Tag Archives: oocytes

Toxic effects of monosodium glutamate on ovary in rats

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 397-405, May-June 2022.

Original Article

The ovulation assessment of regular cyclic rats following subacute oral administration of monosodium glutamate: An in vivo study

[Evaluación de la ovulación en ratas con ciclos regulares después de la administración oral subaguda de glutamato monosódico: Un estudio in vivo]

Mahfoudh Almusli Mohammed Abdulghani

Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Al Qassim, Saudi Arabia.

*E-mail: ma.abdulghani@qu.edu.sa, mahfouz08@gmail.com

Abstract

Context: The possible toxic effects of monosodium glutamate (MSG) on ovarian functions have not been thoroughly evaluated in contrast to testicular functions. Few studies documented that MSG showed histological alterations.

Aims: To investigate the subacute effects of oral MSG (2 g/kg) on estrogen level and numbers of ovulated oocytes and histological changes in ovary of Sprague-Dawley (SD) rats.

Methods: Virgin young adult SD female rats with a regular estrous cycle were randomly assigned to either MSG-treated group or control group, and the duration of treatment was 14-16 days for oral administration MSG or vehicle (distilled water), respectively.

Results: Oral MSG treatment with doses of 2 g/kg/day showed significantly (p<0.01) reduced numbers of ovulated oocytes in the oviduct, newly formed corpora lutea, large follicles in histology of ovarian sections and attenuated serum estrogen levels.

Conclusions: Subacute oral administration of MSG may negatively influence the ovarian function of young female rats via reduction of ovulated oocytes and the attenuation of estrogen level.

Keywords: corpora lutea; estrogen level; follicles ovarian; monosodium glutamate; oocytes; ovulation; toxicity.

Resumen

Contexto: Los posibles efectos tóxicos del glutamato monosódico (MSG) en las funciones ováricas no se han evaluado a fondo en contraste con las funciones testiculares. Pocos estudios documentaron que el GMS mostrara alteraciones histológicas.

Objetivos: Investigar los efectos subagudos del glutamato monosódico oral (2 g/kg) sobre el nivel de estrógeno y el número de ovocitos ovulados y los cambios histológicos en el ovario de ratas Sprague-Dawley (SD).

Métodos: Se asignaron al azar ratas SD hembra adultas jóvenes vírgenes con un ciclo estral regular al grupo tratado con MSG o al grupo de control, y la duración del tratamiento fue de 14 a 16 días para la administración oral de MSG o vehículo (agua destilada), respectivamente.

Resultados: El tratamiento con MSG oral con dosis de 2 g/kg/día mostró un número significativamente reducido (p<0,01) de ovocitos ovulados en el oviducto, cuerpos lúteos recién formados, folículos grandes en la histología de las secciones ováricas y niveles atenuados de estrógeno sérico.

Conclusiones: La administración oral subaguda de MSG puede influir negativamente en la función ovárica de ratas hembra jóvenes a través de la reducción de los ovocitos ovulados y la atenuación del nivel de estrógeno.

Palabras Clave: cuerpos lúteos; folículos ováricos; glutamato monosódico; nivel de estrógeno; ovocitos; ovulación; toxicidad.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Abdulghani MAM (2022) The ovulation assessment of regular cyclic rats following subacute oral administration of monosodium glutamate: An in vivo study. J Pharm Pharmacogn Res 10(3): 397–405.
References

Abdel-Aziem SH, Abd El-Kader HAM, Ibrahim FM, Sharaf HA, El Makawy AI (2018) Evaluation of the alleviative role of Chlorella vulgaris and Spirulina platensis extract against ovarian dysfunctions induced by monosodium glutamate in mice. J Genet Eng Biotechnol 16: 653–660.

Abdulghani M, Hussin AH, Sulaiman SA, Chan KL (2012) The ameliorative effects of Eurycoma longifolia Jack on testosterone-induced reproductive disorders in female rats. Reprod Biol 12: 247–255.

Agbadua OG, Idusogie LE, Chukwuebuka AS, Nnamdi CS, Sylvester S (2020) Evaluating the protective and ameliorative potential of unripe Palm kernel seeds on monosodium glutamate-induced uterine fibroids. Open Access Libr J 7: e6461.

Ali AA, El-Seify GH, El Haroun HM, Soliman MAEMM (2014) Effect of monosodium glutamate on the ovaries of adult female albino rats and the possible protective role of green tea. Menoufia Med J 27: 793–800.

Barbieri RL (2014) The endocrinology of the menstrual cycle. In Human Fertility, (Springer), pp. 145–169.

Bizzi A, Veneroni E, Salmona M, Garattini S (1977) Kinetics of monosodium glutamate in relation to its neurotoxicity. Toxicol Lett 1: 123–130.

Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C, Prasongwattana V, Cha’on U (2015) Monosodium glutamate dietary consumption decreases pancreatic β-cell mass in adult Wistar rats. PLoS One 10: e0131595.

Calis IU, Cosan DT, Saydam F, Kolac UK, Soyocak A, Kurt H, Gunes HV, Sahinturk V, Mutlu FS, Koroglu ZO, Degirmenci I (2016) The effects of monosodium glutamate and tannic acid on adult rats. Iran Red Crescent Med J 18: e37912.

Chakraborty SP (2019) Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol Mech Methods 29: 389–396.

Donadio MVF, Kunrath A, Corezola KL, Franci CR, Anselmo-Franci JA, Lucion AB, Sanvitto GL (2007) Effects of acute stress on the day of proestrus on sexual behavior and ovulation in female rats: Participation of the angiotensinergic system. Physiol Behav 92: 591–600.

Eweka AO, Eweka A, Om’Iniabohs FAE (2010) Histological studies of the effects of monosodium glutamate of the fallopian tubes of adult female Wistar rats. N Am J Med Sci 2: 146–153.

Gaspar RS, Benevides RO, Fontelles JL, Vale CC, França LM, Barros Pde T, Paes AM (2016) Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats. J Endocrinol 229: 61–72.

Gougeon A (1986) Dynamics of follicular growth in the human: A model from preliminary results. Hum Reprod 1: 81–87.

Hernández-Bautista RJ, Alarcón-Aguilar FJ, Del C. Escobar-Villanueva M, Almanza-Pérez JC, Merino-Aguilar H, Fainstein MK, López-Diazguerrero NE (2014) Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. Int J Mol Sci 15: 11473–11494.

Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J (2017) Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 13: 400–414.

Kayode OT, Rotimi DE, Kayode AAA, Olaolu TD, Adeyemi OS (2020) Monosodium glutamate (MSG)-induced male reproductive dysfunction: A mini review. Toxics 8: 7.

Kazmi Z, Fatima I, Perveen S, Malik SS (2017) Monosodium glutamate: Review on clinical reports. Int J Food Prop 20: 1807–1815.

Koffuor GA, Annan K, Kyekyeku JO, Fiadjoe HK, Enyan E (2013) Effect of ethanolic stem bark extract of Blighia unijugata (Sapindaceae) on monosodium glutamate-induced uterine leiomyoma in Sprague-Dawley rats. J Pharm Res Int 3: 880–896.

Moenter SM, Silveira MA, Wang L, Adams C (2020) Central aspects of systemic oestradiol negative‐and positive‐feedback on the reproductive neuroendocrine system. J Neuroendocrinol 32: e12724.

Mondal M, Sarkar K, Nath PP, Khatun A, Pal S, Paul G (2018) Monosodium glutamate impairs the contraction of uterine visceral smooth muscle ex vivo of rat through augmentation of acetylcholine and nitric oxide signaling pathways. Reprod Biol 18: 83–93.

Mondal M, Sarkar K, Nath PP, Paul G (2017) Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environ Toxicol 33: 198–208.

Obochi GO, Malu SP, Obi-Abang M, Alozie Y, Iyam MA (2009) Effect of garlic extracts on monosodium glutamate (MSG) induced fibroid in Wistar rats. Pakistan J Nutr 8: 970–976.

Pelantová H, Bártová S, Anýž J, Holubová M, Železná B, Maletínská L, Novák D, Lacinová Z, Šulc M, Haluzík M, Kuzma M (2016) Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal Bioanal Chem 408: 567–578.

Raineki C, Szawka RE, Gomes CM, Lucion MK, Barp J, Belló-Klein A, Franci CR, Anselmo-Franci JA, Sanvitto GL, Lucion AB (2008) Effects of neonatal handling on central noradrenergic and nitric oxidergic systems and reproductive parameters in female rats. Neuroendocrinology 87: 151–159.

Rhodes J, Titherley AC, Norman JA, Wood R, Lord DW (1991) A survey of the monosodium glutamate content of foods and an estimation of the dietary intake of monosodium glutamate. Food Addit Contam 8: 265–274.

Roberts A, Lynch B, Ivonne MCMR (2018) Risk assessment paradigm for glutamate. Ann Nutr Metab 73: 53–64.

Sharma A, Wongkham C, Prasongwattana V, Boonnate P, Thanan R, Reungjui S, Cha’on U (2014) Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate. PLoS One 9: e116233.

Umukoro S, Oluwole GO, Olamijowon HE, Omogbiya AI, Eduviere AT (2015) Effect of monosodium glutamate on behavioral phenotypes, biomarkers of oxidative stress in brain tissues and liver enzymes in mice. World J Neurosci 5: 339–349.

Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K (2014) Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet 23: 920–928.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)