. Rudaw Bus https://www.rudaw.net/english/business/050720201 [05 July 2020].

Najem M, Nassiri L, Ibijbijen J (2021) Vernacular names of plants between diversity and potential risks of confusion: Case of toxic plants used in medication in the central Middle Atlas, Morocco. J Pharm Pharmacogn Res 9(2): 222–250. https://doi.org/10.56499/jppres20.950_9.2.222

Nakyai W, Pabuprapap W, Sroimee W, Ajavakom V, Yingyongnarongkul BE, Suksamrarn A (2021) Anti-acne vulgaris potential of the ethanolic extract of Mesua ferrea L. flowers. Cosmetics 8: 107. https://doi.org/10.3390/cosmetics8040107

Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N (2020) Traditional herbal medicine candidates as complementary treatments for COVID-19: A review of their mechanisms, pros and cons. Evid Based Complement Alternat Med 2020: 2560645. https://doi.org/10.1155/2020/2560645

Opuni KF, Togoh G, Frimpong-Manso S, Adu-Amoah D, Alkanji O, Boateng KP (2021) Monitoring of residual solvent contamination in herbal medicinal products in Ghana: A pilot study. Sci Afr 13: e00825. https://doi.org/10.1016/j.sciaf.2021.e00825

Özgen U, Kaya Y, Houghton P (2012) Folk medicines in the villages of Ilıca District (Erzurum, Turkey). Turk J Biol 36(1): 93–106. https://doi.org/10.3906/biy-1009-124

Payyappallimana U (2010) Role of traditional medicine in primary health care: an overview of perspectives and challenges. Yokohama J Soc Sci 14: 57–77.

Piyaviriyakul S, Siripong P, Vallisuta O (2014) HPTLC simultaneous quantification of triterpene acids for quality control of Plantago major L. and evaluation of their cytotoxic and antioxidant activities. Ind Crops Prod 60: 239–246. https://doi.org/10.1016/j.indcrop.2014.06.020

Polat R, Cakilcioglu U, Satıl F (2013) Traditional uses of medicinal plants in Solhan (Bingöl—Turkey). J Ethnopharmacol 148(3): 951–963. https://doi.org/10.1016/j.jep.2013.05.050

Rahman M, Khatun A, Liu L, Barkla BJ (2018) Brassicaceae mustards: Traditional and agronomic uses in Australia and New Zealand. Molecules 23(1): 231. https://doi.org/10.3390/molecules23010231

Rajaei P, Mohamadi N (2012) Ethnobotanical study of medicinal plants of Hezar mountain allocated in southeast of Iran. Iran J Pharm Res 11(4): 1153–1167.

Rzgar M (2021) Soran. Retrieved from Zanyare. https://zaniary.com/blog/6106acc700727 [01 August 2021].

Segal TR, Giudice LC (2019) Before the beginning: environmental exposures and reproductive and obstetrical outcomes. Fertil Steril 112(4): P613–621. https://doi.org/10.1016/j.fertnstert.2019.08.001

Shaker E, Mahmoud H, Mnaa S (2010) Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem Toxicol 48(3): 803–806. https://doi.org/10.1016/j.fct.2009.12.011

Sõukand RY, Hrynevich J, Prakofjewa T, Valodzina I, Vasilyeva J, Paciupa R, Shrubok A, Hlushko A, Knureva Y, Litvinava Y, Vyskvarka S, Silivonchyk H, Paulava A, Kõiva M, Kalle R (2017) Use of cultivated plants and non-plant remedies for human and animal homemedication in Liubań district, Belarus. J Ethnobiol Ethnomed 13(1): 54. https://doi.org/10.1186/s13002-017-0183-6

Sreekeesoon DP, Mahomoodally MF (2014) Ethnopharmacological analysis of medicinal plants and animals used in the treatment and management of pain in Mauritius. J Ethnopharmacol157: 181–200. https://doi.org/10.1016/j.jep.2014.09.030

Stanisavljević N, Soković Bajić S, Jovanović Ž, Matić I, Tolinački M, Popović D, Popović N, Terzić-Vidojević A, Golić N, Beškoski V, Samardžić J (2020) Antioxidant and antiproliferative activity of Allium ursinum and their associated microbiota during simulated in vitro digestion in the presence of food matrix. Front Microbiol 11: 601616. https://doi.org/10.3389/fmicb.2020.601616

Szema AM, Reeder RJ, Harrington AD, Schmidt M, Liu J, Golightly M, Rueb T, Hamidi SA (2014) Iraq dust is respirable, sharp, metal-laden, and induces lung inflammation with fibrosis in mice via IL-2 upregulation and depletion of regulatory T cells.J Occup Environ Med 56(3): 243–251. https://doi.org/10.1097/jom.0000000000000119

Tangjitman K, Wongsawad C, Kamwong K, Sukkho T, Trisonthi C (2015) Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailan. J Ethnobiol Ethnomed 11(1): 27. https://doi.org/10.1186/s13002-015-0011-9

Teall EK (2014) Medicine and doctoring in ancient Mesopotamia. Grand Valley J Hist 3(1): 2–5.

Tetik F, Civelek S, Cakilcioglu U (2013) Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol 146(1): 331–346. https://doi.org/10.1016/j.jep.2012.12.054

Tounekti T, Mahdhi M, Khemira H (2019) Ethnobotanical study of indigenous medicinal plants of Jazan region, Saudi Arabia. Evid Based Complement Alternat Med 2019: 3190670. https://doi.org/10.1155/2019/3190670

Trotter RT, Logan MH (1986) Informant consensus: A new approach for identifying potentially effective medicinal plants. In: Plants in Indigenous Medicine & Diet. Edited by Etkin NL. Redgrave Publishing Company, NY, USA: Bedford Hill, pp. 91–112. http://dx.doi.org/10.4324/9781315060385-6

Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, Kalema J (2016) Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J Ethnobiol Ethnomedicine 12(1): 5. https://doi.org/10.1186/s13002-015-0077-4

Upadhya V, Hegde HV, Bhat S, Kholkute SD (2014) Non-codified traditional medicine practices from Belgaum Region in Southern India: present scenario. JEthnobiol Ethnomed 10(1): 49. https://doi.org/10.1186/1746-4269-10-49

Wali ZZ (2021) Budget quagmire: The Erbil-Baghdad never-ending problem. Rudaw News Analy. 2021. https://www.rudaw.net/english/analysis/24052021 [24 May 2021].

Weil AT (1981) The therapeutic value of coca in contemporary medicine. J Ethnopharmacol 3(2-3): 367–376. https://doi.org/10.1016/0378-8741(81)90064-7

WHO (2000) Programme on Traditional Medicine: General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine. Geneva, Switzerland: World Health Organization. WHO/EDM/TRM/2000.1.

WHO (2012) WorldHealth Statistics: A Snapshot of Global Health. Organization Mundial De La Salud. Geneva, Switzerland: World Health Organization. WHO/IER/HSI/12.1.

Wilasrusmee C, Kittur S, Shah G, Siddiqui J, Bruch D, Wilasrusmee S, Kittur DS (2002) Immunostimulatory effect of Silybum marianum (milk thistle) extract. Med Sci Monit Int Med J Exp Clin Res8(11): BR439–443.

Yabrir B, Touati M, Adli B, Bezini E, Ghafoul M, Khalifa S, Guit B (2018) Therapeutic use of spontaneous medicinal flora from an extreme environment (dune cordon) in Djelfa region, Algeria. J Pharm Pharmacogn Res 6(5): 358–373.

Zenderland J, Hart R, Bussmann RW, Paniagua Zambrana NY, Sikharulidze S, Kikvidze Z, Kikodze D, Tchelidze D, Khutsishvili M, Batsatsashvili K (2019) The use of ‘use value’: Quantifying importance in ethnobotany. Econ Bot 73(3): 293–303. https://doi.org/10.1007/s12231-019-09480-1

© 2023 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Medicinal plants for hypertension in Guinea

J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 938-951, September-October 2022.

DOI: https://doi.org/10.56499/jppres22.1470_10.5.938

Original Article

Ethnobotanical survey of medicinal plants used to manage hypertension in the Republic of Guinea

[Estudio etnobotánico de las plantas medicinales utilizadas para tratar la hipertensión en la República de Guinea]

Mohamed S. Traore1,2*, Aïssata Camara1,2, Mamadou A. Balde1,2, Mamadou ST. Diallo1,2, Nene S. Barry1, Elhadj S. Balde1,2, Aliou M. Balde1,2

1Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea.

2Institute for Research and Development of Medicinal and Food Plants of Guinea, Dubréka (IRDPMAG-Dubréka), Guinea.

*E-mail: mstraore@irdpmag.edu.gn, sahartra1900@gmail.com


Context: Like many other African countries, medicinal plants are widely used in Guinea to manage hypertension, which is a highly prevalent health problem.

Aims: To identify the plants used in the traditional management of hypertension in Guinea.

Methods: From May to November 2018, three hundred and forty-nine Traditional Health Practitioners (THPs) respondents, including 244 traditional healers and 105 herbalists, were contacted. Through semi-structured interviews, ethnobotanical information on medicinal plants were collected. Voucher specimens were authenticated by the department of Botany of the IRDPMAG and deposited in the Herbarium of this Institute.

Results: Among the traditional anti-hypertensive recipes, a total of 97 plant species from 85 genera belonging to 43 families have been identified. Combretum micranthum, Hymenocardia acida, Anacardium occidentale, Spondias mombin and Alchornea cordifolia were the most frequently cited. The traditional recipes included one plant species (23 recipes), a combination of two species (18 recipes) or more (47 recipes).

Conclusions: A large number of medicinal plants are used for the management of arterial hypertension in Guinea. Further biological and phytochemical investigations are needed to validate the traditional uses of these plants.

Keywords: hypertension; Guinea; medicinal plants; traditional healers.


Contexto: Al igual que muchos otros países africanos, las plantas medicinales se utilizan ampliamente en Guinea para controlar la hipertensión, que es un problema de salud muy frecuente.

Objetivos: Identificar las plantas utilizadas en el manejo tradicional de la hipertensión en Guinea.

Métodos: De mayo a noviembre de 2018, se contactó a trescientos cuarenta y nueve practicantes de salud tradicional (THP), incluidos 244 curanderos tradicionales y 105 herbolarios. A través de entrevistas semiestructuradas se recopiló información etnobotánica sobre plantas medicinales. Los ejemplares comprobantes fueron autenticados por el departamento de Botánica del IRDPMAG y depositados en el Herbario de este Instituto.

Resultados: Entre las recetas tradicionales antihipertensivas se han identificado un total de 97 especies vegetales de 85 géneros pertenecientes a 43 familias. Combretum micranthum, Hymenocardia acida, Anacardium occidentale, Spondias mombin y Alchornea cordifolia fueron las más citadas. Las recetas tradicionales incluían una especie de planta (23 recetas), una combinación de dos especies (18 recetas) o más (47 recetas).

Conclusiones: Un gran número de plantas medicinales se utilizan para el manejo de la hipertensión arterial en Guinea. Se necesitan más investigaciones biológicas y fitoquímicas para validar los usos tradicionales de estas plantas.

Palabras Clave: curanderos tradicionales; hipertensión; Guinea; plantas medicinales.

Citation Format: Traore MS, Camara A, Balde MA, Diallo MST, Diallo NS, Balde ES, Balde AM (2022) Ethnobotanical survey of medicinal plants used to manage hypertension in the Republic of Guinea. J Pharm Pharmacogn Res 10(5): 938–951. https://doi.org/10.56499/jppres22.1470_10.5.938

Amos S, Akah PA, Binda L, Enwerem NM, Ogundaini A, Wambebe C, Hussaini IM, Gamaniel KS (2003) Hypotensive activity of the ethanol extract of Pavetta crassipes leaves. Biol Pharm Bull 26(12): 1674-1680. https://doi.org/10.1248/bpb.26.1674

Amrani S, Harnafi H, Gadi D, Mekhfi H, Legssyer A, Aziz M, Martin-Nizard F, Bosca L (2009) Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract. J Ethnopharmacol 125(1): 157-162. https://doi.org/10.1016/j.jep.2009.05.043

Amssayef A, Eddouks M (2019) Aqueous extract of Matricaria pubescens exhibits anti-hypertensive activity in L-NAME-induced hypertensive rats through its vasorelaxant effect. Cardiovasc Hematol Agents Med Chem 17(2): 135-143. https://doi.org/10.2174/1871525717666191007151413

Aremu OO, Oyedeji AO, Oyedeji OO, Nkeh-Chungag BN, Sewani Rusike CR (2019) In vitro and in vivo antioxidant properties of taraxacum officinale in Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. Antioxidants (Basel) 8(8): 309. https://doi.org/10.3390/antiox8080309

Ayele Y, Urga K, Engidawork E (2010) Evaluation of in vivo anti-hypertensive and in vitro vasodepressor activities of the leaf extract of Syzygium guineense (Willd) D.C. Phytother Res 24(10): 1457-1462. https://doi.org/10.1002/ptr.3141

Baldé AM, Traoré S, Touré M, Diallo D, Keita A, Magassouba FB, Donzo M, Baldé D, Baldé N, Barry R, Kaba ML, Bah AO, Diallo TS, Barry AB, Sylla C, Sangaré BM (2006) Hypertension artérielle en Guinée: Epidémiologie et place de la phytothérapie dans la prise en charge dans les zones urbaines et rurales de Fria, Boké, Forecariah (Basse Guinée). Pharm Méd Trad Afr 12: 19-43.

Baldé MA, Tuenter E, Traoré MS, Matheeussen A, Cos P, Maes L, Camara A, Haba NL, Gomou K, Diallo MST, Baldé ES, Pieters L, Balde AM, Foubert K (2020) Antimicrobial investigation of ethnobotanically selected Guinean plant species. J Ethnopharmacol 263: 113232. https://doi.org/10.1016/j.jep.2020.113232

Balogun FO, Ashafa AOT (2019) A review of plants used in South African traditional medicine for the management and treatment of hypertension. Planta Med 85(4): 312-334. https://doi.org/10.1055/a-0801-8771

Bourqui A, Niang EAB, Graz B, Diop EA, Dahaba M, Thiaw I, Soumare K, Valmaggia P, Nogueira RC, Cavin AL, Al-Anbaki M, Seck SM (2021) Hypertension treatment with Combretum micranthum or Hibiscus sabdariffa, as decoction or tablet: A randomized clinical trial. J Hum Hypertens 35(9): 800-808. https://doi.org/10.1038/s41371-020-00415-1

Camara A, Baldé NM, Diakité M, Sylla D, Baldé EH, Kengne AP, Baldé MD (2016) High prevalence, low awareness, treatment and control rates of hypertension in Guinea: Results from a population-based STEPS survey. Hum Hypertens 30(4): 237-244. https://doi.org/10.1038/jhh.2015.92

Diallo A, Traore MS, Keita SM, Balde MA, Keita A, Camara M, Van Miert S, Pieters L, Balde AM (2012) Management of diabetes in Guinean traditional medicine: An ethnobotanical investigation in the coastal lowlands. J Ethnopharmacol 144(2): 353-361. https://doi.org/10.1016/j.jep.2012.09.020

Diallo MST, Traore MS, Balde MA, Camara AK, Baldé ES, Traore S, Oulare K, Diallo TS, Laurent S, Muller RN, Tuenter E, Pieters L, Balde AM (2019) Prevalence, management and ethnobotanical investigation of hypertension in two Guinean urban districts. J Ethnopharmacol 231: 73-79. https://doi.org/10.1016/j.jep.2018.07.028

El-Ouady F, Eddouks M (2020) Warionia saharae induces anti-hypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. J Ethnopharmacol 231: 73-79. https://doi.org/10.1016/j.jep.2018.07.028

Galati EM, Trovato A, Kirjavainen S, Forestieri AM, Rossitto A, Monforte MT (1996) Biological effects of hesperidin, a Citrus flavonoid. (Note III): Antihypertensive and diuretic activity in rat. Farmaco 51: 219-221.

Gbolade A (2012) Ethnobotanical study of plants used in treating hypertension in Edo State of Nigeria. J Ethnopharmacol 144(1): 1-10. https://doi.org/10.1016/j.jep.2012.07.018

Irondi EA, Agboola SO, Oboh G, Boligon AA, Athayde ML, Shode FO (2016) Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. J Intercult Ethnopharmacol 5(2): 122-130. https://doi.org/10.5455/jice.20160321115402

James PB, Kamara H, Bah AJ, Steel A, Wardle J (2018) Herbal medicine use among hypertensive patients attending public and private health facilities in Freetown Sierra Leone. Complement Ther Clin Pract 31: 7-15. https://doi.org/10.1016/j.ctcp.2018.01.001

Kassi Y, Aka K, Abo KJ-C, Mea A, Bi S, Ehile E (2008) Effet antihypertensif d’un extrait aqueux d’écorce de tronc de Parkia biglobosa (mimosaceae) sur la pression artérielle de lapin. Sci Nat 5: 133-143. https://doi.org/10.4314/scinat.v5i2.42159

Keane KM, George TW, Constantinou CL, Brown MA, Clifford T, Howatson G (2016) Effects of Montmorency tart cherry (Prunus cerasus L.) consumption on vascular function in men with early hypertension. Am J Clin Nutr 103(6): 1531-1539. https://doi.org/10.3945/ajcn.115.123869

Keter LK, Mutiso PC (2012) Ethnobotanical studies of medicinal plants used by traditional health practitioners in the management of diabetes in Lower Eastern Province, Kenya. J Ethnopharmacol 139(1): 74-80. https://doi.org/10.1016/j.jep.2011.10.014

Kretchy IA, Owusu-Daaku F, Danquah S (2014) Patterns and determinants of the use of complementary and alternative medicine: A cross-sectional study of hypertensive patients in Ghana. BMC Complement Altern Med 14: 44. https://doi.org/10.1186/1472-6882-14-44

Lawal IO, Uzokwe NE, Ladipo DO, Asinwa IO, Igboanugo ABI (2009) Ethnophytotherapeutic information for the treatment of high blood pressure among the people of Ilugun, Ilugun area of Ogun State, South-West Nigeria. Afr J Pharm Pharmacol 3: 222-226.  https://doi.org/10.5897/AJPP.9000141

N’Gouin-Claih AP, Donzo M, Barry AB, Diallo A, Kabiné O, Barry R, Abdoulaye K, Sylla C, Magassouba FB, Baldé AM (2003) Prevalence of hypertension in Guinean rural area. [French]. Arch Mal Coeur Vaiss 96(7-8): 763-767.

Nsuadi Manga F, El Khattabi C, Fontaine J, Berkenboom G, Duez P, Noyon C, Van Antwerpen P, Lami Nzunzu J, Pochet S (2013) Vasorelaxant and anti-hypertensive effects of methanolic extracts from Hymenocardia acida Tul. J Ethnopharmacol 146(2): 623-631. https://doi.org/10.1016/j.jep.2013.02.002

Nugroho AE, Malik A, Pramono S (2013) Total phenolic and flavonoid contents, and in vitro antihypertension activity of purified extract of Indonesian cashew leaves (Anacardium occidentale L.). Int Food Res J 20(1): 299-305.

Nuwaha F, Musinguzi G (2013) Use of alternative medicine for hypertension in Buikwe and Mukono districts of Uganda: A cross sectional study. BMC Complement Altern Med 13: 301. https://doi.org/10.1186/1472-6882-13-301

Ola-Davies OE, Oyagbemi AA, Omobowale TO, Akande I, Ashafa A (2019) Ameliorative effects of Annona muricata Linn. (Annonaceae) against potassium dichromate-induced hypertension in vivo: Involvement of Kim-1/p38 MAPK/Nrf2 signaling. J Basic Clin Physiol Pharmacol 30(4): 20180172. https://doi.org/10.1515/jbcpp-2018-0172

Olisa NS, Oyelola FT (2010) Evaluation of use of herbal medicines among ambulatory hypertensive patients attending a secondary health care facility in Nigeria. Int J Pharm Pract 17(2): 101-115.

Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK (2018) Hypertension. Nat Rev Dis Primers 4: 18014. https://doi.org/10.1038/nrdp.2018.14

Perez YY, Jimenez-Ferrer E, Alonso D, Botello-Amaro CA, Zamilpa A (2010) Citrus limetta leaves extract antagonizes the hypertensive effect of angiotensin II. J Ethnopharmacol 128(3): 611-614. https://doi.org/10.1016/j.jep.2010.01.059

Seck SM, Doupa D, Dia DG, Diop EA, Ardiet DL, Nogueira RC, Graz B, Diouf B (2017) Clinical efficacy of African traditional medicines in hypertension: A randomized controlled trial with Combretum micranthum and Hibiscus sabdariffa. J Hum Hypertens 32(1): 75-81. https://doi.org/10.1038/s41371-017-0001-6

Shum OL, Chiu KW (1991) Hypotensive action of Solanum melongena on normotensive rats. Phytother Res 5: 76-81. https://doi.org/10.1002/ptr.2650050208

Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B (2007) Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in South-Eastern Morocco (Errachidia province). J Ethnopharmacol 110(1): 105-117. https://doi.org/10.1016/j.jep.2006.09.011

Tannor EK, Nyarko OO, Adu-Boakye Y, Owusu Konadu S, Opoku G, Ankobea-Kokroe F, Opare Addo M, Amuzu EX, Ansah GJ, Appiah-Boateng K, Ansong D (2022) Burden of hypertension in Ghana – Analysis of awareness and screening campaign in the Ashanti Region of Ghana. JRSM Cardiovasc Dis 11: 1-7. https://doi.org/10.1177/20480040221075521

Tata CM, Sewani-Rusike CR, Oyedeji OO, Gwebu ET, Mahlakata F, Nkeh-Chungag BN (2019) Anti-hypertensive effects of the hydro-ethanol extract of Senecio serratuloides DC in rats. BMC Complement Altern Med 19(1): 52. https://doi.org/10.1186/s12906-019-2463-2

Tokoudagba JM, Auger C, Bréant L, N’Gom S, Chabert P, Idris-Khodja N, Gbaguidi F, Gbenou J, Moudachirou M, Lobstein A, Schini-Kerth VB (2010) Procyanidin-rich fractions from Parkia biglobosa (Mimosaceae) leaves cause redox-sensitive endothelium-dependent relaxation involving NO and EDHF in porcine coronary artery. J Ethnopharmacol 132(1): 246-250. https://doi.org/10.1016/j.jep.2010.08.031

Traore MS, Baldé MA, Diallo MS, Baldé ES, Diané S, Camara A, Diallo A, Balde A, Keïta A, Keita SM, Oularé K, Magassouba FB, Diakité I, Diallo A, Pieters L, Baldé AM (2013) Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria. J Ethnopharmacol 150(3): 1145-1153. https://doi.org/10.1016/j.jep.2013.10.048

Twagirumukiza M, de Bacquer D, Kips JG, de Backer G, Stichele R vander, van Bortel LM (2011) Current and projected prevalence of arterial hypertension in sub-Saharan Africa by sex, age and habitat: An estimate from population studies. J Hypertens 29(7): 1243-1252. https://doi.org/10.1097/HJH.0b013e328346995d

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G (2013) Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—An alpine ethnobotanical study. J Ethnopharmacol 145(2): 517-529. https://doi.org/10.1016/j.jep.2012.11.024

Welch CR (2010) Chemistry and pharmacology of Kinkéliba (Combretum micranthum), a West African medicinal plant. [New Brunswick, New Jersey] https://rucore.libraries.rutgers.edu/rutgers-lib/26656/PDF/1/play/ [Consulted 1 February 2022].

Yao AN, Kamagaté M, Amonkan AK, Chabert P, Kpahé F, Koffi C, Kouamé MN, Auger C, Kati-Coulibaly S, Schini-Kerth V, Die-Kakou H (2018) The acute diuretic effect of an ethanolic fraction of Phyllanthus amarus (Euphorbiaceae) in rats involves prostaglandins. BMC Complement Altern Med 18(1): 94. https://doi.org/10.1186/s12906-018-2158-0

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Plantas con actividad neuroprotectora estudiadas en C. elegans

J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 812-836, September-October 2022.

DOI: https://doi.org/10.56499/jppres22.1379_10.5.812


Plantas medicinales con potencial actividad neuroprotectora estudiadas en cepas transgénicas de Caenorhabditis elegans. Revisión sistemática 2010-2021

[Medicinal plants with potential neuroprotective activity studied in transgenic strains of Caenorhabditis elegans. Systematic review 2010-2021]

Yenny Y. Lozano1, Sara E. Giraldo1, Harold S. Castro1, Ruth M. Sánchez2*

1Universidad de La Salle, Bogotá, D.C., Colombia.

2Universidad Colegio Mayor de Cundinamarca, Bogotá, D.C., Colombia.

*E-mail: rmsanchezm@unicolmayor.edu.co


Context: Treatments for neurodegenerative diseases generate multiple adverse effects and do not reverse the progressive damage of the disease. It is a priority to find alternatives from medicinal plants as a source of molecules with neuroprotective potential. Caenorhabditis elegans as an in vivo screening model allows evaluating and selecting molecules with neuroprotective activity.

Aims: To carry out a systematic review between the years 2010-2021, on traditionally used plant resources with potential neuroprotective activity evaluated in C. elegans.

Methods: The review was carried out in 4 stages according to the PRISMA methodology. 1. Research question approach and objectives to define the thematic axes and create the search algorithm. 2. Search of ScienceDirect, Scopus, PubMed, Web of Science, Ebsco, Taylor and Francis and Scielo databases, 3. Selection of articles according to inclusion and exclusion criteria. 4. Organization of information relevant to the review.

Results: The search yielded 122 articles, defining 12 base articles for the construction of the review. The extracts in dichloromethane, butanol, ethanolic and aqueous stand out; as well as iridoid and flavonoid type biocompounds. Antioxidant activity was the most cited. Among the neuroprotective effects in C. elegans transgenic strains, the increase in the percentage of survival of nematodes, reduction of paralysis, inhibition of protein aggregation and regulation of genes associated with stress stand out.

Conclusions: The identification of bioactive molecules and extracts obtained from medicinal plants of traditional use with neuroprotective potential, is favored by the use of C. elegans as a model for the study of neurodegenerative diseases.

Keywords: Caenorhadbitis elegans; Alzheimer’s disease; Parkinson’s disease; Huntington’s disease; neuroprotection; medicinal plants.



Contexto: Los tratamientos para las enfermedades neurodegenerativas generan múltiples efectos adversos y no revierten el daño progresivo de la enfermedad. Es prioritario encontrar alternativas a partir de plantas medicinales siendo una fuente de moléculas con potencial neuroprotector. Caenorhabditis elegans como modelo de tamizaje in vivo permite evaluar y seleccionar moléculas con actividad neuroprotectora.

Objetivos: Realizar una revisión sistemática comprendida entre los años 2010-2021 sobre recursos vegetales de uso tradicional con potencial actividad neuroprotectora evaluados en C. elegans.

Métodos: La revisión se realizó en 4 etapas según metodología PRISMA. 1. Planteamiento de pregunta de investigación y objetivos para definir los ejes temáticos y crear el algoritmo de búsqueda. 2. Búsqueda bases de datos ScienceDirect, Scopus, PubMed, Web of Science, Ebsco, Taylor and Francis y Scielo, 3. Selección de artículos según criterios de inclusión y exclusión. 4. Organización de la información relevante para la revisión.

Resultados: La búsqueda arrojó 122 artículos, definiendo 12 artículos base para la construcción de la revisión. Sobresalen los extractos en diclorometano, butanol, etanólicos y acuosos; así como biocompuestos tipo iridoide y flavonoide. La actividad antioxidante fue la más citada. Dentro de los efectos neuroprotectores en cepas transgénicas C. elegans se destaca el aumento en el porcentaje de supervivencia de los nematodos, reducción de parálisis, inhibición de la agregación proteica y la regulación de genes asociados al estrés.

Conclusiones: La identificación de moléculas bioactivas y extractos obtenidos de plantas medicinales de uso tradicional con potencial neuroprotector, se favorece mediante el empleo de C. elegans como modelo de estudio de enfermedades neurodegenerativas.

Palabras Clave: Caenorhadbitis elegans; enfermedad de Alzheimer; enfermedad de Parkinson; enfermedad de Huntington; neuroprotección; plantas medicinales.


Citation Format: Lozano YY, Giraldo SG, Castro HS, Sánchez RM (2022) Plantas medicinales con potencial actividad neuroprotectora estudiadas en cepas transgénicas de Caenorhabditis elegans. Revisión sistemática 2010-2021 [Medicinal plants with potential neuroprotective activity studied in transgenic strains of Caenorhabditis elegans. Systematic review 2010-2021]. J Pharm Pharmacogn Res 10(5): 812–836. https://doi.org/10.56499/jppres22.1379_10.5.812 

Abushouk AI, Negida A, Ahmed H, Abdel-Daim MM (2017) Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson’s disease. Biomed Pharmacother 85: 635–645.

Akhoon BA, Pandey S, Tiwari S, Pandey R (2016) Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp Gerontol 78: 47–56.

Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5: 279.

Anilakumar KR, Pal A, Khanum F, Bawa AS (2010) Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. Agric Conspec Sci 75(4): 159–168.

Anjaneyulu J, Vidyashankar R, Godbole A (2020) Differential effect of Ayurvedic nootropics on C. elegans models of Parkinson’s disease. J Ayurveda Integr Med 11(4): 440–447.

Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: A food plant with multiple medicinal uses. Phytother Res 21(1): 17–25.

Arellano-Acua E, Rojas-Zavaleta I, Paucar-Menacho LM (2016) Camu-camu (Myrciaria dubia): Fruta tropical de excelentes propiedades funcionales que ayudan a mejorar la calidad de vida. Sci Agropecu 7(4): 433–443.

Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6): 548–560.

Auddy B, Ferreira M, Blasina F, Lafon L, Arredondo F, Dajas F, Tripathi PC, Seal T, Mukherjee B (2003) Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 84(2-3): 131–138.

Azevêdo JCS, Borges KC, Genovese MI, Correia RTP, Vattem DA (2015) Neuroprotective effects of dried camu-camu (Myrciaria dubia HBK McVaugh) residue in C. elegans. Food Res Int 73: 135–141.

Barathikannan K, Venkatadri B, Khusro AA (2016) Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC Complement Altern Med 16: 264.

Bates EA, Victor M, Jones AK, Shi Y, Hart AC (2006) Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26(10): 2830–2838.

Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Primers 1: 15005.

Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288): 529–535.

Burke JR, Morgenlander JC (1999) Managing common behavioral problems in dementia: How to improve quality of life for patients and families. Postgrad Med 106(5): 131–140.

Büttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, Carmona-Gutierrez D, Eisenberg T, Michael E, Kroemer G, Tavernarakis N, Sigrist SJ, Madeo F (2014) Spermidine protects against α-synuclein neurotoxicity. Cell Cycle 13(24): 3903–3908.

Calahorro F, Ruiz-Rubio M (2011) Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson’s disease, Alzheimer’s disease and autism spectrum disorder. Invert Neurosci 11(2): 73–83.

Castro Rodríguez SY, Barrera García JA, Carrillo Bautista MP, Hernandez Gomez MS (2015) Asaí (Euterpe precatoria): Cadena de valor en el sur de la región amazónica. Bogotá, Colombia: Instituto Amazónico de Investigaciones Científicas- Sinchi, pp. 141.

Celis CT, Rincón J, Guerrero MF (2007) Actividad farmacológica sobre el sistema nervioso central del extracto etanólico y de la fracción alcaloidal de Valeriana pavonii. Rev Colomb Cienc Quím Farm 36(1): 11–22.

Chaubey MG, Chauhan AP, Chokshi PR, Amin RS, Patel SN, Madamwar D, Rastogi RP, Singh NK (2021) Therapeutic potential of bioactive compounds from Punica granatum extracts against aging and complicity of foxo orthologue daf-16 in Caenorhabditis elegans. EXCLI J 20: 80–98.

Chauhan AP, Chaubey MG, Patel SN, Madamwar D, Singh NK (2020) Extension of life span and stress tolerance modulated by DAF-16 in Caenorhabditis elegans under the treatment of Moringa oleifera extract. 3 Biotech 10(12): 504.

Chen LW, Wang YQ, Wei LC, Shi M, Chan YS (2007) Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 6(4): 273–281.

Chen W, Rezaizadehnajafi L, Wink M (2013) Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J Pharm Pharmacol 65(5): 682–688.

Consortium CeS (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282(5396): 2012–2018.

Cooper JFA, Van Raamsdonk JM (2018) Modeling Parkinson’s Disease in C. elegans. J Parkinsons Dis 8(1): 17–32.

de Oliveria DM, Barreto G, De Andrade DV, Saraceno E, Aon-Bertolino L, Capani F, Dos Santos El Bachá R, Giraldez LD (2009) Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 34(2): 215–220.

Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2017) Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 35(2): 178–216.

Dey A, De JN (2015) Neuroprotective therapeutics from botanicals and phytochemicals against Huntington’s disease and related neurodegenerative disorders. J Herb Med 5(1): 1–19.

Dimitriadi M, Hart AC (2010) Neurodegenerative disorders: Insights from the nematode Caenorhabditis elegans. Neurobiol Dis 40(1): 4–11.

Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S (2019) Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: A review. Eur J Med Chem 169: 185–199.

Diomede L, Rigacci S, Romeo M, Stefani M, Salmona M (2013) Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PloS One 8(3): e58893.

Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y (2010) Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-β. J Alzheimers Dis 19(2): 681–690.

Downes MJ, Brennan ML, Williams HC, Dean RS (2016) Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 6(12): e011458.

Faber PW, Voisine C, King DC, Bates EA, Hart AC (2002) Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci USA 99(26): 17131–17136.

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669): 806–811.

Fonnegra FG (2007) Plantas medicinales aprobadas en Colombia, Edición Ilustrada. Universidad de Antioquia.

Frank S (2014) Treatment of Huntington’s disease. Neurotherapeutics 11(1): 153–160.

GBD 2016 Parkinson’s Disease Collaborators (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11): 939–953.

Ghimire S, Subedi L, Acharya N, Gaire BP (2021) Moringa oleifera: A tree of life as a promising medicinal plant for neurodegenerative diseases. J Agric Food Chem 69(48): 14358–14371.

Giraldo SE, Rincón J, Guerrero MF, López I, Jiménez I, Marder NM, Wasowski CL, Vergel NE (2013) Valepotriate hydrines isolated from an anticonvulsant fraction of Valeriana pavonii Poepp. & Endl. Lat Am J Pharm 32(8): 1224–1230.

Giraldo SE, Rincón J, Puebla P, Marder M, Wasowski C, Vergel N, Guerrero MF (2010) Isovaleramide, an anticonvulsant molecule isolated from Valeriana pavonii. Biomedica 30(2): 245–250.

Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mech 10(5): 499–502.

Gómez LA, Tovar HC (2003) Utilización de servicios de salud y perfiles epidemiológicos como parámetros de adecuación del Plan Obligatorio de Salud en Colombia. Rev de Salud Pública 5(3): 246–262.

González Devia JL (2018) Evaluación del efecto del extracto etanólico de Witheringia coccoloboides sobre agregados de α-sinucleína en la cepa NL5901 de Caenorhabditis elegans. MSc tesis, Facultad de Medicina Departamento de Ciencias Fisiológicas, Universidad Nacional de Colombia, Bogotá, Colombia.

Gutierres Sánchez JS, Castro Cárdenas HS, Giraldo Quintero SE, Lozano Jiménez YY, Sánchez Mora RM (2020) Caenorhabditis elegans como modelo de estudio de enfermedades neurodegenerativas. Ámbito Invest 5(2): 24–33.

Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141(7): 1917–1933.

Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE (2008) Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin Interv Aging 3(2): 211.

Heinrich M, Dhanji T, Casselman I (2011) Açai (Euterpe oleracea Mart.)—A phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 4(1): 10–21.

Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8): 656–664.

Jamil S, Nizami Q, Salam M (2007) Centella asiatica (Linn.) Urban: a review. Indian J Nat Prod Resour 6: 158–170.

Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR 3rd, Bordone L, Guarente L, Krainc D (2011) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18(1): 159–165.

Johnson SL, Park HY, Dasilva NA, Vattem DA, Ma H, Seeram NP (2018) Levodopa-reduced mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 10(9): 1139.

Jugran AK, Rawat S, Bhatt ID, Rawal RS (2019) Valeriana jatamansi: An herbaceous plant with multiple medicinal uses. Phytother Res 33(3): 482–503.

Katerine P-F, Gualteros-Bustos A, Sanchez Mora R (2017) Phenotypic characterization of the N2 strain of Caenorhabditis elegans as a model in neurodegenerative diseases. Nova 15(28): 69–78.

Kautu BB, Carrasquilla A, Hicks ML, Caldwell KA, Caldwell GA (2013) Valproic acid ameliorates C. elegans dopaminergic neurodegeneration with implications for ERK-MAPK signaling. Neurosci Lett 541: 116–119.

Keowkase R, Shoomarom N, Bunargin W, Sitthithaworn W, Weerapreeyakul N (2018) Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomed Pharmacother 107: 656–664.

Kulczyski B, Gramza-Michaowska A (2016) Goji berry (Lycium barbarum): Composition and health effects–a review. Polish J Food Nutr Sci 66(2): 67–76.

Kumar R, Gupta K, Saharia K, Pradhan D, Subramaniam JR (2013) Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann Neurosci 20(1): 13–16.

Lee J, Lim S (2021) Anti-inflammatory, and anti-arthritic effects by the twigs of Cinnamomum cassia on complete Freund’s adjuvant-induced arthritis in rats. J Ethnopharmacol 278: 114209.

Li H, Shi R, Ding F, Wang H, Han W, Ma F, Hu M, Ma CW, Huang Z (2016) Astragalus polysaccharide suppresses 6-hydroxydopamine-induced neurotoxicity in Caenorhabditis elegans. Oxid Med Cell Longev 2016: 4856761.

Li J, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 250: 94–103.

Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92(20): 9368–9372.

Liu W, Ma H, DaSilva NA, Rose KN, Johnson SL, Zhang L, Wan C, Dain JA, Seeram NP (2016) Development of a neuroprotective potential algorithm for medicinal plants. Neurochem Int 100: 164–177.

Liu X, Cui C, Zhao M, Wang J, Luo W, Yang B, Jiang Y (2008) Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chem 109(4): 909–915.

López Locanto Ó (2015) Tratamiento farmacológico de la enfermedad de Alzheimer y otras demencias. Arch Med Int 37(2): 61–67.

Ma H, Liu W, Frost L, Kirschenbaum LJ, Dain JA, Seeram NP (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 7(5): 2213–2222.

Ma X, Li J, Cui X, Li C, Wang Z (2020) Dietary supplementation with peptides from sesame cake alleviates Parkinson’s associated pathologies in Caenorhabditis elegans. J Funct Foods 65: 103737.

Maher P (2019) The potential of flavonoids for the treatment of neurodegenerative diseases. Int J Mol Sci 20(12): 3056.

Mali PY (2015) Premna integrifolia L.: A review of its biodiversity, traditional uses and phytochemistry. Anc Sci Life 35(1): 4.

Marsden CD, Parkes JD (1977) Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 309(8007): 345–349.

Martínez-Fernández R, Gasca-Salas C, Sánchez-Ferro Á, Obeso JÁ (2016) Actualización en la enfermedad de Parkinson. Rev Med Clin Las Condes 27(3): 363-379.

Martínez-Lazcano J, Boll-Woehrlen C, Hernández-Melesio MPA, Rubio-Osornio M, Sánchez-Mendoz MA, Ríos C,  Pérez-Severiano F (2010) Radicales libres y estrés oxidativo en las enfermedades neurodegenerativas. Mensaje Bioquímico XXXIV: 43–59.

Masondo NA, Stafford GI, Aremu AO, Makunga NP (2019) Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S Afr J Bot 120: 39–64.

Mat Sharil AT, Basma Ezzat M, Widya L, Amri Nurhakim MH, Nor Hikmah AR, Nabilah Zafira Z, Haris MS (2022) Systematic review of flaxseed (Linum usitatissimum L.) extract and formulation in wound healing. J Pharm Pharmacogn Res 10(1): 1–12.

McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1): 24–34.

McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM; and the PRISMA-DTA Group, Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L, Hunt HA, Hyde CJ, Korevaar DA, Leeflang MMG, Macaskill P, Reitsma JB, Rodin R, Rutjes AWS, Salameh JP, Stevens A, Takwoingi Y, Tonelli M, Weeks L, Whiting P, Willis BH (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 319(4): 388–396.

Mishra G, Singh PK, Verma RK, Kumar S, Srivastav S, Jha KK, Khosa RL (2011) Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharm Lett 3: 141–164.

Moriwaki T, Kato S, Kato Y, Hosoki A, Zhanggakiyama Q (2013) Extension of lifespan and protection against oxidative stress by an antioxidant herb mixture complex (KPGG7) in Caenorhabditis elegans. J Clin Biochem Nutr 53(2): 81–88.

Mosquera OM, Nio J, Correa YM, Hernndez JA (2004) Detección in-vitro de inhibidores de la acetilcolinesterasa en extractos de cuarenta plantas de la flora colombiana mediante el método cromatográfico de Ellman. Sci Tech X(26): 155–160.

Müller T, Hefter H, Hueber R, Jost WH, Leenders KL, Odin P, Schwarz J (2004) Is levodopa toxic? J Neurol 251(6): vi44–vi46.

Nayak A, Ansar R, Verma SK, Bonifati DM, Kishore U (2011) Huntington’s disease: an immune perspective. Neurol Res Int 2011: 563784.

Niño J, Hernández JA, Correa YM, Mosquera OM (2006) In vitro inhibition of acetylcholinesterase by crude plant extracts from Colombian flora. Mem Inst Oswaldo Cruz 101: 783–785.

OMS (2013) Estrategia de la OMS sobre medicina tradicional 2014-2023. https://apps.who.int/iris/handle/10665/95008 [Consultado Junio 25, 2022].

OMS (2015) Estrategia de la OMS sobre medicina tradicional 2002-2005. https://apps.who.int/iris/handle/10665/67314 [Consultado Junio 25, 2022].

Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2003) Potent anti‐amyloidogenic and fibril‐destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87(1): 172–181.

Orozco JL, Valderrama-Chaparro JA, Pinilla-Monsalve GD, Molina-Echeverry MIA (2020) Parkinson’s disease prevalence, age distribution and staging in Colombia. Neurol Int 12(1): 9–14.

Pandey R, Gupta S, Shukla V, Tandon S, Shukla V (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). 51: 515–521.

Parker JA, Metzler M, Georgiou J, Mage M, Order JC, Rose AM, Michael R. Hayden MR, Néri C (2007) Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 27(41): 11056–11064.

Pasinetti GM, Eberstein JA (2008) Metabolic syndrome and the role of dietary lifestyles in Alzheimer’s disease. J Neurochem 106(4): 1503–1514.

Peixoto H, Roxo M, Krstin S, Wang X, Wink M (2016) Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.) mediates neuroprotective activities in Caenorhabditis elegans. J Funct Foods 26: 385–393.

Pérez-Loyola M, Valdés-González M, Garrido G (2022) Modified pectins with activity against colon cancer: A systematic review from 2010-2021. J Pharm Pharmacogn Res 10(4): 616–651.

Peters CM, Vásquez A (1987) Estudios ecológicos de Camu-Camu (Myrciaria dubia). I. Producción de frutos en poblaciones naturales. Acta Amazon 17: 161–188.

Phillips W, Shannon KM, Barker RA (2008) The current clinical management of Huntington’s disease. Mov Dis 23(11): 1491–1504.

Phulara SC, Shukla V, Tiwari S, Pandey R (2015) Bacopa monnieri promotes longevity in Caenorhabditis elegans under stress conditions. Pharmacogn Mag 11(42): 410–416.

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3: 17013.

Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 9(1): 63–75.

Przedborski S, Vila M, Jackson-Lewis V (2003) Series Introduction: Neurodegeneration: What is it and where are we? J Clin Invest 111(1): 3–10.

Rao SS, Hofmann LA, Shakil A (2006) Parkinson’s disease: diagnosis and treatment. Am Fam Physician 74(12): 2046–2054.

Regitz C, Dubling LM, Wenzel U (2014) Amyloid-beta (Aβ₁₋₄₂)-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res 58(10): 1931–1940.

Rodríguez A, Mondaini AO, Hitschfeld MA (2017) Bioeconomía en América Latina y el Caribe: Contexto global y regional y perspectivas, editorial CEPAL. América Latina y el Caribe: Naciones Unidas Comisión Económica para América Latina y el Caribe.

Rose K, Wan C, Thomas A, Seeram NP, Ma H (2018) Phenolic compounds isolated and identified from amla (Phyllanthus emblica) juice powder and their antioxidant and neuroprotective activities. Nat Prod Comm 13(10): 1309–1311.

Saul N, Pietsch K, Menzel R, Steinberg CEW (2008) Quercetin-mediated longevity in Caenorhabditis elegans: Is DAF-16 involved? Mech Ageing Dev 129(10): 611–613.

Seevaratnam V, Banumathi P, Premalatha MR, Sundaram SP, Arumugam T (2012) Functional properties of Centella asiatica (L.): A review. Int J Pharm Pharm Sci 4(5): 8–14.

Seo HW, Cheon SM, Lee MH, Kim HJ, Jeon H, Cha DS (2015) Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in Caenorhabditis elegans. Evid Based Complement Alternat Med 2015: 524878.

Shaye DD, Greenwald I (2011) Ortholist: A compendium of C. elegans genes with human orthologs. PloS One 6(5): e20085.

Shukla VA, Phulara SC, Yadav D, Tiwari S, Kaur S, Gupta MM, Nazir A, Pandey R (2012) Iridoid compound 10-O-trans-p-coumaroylcatalpol extends longevity and reduces alpha synuclein aggregation in Caenorhabditis elegans. CNS Neurol Disord Drug Targets 11(8): 984–992.

Siddiqui BS, Aslam H, Ali ST, Khan S, Begum S (2007) Chemical constituents of Centella asiatica. J Asian Nat Prod Res 9(4): 407–414.

Singh SK (2012) Phytochemical analysis of leaf callus of Bacopa monnieri L. Int J Sci Res 2(9): 1–3

Skovronsky DM, Doms RW, Lee VMY (1998) Detection of a novel intraneuronal pool of insoluble amyloid β protein that accumulates with time in culture. J Cell Biol 141(4): 1031–1039.

Sodhi RK, Jaggi AS, Singh N (2014) Animal models of dementia and cognitive dysfunction. Life Sci 109(2): 73–86.

Sudati JH, Fachinetto R, Pereira RP, Boligon AA, Athayde ML, Soares FAA (2009) In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents. Neurochem Res 34(8): 1372–1379.

Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM (2016) Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother 84: 892–908.

Summanen JO (1999) A chemical and ethnopharmacological study on Phyllanthus emblica L.(Euphorbiaceae). Dissertation. Department of Pharmacy, Division of Pharmacognosy, University of Helsinki.

Sun X, Jin L, Ling P (2012) Review of drugs for Alzheimer’s disease. Drug Discov Ther 6(6): 285–290.

Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1): 65–74.

Van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4(3): e1000027.

Vishwakarma S, Goyal R, Gupta V, Dhar KL (2016) GABAergic effect of valeric acid from Valeriana wallichii in amelioration of ICV STZ induced dementia in rats. Rev Bras Farmacogn 26: 484–489.

Voisine C, Varma H, Walker N, Bates EA, Stockwell BR, Hart AC (2007) Identification of potential therapeutic drugs for Huntington’s disease using Caenorhabditis elegans. PloS One 2(6): e504.

Walker FO (2007) Huntington’s disease. Lancet 369(9557): 218–228.

WHO (1999) Monographs on selected medicinal plants. https://apps.who.int/iris/handle/10665/42052 [Consultado Junio 25, 2022].

WHO (2013) Traditional Medicine Strategy 2014-2023. https://apps.who.int/iris/handle/10665/92455 [Consultado Junio 25, 2022].

WHO (2018) The global dementia observatory reference guide. https://apps.who.int/iris/handle/10665/272669 [Consultado Junio 25, 2022].

WHO (2021) Dementia. https://www.who.int/health-topics/dementia#tab=tab_1 [Consultado Junio 25, 2022].

Wilson CA, Doms RW, Lee VMY (1999) Intracellular APP processing and Aβ production in Alzheimer disease. J Neuropathol Exp Neurol 58(8): 787–794.

Yang X, Zhang P, Wu J, Xiong S, Jin N, Huang Z (2012) The neuroprotective and lifespan-extension activities of Damnacanthus officinarum extracts in Caenorhabditis elegans. J Ethnopharmacol 141(1): 41–47.

Yao X-L, Wu W-L, Zheng M-Y, Li W, Ye C-H, Lu X-L (2011) Protective effects of Lycium barbarum extract against MPP (+)-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. Zhong Yao Cai 34(8): 1241–1246.

Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR (2018) Frontotemporal dementia: Latest evidence and clinical implications. Ther Adv Psychopharmacol 8(1): 33–48.

Yu YB, Dosanjh L, Lao L, Tan M, Shim BS, Luo Y (2010) Cinnamomum cassia bark in two herbal formulas increases life span in Caenorhabditis elegansvia insulin signaling and stress response pathways. PloS One 5(2): e9339.

Zahra W, Rai SN, Birla H, Singh SS, Dilnashin H, Rathore AS, Singh SP (2020) The global economic impact of neurodegenerative diseases: Opportunities and challenges. In: Keswani, C. (eds) Bioeconomy for Sustainable Development. Springer, Singapore, pp. 333–345.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Moroccan medicinal plants against COVID-19

J Pharm Pharmacogn Res 10(2): 227-238, 2022.

DOI: https://doi.org/10.56499/jppres21.1200_10.2.227

Original Article

Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco

[Estudio de acoplamiento molecular de los principales fitoquímicos de algunas plantas medicinales utilizadas contra el COVID-19 por la población rural de la región de Al-Haouz, Marruecos]

Ridwane Ghanimi1*, Ahmed Ouhammou2, Yassine El Atki3, Mohamed Cherkaoui1

1Laboratory of Pharmacology, Neurobiology, Anthropobiology, Environment and Behaviour, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, BP 2390, 40000, Morocco.

2Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Agrosciences, Phytobiodiversity and Environment Team, Regional Herbarium ‘MARK’, Department of Biology, Faculty of Sciences Semlalia , Cadi Ayyad University, PO. Box 2390, Marrakech, 400001, Morocco.

3Laboratory of Physiology Pharmacology and Environmental Health, Department of Biology, Faculty of Sciences Dhar Mehraz,Sidi Mohamed Ben Abdellah University, Fez, Morocco.

*E-mail: ghanimiridwane@gmail.com, ridwane.ghanimi@ced.uca.ma


Context: The infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global health emergency. The management of this crisis requires the discovery of new drugs able to cure or reduce the severity of SARS-CoV-2.

Aims: To explore the medicinal plants consumed by the rural population of Al-Haouz region against the emergence of the COVID-19, and to assess in silico the main phytochemicals present in the essential oils and the extracts of these medicinal plants, as potential inhibitors of the COVID-19 main protease (Mpro).

Methods: The survey was conducted through a semi-structured questionnaire among 85 respondents aged 30 years and above, in the Al-Haouz region, Morocco. AutoDock Vina, was used to assess the binding affinity of the phytochemicals to the Mpro.

Results: Eleven wild medicinal species were cited; 10 belonging to the Lamiaceae family and one to the Compositae family. Thymus saturejoides Coss., Artemisia herba-alba Asso.and Mentha suaveolens Ehrh. were respectively the three most cited species during the survey. The rosmarinic acid (-7.7 kcal/mol), hesperetin (-7.2 kcal/mol), gallocatechin (-7.2 kcal/mol) and cyasterone (-7.2 kcal/mol) have shown the higher inhibitory potential against covid-19 Mpro respectively.

Conclusions: In addition to their different recognized biological activities, the medicinal plants used in the Al-Haouz region have shown good inhibitory potential against SARAS-CoV-2 Mpro. Furthermore, the phytochemicals that exhibited the highest inhibitory potentials in this virtual study require further investigation in vitro and in vivo.

Keywords: COVID-19; ethnomedicine; medicinal plants; molecular docking; Morocco; SARS-CoV-2.


Contexto: La infección por el coronavirus 2 del síndrome respiratorio agudo severo (SARS-CoV-2) es una emergencia sanitaria mundial. El manejo de esta crisis requiere el descubrimiento de nuevos medicamentos capaces de curar o reducir la gravedad del SARS-CoV-2.

Objetivos: Explorar las plantas medicinales consumidas por la población rural de la región de Al-Haouz frente a la aparición del COVID-19, y evaluar in silico los principales fitoquímicos presentes en los aceites esenciales y los extractos de estas plantas medicinales, como potenciales inhibidores. de la proteasa principal COVID-19 (Mpro).

Métodos: La encuesta se realizó a través de un cuestionario semiestructurado entre 85 encuestados de 30 años o más, en la región de Al-haouz, Marruecos. Se utilizó AutoDock Vina para evaluar la afinidad de unión de los fitoquímicos al Mpro.

Resultados: Se citaron once especies medicinales silvestres; 10 pertenecientes a la familia Lamiaceae y una a la familia Compositae. Thymus saturejoides Coss., Artemisia herba-alba Asso. y Mentha suaveolens Ehrh. fueron, respectivamente, las tres especies más citadas durante la encuesta. El ácido rosmarínico (-7,7 kcal/mol), la hesperetina (-7,2 kcal/mol), la galocatequina (-7,2 kcal/mol) y la ciasterona (-7,2 kcal/mol) han mostrado el mayor potencial inhibitorio frente al covid-19 Mpro, respectivamente.

Conclusiones: Además de sus diferentes actividades biológicas reconocidas, las plantas medicinales utilizadas en la región de Al-Haouz han mostrado un buen potencial inhibitorio contra SARAS-CoV-2 Mpro. Además, los fitoquímicos que exhibieron los potenciales inhibidores más altos en este estudio virtual requieren más investigación in vitro e in vivo.

Palabras Clave: acoplamiento molecular; COVID-19; etnomedicina; Marruecos; plantas medicinales; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ghanimi R, Ouhammou A, El Atki Y, Cherkaoui M (2022) Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. J Pharm Pharmacogn Res 10(2): 227–238. https://doi.org/10.56499/jppres21.1200_10.2.227

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Ethnomedicinal plants used in Bni-Leit and Al-Oued districts, Morocco

J Pharm Pharmacogn Res 9(3): 284-312, 2021.

Original Article

Ethnomedicinal and traditional phytotherapeutic plants used in Bouhachem Natural Regional Park (Rif of Morocco): Case of Bni-Leit and Al-Oued districts

[Plantas etnomedicinales y fitoterapéuticas tradicionales utilizadas en el Parque Regional Natural de Bouhachem (Rif de Marruecos): El caso de las comunas rurales de Bni-Leit y Al-Oued]

Mohammed Bachar, Houda ElYacoubi,Lahcen Zidane, Atmane Rochdi*

Laboratory of Natural Resources & Sustainable Development, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.

*E-mail: atmane.rochdi@uit.ac.ma; AtmaneRochdi@gmail.com


Context: The flora of the Bouhachem Regional Natural Park has been studied by many botanists and ecologists, but the analysis of the medicinal and economic values of these plants is still weak and poorly documented. Within the framework of this study, further investigations will be carried out into the value of indigenous medicinal plants and the documentation of their ethnopharmacological knowledge. In addition, due to their important socio-economic role as a second source of income after agriculture, the evaluation of the commercial activity of aromatic and medicinal plants (AMP) will also be taken into account.

Aims: To evaluate the ethnobotanical and commercialized medicinal plants in north region of Morocco in which traditional medicine is widespread.

Methods: The uses of medicinal plants in traditional phytotherapy were researched through 700 question cards, in Bni-Leit and Al-Oued districts, which are a part of the Naturel Regional Park of Bouhachem. A series of ethnobotanical, economic and sociocultural surveys/interviews were conducted among the local population in the study area, between March 2014 and July 2016.

Results: This Ethnobotanical study identified 101 medicinal plant species belonging to 46 families, of which the most abundant are Lamiaceae (FUV: 1.87). This study also revealed that the leaves are the most used parts of the plant (26%) and that the most remedies are prepared as decoction (27%). Digestive disorders rank first among the diseases treated by these plants with a rate of 21%.

Conclusions: The present study shows that the traditional use of medicinal plants still persists and constitutes a very rich heritage in the northern of Morocco. Therefore, this important indigenous knowledge of medicinal plants would be exploited in pharmaceutical research. It reveals that urgent action is needed to promote a sustainable and best practices to reduce the increasing scale of exploitation of AMPs for commercial use and to draw the attention of Park managers to the preservation of these plants from genetic erosion by a rational management.

Keywords: Bouhachem Park; ethnobotanical; medicinal plants; Moroccan Rif; phytotherapy; Tetouan.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: La flora del Parque Regional Natural de Bouhachem ha sido estudiada por muchos botánicos y ecologistas, pero el análisis de los valores medicinales y económicos de estas plantas es todavía débil y poco registrado. En el presente estudio, las investigaciones ulteriores se centrarán en el valor de las plantas medicinales autóctonas, la documentación de sus conocimientos etnofarmacológicos y la evaluación de la actividad comercial de las plantas aromáticas y medicinales (AMP) en las dos comunas estudiadas.

Objetivos: Evaluar las plantas medicinales etnobotánicas y comercializadas en la región septentrional de Marruecos, en la que la medicina tradicional está muy extendida.

Métodos: Los usos de las plantas medicinales en la fitoterapia tradicional se investigaron mediante 700 tarjetas de preguntas, en los distritos de Bni-Leit y Al-Oued que forman parte del Parque Regional Natural de Bouhachem. Entre marzo de 2014 y julio de 2016 se realizó una serie de encuestas/entrevistas etnobotánicas, económicas y socioculturales entre la población local de la zona de estudio.

Resultados: En este estudio etnobotánico se identificaron 101 especies de plantas medicinales pertenecientes a 46 familias, de las cuales las más abundantes son las Lamiaceae (FUV: 1,87). Este estudio también reveló que las hojas son las partes más utilizadas de la planta (26%) y que la mayoría de los remedios se preparan en forma de decocción (27%). Los trastornos digestivos ocupan el primer lugar entre las enfermedades tratadas por estas plantas con una tasa del 21%.

Conclusiones: El presente estudio muestra que el uso tradicional de las plantas medicinales aún persiste y constituye un patrimonio muy rico en el norte de Marruecos. Por lo tanto, este importante conocimiento indígena de las plantas medicinales sería explotado en la investigación farmacéutica. Revela que es necesario adoptar medidas urgentes para promover prácticas sostenibles y óptimas a fin de reducir la escala cada vez mayor de la explotación de las AMP para uso comercial y señalar a la atención de los administradores de los parques la preservación de esas plantas de la erosión genética mediante una ordenación racional.

Palabras Clave: etnobotánico; fitoterapia; Parque Bouhachem; plantas medicinales; Rif marroquí; Tetuán.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Bachar M, ElYacoubi H, Zidane L, Rochdi A (2021) Ethnomedicinal and traditional phytotherapeutic plants used in Bouhachem Natural Regional Park (Rif of Morocco): Case of Bni-Leit and Al-Oued districts. J Pharm Pharmacogn Res 9(3): 284–312.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)